Biology:Virucide
This scientific article needs additional citations to secondary or tertiary sources (June 2021) (Learn how and when to remove this template message) |
}}
A virucide (alternatively spelled viricide[1] or named biocidal agent[2] or known as microbicides[3] or biocides[4]) is any physical or chemical agent that deactivates or destroys viruses.[5] The substances are not only virucidal but can be also bactericidal, fungicidal, sporicidal or tuberculocidal.[6]
Virucides are to be used outside the human body, and as such fall into the category of disinfectants (applied not to the human body) and antiseptics (applied to the surface of skin) for those safe enough. Overall, the notion of virucide differs from an antiviral drug such as Aciclovir, which inhibits the proliferation of the virus inside the body.[7][8][9]
CDC's Disinfection and Sterilization list of Chemical Disinfectants mentions and discusses substances such as: alcohol, chlorine and chlorine compounds, formaldehyde, glutaraldehyde, hydrogen peroxide, iodophors, ortho-phthalaldehyde (OPA), peracetic acid, peracetic acid and hydrogen peroxide, phenolics, quaternary ammonium compounds, with different, but usually potent microbicidal activity.[10][11] Other inactivating agents such as UV light, metals, and ozone exist.[12][13][14][11]
Definitions
According to the Centers for Disease Control and Prevention (CDC), a virucide is "An agent that kills viruses to make them noninfective."[15]
According to a definition by Robert Koch Institute Germany and further institutions,[16] virucide means effective against enveloped and non-enveloped viruses.[17][18][12]
Due to the complexity of the subject, in Germany, Robert-Koch-Institute introduced sub-definitions such as "limited virucidal" or "limited virucidal plus" (translated from German) to differentiate its meaning further.[19][20]
Note that the meaning of virus inactivation or viral clearance is specific for the medical process industry, i.e., to remove HIV from blood.
Functioning
Different substances have interactions between microbicides and viruses such as:[3]
- Alteration of the viral envelope
- Structural alteration
- Alteration of viral markers or
- Alteration of the viral genome
The exact mechanisms, for example of iodine (PVP-I), are still not clear, but it is targeting the bacterial protein synthesis due to disruption of electron transport, DNA denaturation or disruptive effects on the virus membrane.[21]
Registration
The U.S. Centers for Disease Control and Prevention administers a regulatory framework for disinfectants and sterilants.[22] To earn virucidal registration, extensive data on harder-to-kill viruses demonstrating long-lasting virucidal efficacy need to be provided.[23][24][25]
Regulations
- Europe: Biocide products regulation EN 528/2012[26]
Testing
- EN 14476:2019 (suspensions test)[27][28]
- EN 16777:2018 (surfaces test)[29][28]
- EN 1500 (hand rub test)[30][31]
- ISO 18184:2019 (textile products)[32]
- ISO 21702:2019 (plastics and non-porous surfaces) [33]
A specific protocol for hand-hygiene testing has been researched and established by microbiologist Prof. Graham Ayliffe.[34]
Safety
Virucides are not intended for use inside the body,[35][36] and most are disinfectants that are not intended for use on the surface of the body.[37] Most substances are toxic.[6] None of the listed substances replaces vaccination[38][39][40] or antiviral drugs, if available.[41][42][43] Virucides are usually labeled with instructions for safe, effective use.[44][37][45][46] The correct use and scope of disinfectants is very important.[47][48][49]
Potential serious side-effects with using "quats" (Quaternary ammonium compounds) exist, and over-use "can have a negative impact on your customers' septic systems."[50]
Mouth-rinsing or gargling can reduce virus load,[51] however experts warn that "Viruses in the nose, lungs or trachea that are released when speaking, sneezing and coughing are unlikely to be reached because the effect is based on physical accessibility of the surface mucous membrane".[52]
According to Deutsche Dermatologische Gesellschaft, medical practitioners recommend that disinfectants are gentler on the skin compared to soap-washing. The disinfected hands should then also be creamed to support the regeneration of the skin barrier. Skin care does not reduce the antiseptic effect of the alcoholic disinfectants.[53][54]
The "explosive" use of antibacterial cleansers has led the CDC to monitor substances in adults.[55]
On April 5, 2021, a Press Briefing by White House COVID-19 Response Team and Public Health Officials mentions that "Cleaning with household cleaners containing soap or detergent will physically remove germs from surfaces. This process does not necessarily kill germs, but reduces the risk of infection by removing them. Disinfecting uses a chemical product, which is a process that kills the germs on the surfaces. In most situations, regular cleaning of surfaces with soap and detergent, not necessarily disinfecting those surfaces, is enough to reduce the risk of COVID-19 spread. Disinfection is only recommended in indoor settings — schools and homes — where there has been a suspected or confirmed case of COVID-19 within the last 24 hours. In most situations, regular cleaning of surfaces with soap and detergent, not necessarily disinfecting those surfaces, is enough to reduce the risk of COVID-19 spread."[56][57]
The CDC issued a special report "Knowledge and Practices Regarding Safe Household Cleaning and Disinfection for COVID-19 Prevention" due to the increased number of calls to poison centers regarding exposures to cleaners and disinfectants since the onset of the COVID-19 pandemic, concluding that "Public messaging should continue to emphasize evidence-based, safe cleaning and disinfection practices to prevent SARS-CoV-2 transmission in households, including hand hygiene and cleaning and disinfection of high-touch surfaces."[58][59]
CDC provides a Guideline for Disinfection and Sterilization in Healthcare Facilities.[60]
Microbicidal activity
Each mentioned item in the list has different microbicidal activity, i.e. some viruses can be more or less resistant. For example, Poliovirus is resistant to a solution of 3% H2O2 even after a contact time of 10 minutes,[61] however 7.5% H2O2 takes 30 minutes to inactivate over 99.9% of Poliovirus.[10] Generally, hydrogen peroxide is considered as a potent virucide in appropriate concentrations, specifically in other forms such as gaseous.[3]
Another example is povidone-iodine (PVP-I), which is found to be effective against herpes simplex virus[62] or SARS-CoV-2,[63] and other viruses,[64] but coxsackievirus and polio was rather resistant or less sensitive to inactivation.[65][64]
SARS-CoV-2 (COVID-19)
In the beginning of the COVID-19 pandemic, former US President Donald Trump delivered a very dangerous message to the public on the use of disinfectants, which was immediately rejected and refuted by health professionals.[66] In essence, and as mentioned above, virucides are usually toxic depending on concentrations, mixture, etc., and can be deadly not just to viruses, but also if inside a human or animal body[67] or on surface of body.[68]
With regards to the COVID-19 pandemic, some of the mentioned agents are still under research about their microbicidal activity and effectivity against SARS-CoV-2, e.g., on surfaces,[69][70] as mouth-washes,[71] hand-washing,[72] etc.
