Astronomy:WASP-69
Observation data Equinox J2000.0]] (ICRS) | |
---|---|
Constellation | Aquarius |
Right ascension | 21h 00m 06.19682s[1] |
Declination | −05° 05′ 40.0349″[1] |
Apparent magnitude (V) | 9.87±0.03[2] |
Characteristics | |
Evolutionary stage | main-sequence star |
Spectral type | K5V[3] |
Astrometry | |
Radial velocity (Rv) | −9.83±0.13[1] km/s |
Proper motion (μ) | RA: 33.778[1] mas/yr Dec.: −93.581[1] mas/yr |
Parallax (π) | 19.8858 ± 0.0170[1] mas |
Distance | 164.0 ± 0.1 ly (50.29 ± 0.04 pc) |
Details | |
Mass | 0.826±0.029[2] M☉ |
Radius | 0.813[2] R☉ |
Surface gravity (log g) | 4.59±0.02[4] cgs |
Temperature | 4782±15[4] K |
Metallicity [Fe/H] | 0.10±0.01[4] dex |
Rotation | 23.07 d[2] |
Rotational velocity (v sin i) | 1.27±0.22[4] km/s |
Age | 2[2] Gyr |
Other designations | |
Database references | |
SIMBAD | data |
WASP-69, also named Wouri, is a K-type main-sequence star 164 light-years (50 parsecs) away.[6] Its surface temperature is 4782±15 K. WASP-69 is slightly enriched in heavy elements compared to the Sun, with a metallicity Fe/H index of 0.10±0.01,[4] and is much younger than the Sun at 2 billion years. The data regarding starspot activity of WASP-69 are inconclusive, but spot coverage of the photosphere may be very high.[7]
Multiplicity surveys did not detect any stellar companions to WASP-69 as of 2020.[8]
Nomenclature
The designation WASP-69 indicates that this was the 69th star found to have a planet by the Wide Angle Search for Planets.
In August 2022, this planetary system was included among 20 systems to be named by the third NameExoWorlds project.[9] The approved names, proposed by a team from Cameroon, were announced in June 2023. WASP-69 is named Wouri and its planet is named Makombé, after the Wouri and Makombé rivers.[10]
Planetary system
In 2013, one planet, named WASP-69b,[6] was discovered on a tight, circular orbit.[2] Its equilibrium temperature is 886 K,[11] but the measured terminator temperature is significantly higher by at least 200 K.[7] The planet is losing mass at a moderate rate of 0.5 M⊕ per billion years, not producing a visible cometary tail.[11]
The planetary atmosphere is extremely hazy and contains a partial cloud deck with cloud tops rising to a pressure of 100 Pa. Its composition is mostly hydrogen and helium, and sodium was also detected in low concentration.[7][12] The sodium may originate from volcanic moons, not from the planet itself.[13]
By 2021, the presence of hazes in atmosphere of WASP-69b was confirmed, along with a solar or super-solar water abundance.[14]
Companion (in order from star) |
Mass | Semimajor axis (AU) |
Orbital period (days) |
Eccentricity | Inclination | Radius |
---|---|---|---|---|---|---|
b / Makombé | 0.260±0.017 MJ | 0.04525±0.00053 | 3.8681382±0.0000017 | 0 | 86.71±0.20° | 0.945+0.007 −0.017[7] RJ |
References
- ↑ 1.0 1.1 1.2 1.3 1.4 Vallenari, A. et al. (2022). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy & Astrophysics. doi:10.1051/0004-6361/202243940 Gaia DR3 record for this source at VizieR.