A mixture of 62–71% ethanol, 0.5% hydrogen peroxide or 0.1% sodium hypochlorite is found to be able to deactivate the novel Coronavirus on surfaces within 1 minute.[2]
A 2020 systematic review on hydrogen peroxide (H2O2) mouth-washes concludes, that they don't have an effect on virucidal activity, recommending that "dental care protocols during the COVID-19 pandemic should be revised."[73] Additional research with relation to the Coronavirus virucidal efficacy is on-going.[74][71][75]
Various information and overview of light-based strategies (UV-C and other types of light sources; see also Ultraviolet germicidal irradiation) to combat the COVID-19 pandemic are available.[76][77][78][79]
As systematic review of 16 studies by Cochrane on Antimicrobial mouthwashes (gargling) and nasal sprays concludes that "there is currently no evidence relating to the benefits and risks of patients with COVID‐19 using antimicrobial mouthwashes or nasal sprays."[80]
SARS-CoV
Treatment of SARS-CoV for 2 min with Isodine (PVP-I) is found to strongly reduce the virus infectivity.[81]
Research
The International Society of Antimicrobial Chemotherapy (ISAC) is one of the major umbrella organizations for education, research and development in the area of therapy of infections. Its members are national organizations, currently 86 and over 50,000 individual members.[82]
List of virucides
Note that many of the substances, if sold commercially, are usually combinations and mixtures with varying molecular contents. Also note that most products have a limited viricide efficacy.[83] A specific test-protocol is applied.[84] The lists' scope is limited. For further products refer to other lists.[85][86][6] Other factors such as stability of the concentrate, application concentration, exposure time, timing of the solution, hydrogen ion concentration (pH value), temperature, etc. play an certain role for the effectivity of a virucide.[11]
EPA is providing a public listing called "List N"[87][88]
General substance listing of active component or compound
- 1-Docosanol[89]
- Alcohols:
- Benzalkonium chlorides, e.g.,
- Alkyl dimethyl benzyl ammonium chlorides (C12-16)
- Alkyl dimethyl benzyl ammonium chloride (C14 60%, C16 30%, C12 5%, C18 5%)
- Alkyl dimethyl ethylbenzyl ammonium chloride (C12-14)
- Alkyl dimethyl ethylbenzyl ammonium chlorides (C12-18)
- Bleach (Sodium hypochlorite)[93][94]
- Didecyldimethylammonium chloride
- Hand washing[96][97][98][99][100][101][102] (see also Surfactants)
- Hand washing is a mechanical process of removing germs and viruses, and chemicals.[102]
- Hand washing with, e.g., ethanol added to a hand disinfectant shows virucidal effects,[103][104] but caution is given (small children) and it is not recommended over "proper hand washing".[102]
- Hand gels are often found to not comply with EN 1500 standards to meet antimicrobial efficacy.[105]
- Prof. Graham Ayliffe's hand-cleaning and disinfection technique is promoted nowadays by the WHO and is similar to German standard DIN EN 1500 (hygienic hand disinfection).[106][107][108]
- Hydrogen peroxide[109]
- Oral rinse[71] (see Cochrane systematic review in case of SARS-CoV-2[80])
- Chlorhexidine[110][111] (CHX) - mainly against enveloped viruses.[3]
- Dequalinium[112]
- Povidone-iodine (Isodine, PVP-I),[113]
- High potency for virucidal activity has been observed against viruses of significant global concern,[64] including hepatitis A and influenza, as well as the Middle-East Respiratory Syndrome and Sudden Acute Respiratory Syndrome coronaviruses.[28]
- Application types and names: Isodine, Scrub, Isodine Nodo Fresh[81]
- Surfactants
Example products
- Betadine products and medical variants by Avrio Health (part of Purdue Pharma)[115]
- Ingredients: Povidon-iodine etc.
- As of June 2021, not recommended by manufacturer to "kill" coronaviruses.[116]
- Bleach products:
- Henkel products:
- biff Hygiene Total
- Ingredients: Benzalkonium chloride and formic acid
- Tested against SARS-CoV-2 according to producer statement on website.[119][120]
- Bref Power Bakterien & Schimmel[121]
- Purex
- biff Hygiene Total
- Heitmann Hygiene & Care products:
- Universal Hygiene Laundry Rinse 1.5[122]
- Ingredients: Didecyldimethylammonium chloride
- Hygiene Spray
- Ingredients: Ethanol, 2-propanol
- According to manufacturer is effective against SARS-CoV-2[123]
- Universal Hygiene Laundry Rinse 1.5[122]
- Listerine
- Ingredients: Alcohol, sodium fluoride, essential oils[124] (specifically in case of management of inflammatory periodontal diseases)[125]
- Unknown or limited virucidal activity[118]
- Lysol
- Ingredient: Benzalkonium chloride
- Some of the products having been tested against SARS-CoV-2.[47][118]
- Sterillium
- Ingredients: 1-Propanol, 2-propanol and mecetronium ethylsulfate
- By former Bode Chemie, now Hartmann AG, one of Germany's major health-care brands available in 50 countries,[126] and according to website "the world's most scientifically researched hand disinfectant with approximately 60 scientific publications in trade journals in 2015."[127][104]
Other substances, drugs, proteins, therapeutics, research-level topics
- Antimicrobial peptides
- Auriclosene (NVC-422)[128] - see also Keratoconjunctivitis
- Bacteriocin
- Chlorine dioxide[129][130][131]
- Copper alloys[23]
- CLR01 (Molecular tweezers) found to inhibit Ebola, Zika[132] or possibly SARS-CoV-2[133]
- Cyanovirin-N
- General so called "Drug repurposing" for example in case of SARS-CoV-2/COVID-19[134]
- Griffithsin
- Interferon
- Nanomedicines[135][136][137]
- "Novel Anti-Infectives" research by Helmholtz Centre for Infection Research[138]
- Peracetic acid[139]
- Scytovirin
- Urumin
Agricultural, veterinary
- V-Bind[140]
- Virkon[141]
- Turnip yellow mosaic virus (TuYV) resistant products, such as Bayer AG's DK Excited[142]
See also
- Bacteriostatic agent
- Disinfectant
- Enveloped virus
- List of cleaning products#Disinfectants
- Log reduction
References
- ↑ "Medical Definition of VIRUCIDE" (in en). https://www.merriam-webster.com/medical/virucide.
- ↑ 2.0 2.1 "Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents". The Journal of Hospital Infection 104 (3): 246–251. March 2020. doi:10.1016/j.jhin.2020.01.022. PMID 32035997.
- ↑ 3.0 3.1 3.2 3.3 "Virucidal Activity of Microbicides", Russell, Hugo & Ayliffe's (John Wiley & Sons, Ltd): pp. 178–207, 2013, doi:10.1002/9781118425831.ch9, ISBN 978-1-118-42583-1
- ↑ 4.0 4.1 "Information on biocides" (in en-GB). European Chemicals Agency (ECHA). European Union. https://echa.europa.eu/information-on-chemicals/biocidal-products.
- ↑ "The definition of viricide". Reference.com. http://dictionary.reference.com/browse/viricide.
- ↑ 6.0 6.1 6.2 6.3 "Comparing Different Disinfectants" (in en-US). Stanford Environmental Health & Safety. https://ehs.stanford.edu/reference/comparing-different-disinfectants.
- ↑ "Antiviral drug". https://medical-dictionary.thefreedictionary.com/antiviral+drug.
- ↑ "The race for antiviral drugs to beat COVID - and the next pandemic". Nature 592 (7854): 340–343. April 2021. doi:10.1038/d41586-021-00958-4. PMID 33854246. Bibcode: 2021Natur.592..340D.
- ↑ "Antiviral Drugs" (in en). Encyclopedia of Molecular Pharmacology. Berlin, Heidelberg: Springer Berlin Heidelberg. 2008. pp. 196–201. doi:10.1007/978-3-540-38918-7_20. ISBN 978-3-540-38916-3.
- ↑ 10.0 10.1 10.2 "Chemical Disinfectants | Disinfection & Sterilization Guidelines | Guidelines Library | Infection Control | CDC" (in en-us). 2019-04-04. https://www.cdc.gov/infectioncontrol/guidelines/disinfection/disinfection-methods/chemical.html.
- ↑ 11.0 11.1 11.2 (in de) Handbuch der viruswirksamen Desinfektion. Berlin, Heidelberg: Springer Berlin Heidelberg. 2002. doi:10.1007/978-3-642-56394-2. ISBN 978-3-642-63179-5. http://link.springer.com/10.1007/978-3-642-56394-2.
- ↑ 12.0 12.1 Block's disinfection, sterilization, and preservation (6th ed.). Philadelphia. 2021. ISBN 978-1-4963-8149-1. OCLC 1149169039. https://www.worldcat.org/oclc/1149169039.
- ↑ "Disinfection, sterilization, and antisepsis: An overview". American Journal of Infection Control 47S: A3–A9. June 2019. doi:10.1016/j.ajic.2019.01.018. PMID 31146848. https://cdr.lib.unc.edu/downloads/2f75rf64d.
- ↑ "Miscellaneous Inactivating Agents | Disinfection & Sterilization Guidelines | Guidelines Library | Infection Control | CDC" (in en-us). 2019-04-04. https://www.cdc.gov/infectioncontrol/guidelines/disinfection/disinfection-methods/miscellaneous.html.
- ↑ "Glossary | Disinfection & Sterilization Guidelines | Guidelines Library | Infection Control | CDC" (in en-us). 2019-04-04. https://www.cdc.gov/infectioncontrol/guidelines/disinfection/glossary.html.