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Anderson, D. R.; Collier Cameron, A.; Delrez, L.; Doyle, A. P.; Faedi, F.; Fumel, A.; Gillon, M.; Gómez Maqueo Chew, Y. et al. (2013), Three sub-Jupiter-mass planets: WASP-69b & WASP-84b transit active K dwarfs and WASP-70Ab transits the evolved primary of a G4+K3 binary, doi:10.1093/mnras/stu1737
- ↑ France, Kevin; Arulanantham, Nicole; Fossati, Luca; Lanza, Antonino F.; Loyd, R. O. Parke; Redfield, Seth; Schneider, P. Christian (2018), "Far-ultraviolet Activity Levels of F, G, K, and M Dwarf Exoplanet Host Stars", The Astrophysical Journal Supplement Series 239 (1): 16, doi:10.3847/1538-4365/aae1a3, Bibcode: 2018ApJS..239...16F
- ↑ 4.0 4.1 4.2 4.3 4.4 Gill, S.; Maxted, P. F. L.; Smalley, B. (2018), "The atmospheric parameters of FGK stars using wavelet analysis of CORALIE spectra", Astronomy & Astrophysics 612: A111, doi:10.1051/0004-6361/201731954, Bibcode: 2018A&A...612A.111G
- ↑ "BD-05 5432". SIMBAD. Centre de données astronomiques de Strasbourg. http://simbad.u-strasbg.fr/simbad/sim-basic?Ident=BD-05+5432.
- ↑ 6.0 6.1 Andrews, Robin George (12 January 2024). "This Distant Planet Has a 350,000-Mile-Long Comet-Like Tail - The stream of helium trailing WASP-69b, a “Hot Jupiter,” allows astronomers to study how planets lose their atmospheres.". The New York Times. Archived from the original on 12 January 2024. https://archive.today/20240112135452/https://www.nytimes.com/2024/01/12/science/wasp-69b-tail-planet.html. Retrieved 12 January 2024.
- ↑ 7.0 7.1 7.2 7.3 Murgas, F.; Chen, G.; Nortmann, L.; Pallé, E.; Nowak, G. (2020), "The GTC exoplanet transit spectroscopy survey XI. Possible detection of Rayleigh scattering in the atmosphere of the Saturn-mass planet WASP-69b", Astronomy & Astrophysics A158: 641, doi:10.1051/0004-6361/202038161, Bibcode: 2020A&A...641A.158M
- ↑ Bohn, A. J.; Southworth, J.; Ginski, C.; Kenworthy, M. A.; Maxted, P. F. L.; Evans, D. F. (2020), "A multiplicity study of transiting exoplanet host stars. I. High-contrast imaging with VLT/SPHERE", Astronomy & Astrophysics 635: A73, doi:10.1051/0004-6361/201937127, Bibcode: 2020A&A...635A..73B
- ↑ "List of ExoWorlds 2022". IAU. 8 August 2022. https://www.nameexoworlds.iau.org/2022exoworlds.
- ↑ "2022 Approved Names". IAU. https://www.nameexoworlds.iau.org/2022approved-names.
- ↑ 11.0 11.1 Wang, Lile; Dai, Fei (2021), "Metastable Helium Absorptions with 3D Hydrodynamics and Self-consistent Photochemistry. I. WASP-69b, Dimensionality, X-Ray and UV Flux Level, Spectral Types, and Flares", The Astrophysical Journal 914 (2): 98, doi:10.3847/1538-4357/abf1ee, Bibcode: 2021ApJ...914...98W
- ↑ Casasayas-Barris, N.; Palle, E.; Nowak, G.; Yan, F.; Nortmann, L.; Murgas, F. (2017), "Detection of sodium in the atmosphere of WASP-69b", Astronomy & Astrophysics 608: A135, doi:10.1051/0004-6361/201731956, Bibcode: 2017A&A...608A.135C
- ↑ Oza, Apurva V.; Johnson, Robert E.; Lellouch, Emmanuel; Schmidt, Carl; Schneider, Nick; Huang, Chenliang; Gamborino, Diana; Gebek, Andrea et al. (2019), "Sodium and Potassium Signatures of Volcanic Satellites Orbiting Close-in Gas Giant Exoplanets", The Astrophysical Journal 885 (2): 168, doi:10.3847/1538-4357/ab40cc, Bibcode: 2019ApJ...885..168O
- ↑ Khalafinejad, S. et al. (2021), "Probing the atmosphere of WASP-69 b with low- and high-resolution transmission spectroscopy", Astronomy & Astrophysics 656: A142, doi:10.1051/0004-6361/202141191, Bibcode: 2021A&A...656A.142K
Coordinates: 21h 00m 06.1969s, −05° 05′ 40.0370″
Original source: https://en.wikipedia.org/wiki/WASP-69.
Read more |