- ↑ "Testing virucidal activity in Germany: an update". GMS Krankenhaushygiene Interdisziplinar 2 (1): Doc04. September 2007. PMID 20200665. PMC 2831492. https://www.egms.de/static/en/journals/dgkh/2007-2/dgkh000037.shtml.
- ↑ "Liste der vom Robert Koch-Institut geprüften und anerkannten Desinfektionsmittel und -verfahren" (in de). https://www.rki.de/DE/Content/Infekt/Krankenhaushygiene/Desinfektionsmittel/Virusinaktivierung/Aufber_Medizinprod_FAQ_07.html.
- ↑ (in en) Review of preparations used for hand hygiene. World Health Organization. 2009. https://www.ncbi.nlm.nih.gov/books/NBK144041/.
- ↑ "RKI stellt Wirkungsspektrum "begrenzt viruzid PLUS" vor" (in de). https://www.hartmann.info/de-de/wissen-und-news/f/c/rki-wirkungsspektrum-begrenzt-viruzid-plus.
- ↑ "Prüfung und Deklaration der Wirksamkeit von Desinfektionsmitteln gegen Viren zur Anwendung im human-medizinischen Bereich: Stellungnahme des Arbeitskreises Viruzidie beim Robert Koch-Institut" (in de). Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz 60 (3): 353–363. March 2017. doi:10.1007/s00103-016-2509-2. PMID 28220216.
- ↑ "Iodine: An Elemental Force Against Infection". https://www.reviewofophthalmology.com/article/iodine-an-elemental-force-against-infection.
- ↑ "Regulatory Framework | Disinfection & Sterilization Guidelines | Guidelines Library | Infection Control" (in en-us). 2019-04-04. https://www.cdc.gov/infectioncontrol/guidelines/disinfection/disinfection-methods/regulatory-framework.html.
- ↑ 23.0 23.1 "EPA Authorizes Virucidal Registration for Copper Alloys" (in en). 2 March 2021. https://www.pfonline.com/news/epa-authorizes-virucidal-registration-for-copper-alloys.
- ↑ "Efficacy Requirements for Antimicrobial Pesticides" (in en). 2015-08-05. https://www.epa.gov/pesticide-registration/efficacy-requirements-antimicrobial-pesticides.
- ↑ "Emerging Viral Pathogen Guidance for Antimicrobial Pesticides" (in en). 2016-04-06. https://www.epa.gov/pesticide-registration/emerging-viral-pathogen-guidance-antimicrobial-pesticides.
- ↑ "EUR-Lex - 32012R0528 - EN - EUR-Lex" (in en). https://eur-lex.europa.eu/eli/reg/2012/528/oj.
- ↑ "Chemical disinfectants and antiseptics. Quantitative suspension test for the evaluation of virucidal activity in the medical area. Test method and requirements (Phase 2/Step 1)". British Standards Institution (BSI). https://shop.bsigroup.com/ProductDetail?pid=000000000030401479.
- ↑ 28.0 28.1 28.2 "Infectious Disease Management and Control with Povidone Iodine". Infectious Diseases and Therapy 8 (4): 581–593. December 2019. doi:10.1007/s40121-019-00260-x. PMID 31414403.
- ↑ "Chemical disinfectants and antiseptics. Quantitative non-porous surface test without mechanical action for the evaluation of virucidal activity of chemical disinfectants used in the medical area. Test method and requirements (phase 2/step". British Standards Institution (BSI). https://shop.bsigroup.com/ProductDetail/?pid=000000000030348956.
- ↑ "Alcohol-based hand rubs must meet the requirements of EN 1500". Infection Control and Hospital Epidemiology 39 (8): 1018. August 2018. doi:10.1017/ice.2018.129. PMID 29925454.
- ↑ "Hand disinfection according to the European Standard EN 1500 (hygienic handrub): a study with gram-negative and gram-positive test organisms". International Journal of Hygiene and Environmental Health 204 (2–3): 123–126. November 2001. doi:10.1078/1438-4639-00093. PMID 11759154.
- ↑ "ISO 18184:2019" (in en). 6 August 2020. https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/12/71292.html.
- ↑ "ISO 21702:2019" (in en). 6 August 2020. https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/13/71365.html.
- ↑ "A test for 'hygienic' hand disinfection". Journal of Clinical Pathology 31 (10): 923–928. October 1978. doi:10.1136/jcp.31.10.923. PMID 101554.
- ↑ "Setting occupational exposure limits for antimicrobial agents: A case study based on a quaternary ammonium compound-based disinfectant". Toxicology and Industrial Health 36 (9): 619–633. September 2020. doi:10.1177/0748233720970438. PMID 33241765. Bibcode: 2020ToxIH..36..619D.
- ↑ "Lysol maker warns against internal use of disinfectants after Trump comments" (in en). 24 April 2020. https://www.nbcnews.com/politics/donald-trump/lysol-manufacturer-warns-against-internal-use-after-trump-comments-n1191586.
- ↑ 37.0 37.1 "Toxicology of household cleaning products and disinfectants". The Veterinary Clinics of North America. Small Animal Practice 20 (2): 525–537. March 1990. doi:10.1016/s0195-5616(90)50043-1. PMID 2180194.
- ↑ "The contribution of vaccination to global health: past, present and future". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 369 (1645): 20130433. 2014-06-19. doi:10.1098/rstb.2013.0433. PMID 24821919.
- ↑ "Vaccination: A Public Health Intervention That Changed History & Is Changing with History". The American Biology Teacher 73 (9): 513–519. 2011-11-01. doi:10.1525/abt.2011.73.9.3. ISSN 0002-7685.
- ↑ "Triumphs of Immunization". The Journal of Infectious Diseases 224 (Supplement_4): S307–S308. September 2021. doi:10.1093/infdis/jiab123. PMID 34590131.
- ↑ "[Antiviral prophylaxis]". Klinische Padiatrie 213 (Suppl 1): A69–A76. September 2001. doi:10.1055/s-2001-17508. PMID 11577365.
- ↑ "[HIV-1 vaccination--is there hope?]" (in de). Therapeutische Umschau. Revue Therapeutique 62 (10): 695–702. October 2005. doi:10.1024/0040-5930.62.10.695. PMID 16277037.
- ↑ "Is a Universal Influenza Virus Vaccine Possible?". Annual Review of Medicine 71 (1): 315–327. January 2020. doi:10.1146/annurev-med-120617-041310. PMID 31600454.
- ↑ "GHS Classification" (in en). https://pubchem.ncbi.nlm.nih.gov/ghs/.
- ↑ "Label Guidance for Specific Types of Pesticides" (in en). 2015-08-26. https://www.epa.gov/pesticide-labels/label-guidance-specific-types-pesticides.
- ↑ "Read the label | Cleaning products" (in en-gb). https://cleanright.eu/en/read-the-label.html.
- ↑ 47.0 47.1 "Help & Support". https://www.lysol.com/customer-support.
- ↑ "Hands off the disinfectants, kids!" (in en). https://www.sterillium.info/en/stories-hub/kids-and-disinfectants.
- ↑ "Sterillium® - Hygiene myths and what you should know" (in en). https://www.sterillium.info/en/stories-hub/hygiene-myths-and-misinformation.
- ↑ "Disinfectant Overkill: Potential Harm for Septic…" (in en). 18 May 2020. https://www.onsiteinstaller.com/online_exclusives/2020/05/disinfectant-overkill-potential-harm-for-septic-systems.
- ↑ "Viruzides Gurgeln und viruzider Nasenspray" (in en). Deutsche Gesellschaft für Krankenhaushygiene: 6. 2020-12-07. https://www.krankenhaushygiene.de/pdfdata/2020_12_02_Empfehlung-viruzides-gurgeln-nasenspray.pdf.
- ↑ "Vorbeugung gegen Corona: Warum Gurgeln nicht ausreicht" (in de). https://www.tagesschau.de/faktenfinder/mundspuelung-corona-101.html.
- ↑ "Handekzeme weit verbreitet: Hautärzte empfehlen Desinfektion statt Seife" (in de). FAZ.NET. ISSN 0174-4909. https://www.faz.net/1.7283533.
- ↑ "Handekzeme nehmen zu: Handhygiene-Strategie in Pandemiezeiten ändern" (in de). https://derma.de/presse/uebersicht/detail/?tx_news_pi1%5Bnews%5D=4453&tx_news_pi1%5Bcontroller%5D=News&tx_news_pi1%5Baction%5D=detail&cHash=ac81d72a12dab2363bdcfc5c7b5cb657#.
- ↑ "Antibacterial Soap: No Better Than Regular Soap?" (in en). https://www.webmd.com/a-to-z-guides/features/antibacterial-soap-do-you-need-it.
- ↑ "Press Briefing by White House COVID-19 Response Team and Public Health Officials" (in en-US). 2021-04-05. https://www.whitehouse.gov/briefing-room/press-briefings/2021/04/05/press-briefing-by-white-house-covid-19-response-team-and-public-health-officials-24/.
- ↑ "The CDC Changed Its Guidance on Cleaning. Here's What That Means for Your Business" (in en). 9 April 2021. https://www.inc.com/brit-morse/cdc-guidance-cleaning-covid-business-hygiene.html.
- ↑ "Knowledge and Practices Regarding Safe Household Cleaning and Disinfection for COVID-19 Prevention - United States, May 2020" (in en-us). MMWR. Morbidity and Mortality Weekly Report 69 (23): 705–709. June 2020. doi:10.15585/mmwr.mm6923e2. PMID 32525852.
- ↑ "Did 4% of Americans Really Drink Bleach Last Year?". Harvard Business Review. 2021-04-20. ISSN 0017-8012. https://hbr.org/2021/04/did-4-of-americans-really-drink-bleach-last-year.
- ↑ "Disinfection & Sterilization Guidelines | Guidelines Library | Infection Control | CDC" (in en-us). 2019-05-24. https://www.cdc.gov/infectioncontrol/guidelines/disinfection/index.html.
- ↑ "Feasibility of a combined carrier test for disinfectants: studies with a mixture of five types of microorganisms". American Journal of Infection Control 22 (3): 152–162. June 1994. doi:10.1016/0196-6553(94)90004-3. PMID 7943926.
- ↑ "Betadine for herpes simplex infection". International Journal of STD & AIDS 17 (12): 854–855. December 2006. doi:10.1258/095646206779307487. PMID 17212866.
- ↑ "Povidone-Iodine Demonstrates Rapid In Vitro Virucidal Activity Against SARS-CoV-2, The Virus Causing COVID-19 Disease". Infectious Diseases and Therapy 9 (3): 669–675. September 2020. doi:10.1007/s40121-020-00316-3. PMID 32643111.
- ↑ 64.0 64.1 64.2 "Inactivation of human viruses by povidone-iodine in comparison with other antiseptics". Dermatology 195 (Suppl 2): 29–35. 1997. doi:10.1159/000246027. PMID 9403252.
- ↑ "Antimicrobial effectiveness of povidone-iodine and consequences for new application areas". Dermatology 204 (Suppl 1): 114–120. 2002. doi:10.1159/000057738. PMID 12011534.
- ↑ "Trump suggests 'injection' of disinfectant to beat coronavirus and 'clean' the lungs" (in en). 24 April 2020. https://www.nbcnews.com/politics/donald-trump/trump-suggests-injection-disinfectant-beat-coronavirus-clean-lungs-n1191216.
- ↑ "The toxicology of detergents, bleaches, antiseptics and disinfectants in small animals". Veterinary and Human Toxicology 30 (5): 463–473. October 1988. PMID 3055653. https://pubmed.ncbi.nlm.nih.gov/3055653/.
- ↑ "The clinical toxicology of sodium hypochlorite". Clinical Toxicology 57 (5): 303–311. May 2019. doi:10.1080/15563650.2018.1543889. PMID 30689457.
- ↑ "Coronavirus Disease 2019 (COVID-19)" (in en-us). 2020-02-11. https://www.cdc.gov/coronavirus/2019-ncov/more/science-and-research/surface-transmission.html.
- ↑ "Viricidal treatments for prevention of coronavirus infection". Pathogens and Global Health 114 (7): 349–359. October 2020. doi:10.1080/20477724.2020.1807177. PMID 32877308.
- ↑ 71.0 71.1 71.2 "Virucidal Efficacy of Different Oral Rinses Against Severe Acute Respiratory Syndrome Coronavirus 2". The Journal of Infectious Diseases 222 (8): 1289–1292. September 2020. doi:10.1093/infdis/jiaa471. PMID 32726430.
- ↑ "Healthcare Workers" (in en-us). 2020-02-11. https://www.cdc.gov/coronavirus/2019-ncov/hcp/hand-hygiene.html.
- ↑ "Do hydrogen peroxide mouthwashes have a virucidal effect? A systematic review". The Journal of Hospital Infection 106 (4): 657–662. December 2020. doi:10.1016/j.jhin.2020.10.003. PMID 33058941.
- ↑ Xu, Chuan; Wang, Annie; Hoskin, Eileen R.; Cugini, Carla; Markowitz, Kenneth; Chang, Theresa L.; Fine, Daniel H. (2021-03-01). "Differential Effects of Antiseptic Mouth Rinses on SARS-CoV-2 Infectivity In Vitro". Pathogens (Basel, Switzerland) 10 (3): 272. doi:10.3390/pathogens10030272. ISSN 2076-0817. PMID 33804294.
- ↑ "Evaluating the industrial hygiene, toxicology, and public health aspects of COVID-19". Toxicology and Industrial Health 36 (9): 605–606. September 2020. doi:10.1177/0748233720964629. PMID 33107408. Bibcode: 2020ToxIH..36..605H.
- ↑ "Light-based technologies for management of COVID-19 pandemic crisis". Journal of Photochemistry and Photobiology B: Biology 212: 111999. November 2020. doi:10.1016/j.jphotobiol.2020.111999. PMID 32855026.
- ↑ "Rapid and complete inactivation of SARS-CoV-2 by ultraviolet-C irradiation". Scientific Reports 10 (1): 22421. December 2020. doi:10.1038/s41598-020-79600-8. PMID 33380727. Bibcode: 2020NatSR..1022421S.
- ↑ "Committee Reports" (in en-US). Illuminating Engineering Society. 8 April 2020. https://www.ies.org/standards/committee-reports/.
- ↑ "Filtration / Disinfection" (in en). American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). https://www.ashrae.org/technical-resources/filtration-disinfection#uvc.
- ↑ 80.0 80.1 "Antimicrobial mouthwashes (gargling) and nasal sprays administered to patients with suspected or confirmed COVID-19 infection to improve patient outcomes and to protect healthcare workers treating them". The Cochrane Database of Systematic Reviews 2020 (9): CD013627. September 2020. doi:10.1002/14651858.cd013627.pub2. PMID 32936948.
- ↑ 81.0 81.1 "Inactivation of SARS coronavirus by means of povidone-iodine, physical conditions and chemical reagents". Dermatology 212 (Suppl. 1): 119–123. 2006. doi:10.1159/000089211. PMID 16490989.
- ↑ "International Society of Antimicrobial Chemotherapy (ISAC)" (in en). https://www.isac.world/.
- ↑ "Efficacy | Disinfection & Sterilization Guidelines | Guidelines Library | Infection Control | CDC" (in en-us). 2019-04-04. https://www.cdc.gov/infectioncontrol/guidelines/disinfection/efficacy.html.
- ↑ "What Is BS EN 14476 Chemical Disinfectant Standards - Hand Sanitisers" (in en-GB). 2020-11-20. https://www.rentexhygiene.co.uk/what-is-bs-en-14476/.
- ↑ "Biological Safety: Disinfection | Office of Environmental Health and Safety". https://ehs.princeton.edu/laboratory-research/biological-safety/disinfection.
- ↑ "List of cleaning products" (in en), Wikipedia, 2021-03-27, https://en.wikipedia.org/w/index.php?title=List_of_cleaning_products&oldid=1014558401, retrieved 2021-04-17
- ↑ "Disinfectants Pesticides" (in en). https://cfpub.epa.gov/giwiz/disinfectants/index.cfm.
- ↑ "List N: Disinfectants for Coronavirus (COVID-19)" (in en). 2020-03-13. https://www.epa.gov/coronavirus/list-n-disinfectants-coronavirus-covid-19.
- ↑ "Antiviral activity of 1-docosanol, an inhibitor of lipid-enveloped viruses including herpes simplex". Proceedings of the National Academy of Sciences of the United States of America 88 (23): 10825–10829. December 1991. doi:10.1073/pnas.88.23.10825. PMID 1660151. Bibcode: 1991PNAS...8810825K.
- ↑ "Bactericidal and virucidal activity of ethanol and povidone-iodine". MicrobiologyOpen 9 (9): e1097. September 2020. doi:10.1002/mbo3.1097. PMID 32567807.
- ↑ "Guideline for Hand Hygiene in Health-Care Settings. Recommendations of the Healthcare Infection Control Practices Advisory Committee and the HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. Society for Healthcare Epidemiology of America/Association for Professionals in Infection Control/Infectious Diseases Society of America". MMWR. Recommendations and Reports (Society for Healthcare Epidemiology of America/Association for Professionals in Infection Control/Infectious Diseases Society of America) 51 (RR-16): 1–45, quiz CE1-4. October 2002. PMID 12418624. http://www.cdc.gov/mmwr/PDF/rr/rr5116.pdf.
- ↑ "IMPRESAN Hygiene Spray 250 ml" (in en). https://www.heitmann-hygiene-care.de/en/impresan-hygiene-spray-250-ml.html.
- ↑ 93.0 93.1 "Factsheets & Advice - Diseases | Home Hygiene & Health". https://ifh-homehygiene.org/factsheets-advice-diseases.
- ↑ "Efficacy of various spray disinfectants on irreversible hydrocolloid impressions". The International Journal of Prosthodontics 5 (1): 47–54. January 1992. PMID 1520443. https://pubmed.ncbi.nlm.nih.gov/1520443/.
- ↑ "Virucidal efficacy of povidone-iodine-containing disinfectants". Letters in Applied Microbiology 51 (2): 158–163. August 2010. doi:10.1111/j.1472-765x.2010.02871.x. PMID 20536707.
- ↑ "Hand Hygiene Guidance | Hand Hygiene | CDC" (in en-us). 2020-01-30. https://www.cdc.gov/handhygiene/providers/guideline.html.
- ↑ "Virucidal Activity of World Health Organization-Recommended Formulations Against Enveloped Viruses, Including Zika, Ebola, and Emerging Coronaviruses". The Journal of Infectious Diseases 215 (6): 902–906. March 2017. doi:10.1093/infdis/jix046. PMID 28453839.
- ↑ "Publications, Data, & Statistics | Handwashing | CDC" (in en-us). 2020-10-08. https://www.cdc.gov/handwashing/publications-data-stats.html.
- ↑ "Infografiken" (in de). https://www.infektionsschutz.de/mediathek/infografiken.html.
- ↑ Office of the Commissioner (2020-09-09). "Antibacterial Soap? You Can Skip It, Use Plain Soap and Water" (in en). FDA. https://www.fda.gov/consumers/consumer-updates/antibacterial-soap-you-can-skip-it-use-plain-soap-and-water.
- ↑ "Hand hygiene: back to the basics of infection control". The Indian Journal of Medical Research 134 (5): 611–620. November 2011. doi:10.4103/0971-5916.90985. PMID 22199099.
- ↑ 102.0 102.1 102.2 "Why Hand-Washing Beats Hand Sanitizers" (in en). https://www.webmd.com/cold-and-flu/news/20191107/why-hand-washing-beats-hand-sanitizers.
- ↑ "Efficacy of ethanol against viruses in hand disinfection". The Journal of Hospital Infection 98 (4): 331–338. April 2018. doi:10.1016/j.jhin.2017.08.025. PMID 28882643.
- ↑ 104.0 104.1 "Infection Protection at the Core of Science". Bode Science Center. Hartmann Group. https://www.bode-science-center.com/science.html.
- ↑ "Limited efficacy of alcohol-based hand gels". Lancet 359 (9316): 1489–1490. April 2002. doi:10.1016/s0140-6736(02)08426-x. PMID 11988252.
- ↑ "Graham Ayliffe". BMJ 358: j3333. July 2017. doi:10.1136/bmj.j3333. PMID 28694289.
- ↑ WHO guidelines on hand hygiene in health care : first global patient safety challenge clean care is safer care.. Geneva: World Health Organization. Patient Safety. 2009. ISBN 978-92-4-159790-6. OCLC 854907565. https://www.worldcat.org/oclc/854907565.
- ↑ "WHO guidelines on hand hygiene in health care" (in en). https://www.who.int/publications-detail-redirect/9789241597906.
- ↑ "Hydrogen peroxide (H2O2): a review of its use in surgery". Wiener Medizinische Wochenschrift 169 (9–10): 222–225. June 2019. doi:10.1007/s10354-017-0610-2. PMID 29147868.
- ↑ "Chlorhexidine gluconate oral rinse Uses, Side Effects & Warnings" (in en). https://www.drugs.com/mtm/chlorhexidine-gluconate-oral-rinse.html.
- ↑ "Chlorhexidine - FDA prescribing information, side effects and uses" (in en). https://www.drugs.com/pro/chlorhexidine.html.
- ↑ "Dequalinium chloride" (in en). https://pubchem.ncbi.nlm.nih.gov/compound/10649.
- ↑ "Povidone-Iodine Use in Sinonasal and Oral Cavities: A Review of Safety in the COVID-19 Era". Ear, Nose, & Throat Journal 99 (9): 586–593. November 2020. doi:10.1177/0145561320932318. PMID 32520599.
- ↑ "cleanright.eu - General guidance in case someone is ill in your household" (in en-gb). https://cleanright.eu/en/13-site-content/1578-general-guidance-in-case-someone-is-ill-in-your-household.html.
- ↑ "Betadine for Medical Professionals | Betadine" (in en-US). https://betadine.com/medical-professionals/.
- ↑ "COVID-19" (in en-US). https://betadine.com/covid-19/#1596710159395-1cf8cac7-1b26.
- ↑ "Zonrox Bleach" (in en-US). Green Cross Inc.. https://greencross.com.ph/zonrox-bleach/.
- ↑ 118.0 118.1 118.2 "Comparative study of inactivation of herpes simplex virus types 1 and 2 by commonly used antiseptic agents". Journal of Clinical Microbiology 26 (2): 213–215. February 1988. doi:10.1128/jcm.26.2.213-215.1988. PMID 2830306.
- ↑ "Henkel-Reiniger | biff Hygiene Total: mit antibakterieller Formel". https://www.henkel-reiniger.de/de/startseite/produkte/marken/biff/hygiene-total.html.
- ↑ "Henkel-Reiniger | Hygienische Sauberkeit: Für ein sauberes Zuhause". https://www.henkel-reiniger.de/de/startseite/hygienische-sauberkeit.html.
- ↑ "Henkel-Reiniger | Bref Power Bakterien und Schimmel: gegen Viren und Bakterien". https://www.henkel-reiniger.de/de/startseite/produkte/marken/bref-power/bakterien-und-schimmel.html.
- ↑ "IMPRESAN Universal Hygiene Laundry Rinse 1.5 L" (in en). https://www.heitmann-hygiene-care.de/en/impresan-universal-hygiene-laundry-rinse-1-5-l.html.
- ↑ "Hygiene und Desinfektion | Online kaufen" (in en). https://www.heitmann-hygiene-care.de/en/id/103/.
- ↑ "How Essential Oils Work" (in en). Clinical Aromatherapy. Churchill Livingstone. 2015-01-01. pp. 15–36. doi:10.1016/B978-0-7020-5440-2.00002-4. ISBN 978-0-7020-5440-2. https://www.sciencedirect.com/science/article/pii/B9780702054402000024.
- ↑ Walmsley, A. D. (2007-01-01). "Management of inflammatory periodontal diseases" (in en). Restorative Dentistry (2nd ed.). pp. 31–46. doi:10.1016/B978-0-443-10246-2.50008-3. ISBN 9780443102462.
- ↑ "About Sterillium®" (in en). https://www.sterillium.info/en/ueber-sterillium.
- ↑ "55 Years of Hygiene History with Sterillium®" (in en). https://www.sterillium.info/en/stories-hub/writing-hygiene-history.
- ↑ "Auriclosene" (in en). https://pubchem.ncbi.nlm.nih.gov/compound/11708365.
- ↑ "Disinfectants Pesticides" (in en). https://cfpub.epa.gov/giwiz/disinfectants/index.cfm.
- ↑ "Protective effect of low-concentration chlorine dioxide gas against influenza A virus infection". The Journal of General Virology 89 (Pt 1): 60–67. January 2008. doi:10.1099/vir.0.83393-0. PMID 18089729.
- ↑ "Toxicological profile for chlorine dioxide and chlorite" (in en). Toxic Substances Portal, Agency for Toxic Substances and Disease Registry (Centers for Disease Control and Prevention, U.S. Department of Health & Human Services). 2004. doi:10.15620/cdc:37580. https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=582&tid=108.
- ↑ "The molecular tweezer CLR01 inhibits Ebola and Zika virus infection". Antiviral Research 152: 26–35. April 2018. doi:10.1016/j.antiviral.2018.02.003. PMID 29428508.
- ↑ "In die Zange genommen" (in en). http://www.laborjournal.de/editorials/1976.php.
- ↑ "Coronavirus puts drug repurposing on the fast track". Nature Biotechnology 38 (4): 379–381. April 2020. doi:10.1038/d41587-020-00003-1. PMID 32205870.
- ↑ "Nanomedicines for treatment of viral diseases". Critical Reviews in Therapeutic Drug Carrier Systems 30 (1): 1–49. 2013. doi:10.1615/CritRevTherDrugCarrierSyst.2013005469. PMID 23510109.
- ↑ "Antiviral Potential of Nanoparticles-Can Nanoparticles Fight Against Coronaviruses?". Nanomaterials 10 (9): 1645. August 2020. doi:10.3390/nano10091645. PMID 32825737.
- ↑ "Nanomedicine as a future therapeutic approach for Hepatitis C virus". Nanomedicine 14 (11): 1471–1491. June 2019. doi:10.2217/nnm-2018-0348. PMID 31166139.
- ↑ "Anti-Infectives" (in en). https://www.helmholtz-hzi.de/en/research/research-topics/anti-infectives/.
- ↑ "Virucidal efficacy of peracetic acid for instrument disinfection". Antimicrobial Resistance and Infection Control 6 (1): 114. 2017-11-10. doi:10.1186/s13756-017-0271-3. PMID 29177047.
- ↑ "Vanproz Agrovet LLP". http://vanproz.com/plantprotection.html.
- ↑ "Virkon" (in en-US). https://virkon.us/.
- ↑ "DK Excited" (in en). https://cropscience.bayer.co.uk/our-products/dekalb/dk-excited/#cookie-preferences.
Further reading
- "Viricidal efficiency of disinfectants in water". Public Health Reports 76 (7): 565–570. July 1961. doi:10.2307/4591211. PMID 13791183.
- "The official European consumer portal of the detergents and maintenance products industry.". cleanright.eu. https://cleanright.eu/en/.
Original source: https://en.wikipedia.org/wiki/Virucide.
Read more |