Biology:Catecholaldehyde hypothesis

From HandWiki
Short description: Theory for what causes mental degenerative diseases
Chemical structure of DOPAL.

The catecholaldehyde hypothesis is a scientific theory positing that neurotoxic aldehyde metabolites of the catecholamine neurotransmitters dopamine and norepinephrine are responsible for neurodegenerative diseases involving loss of catecholaminergic neurons, for instance Parkinson's disease.[1][2] The specific metabolites thought to be involved include 3,4-dihydroxyphenylacetaldehyde (DOPAL) and 3,4-dihydroxyphenylglycolaldehyde (DOPEGAL), which are formed from dopamine and norepinephrine by monoamine oxidase, respectively.[1][2] These metabolites are subsequently inactivated and detoxified by aldehyde dehydrogenase (ALDH).[1][2] DOPAL and DOPEGAL are monoaminergic neurotoxins in preclinical models and inhibition of and polymorphisms in ALDH are associated with Parkinson's disease.[1][2][3][4] The catecholaldehyde hypothesis additionally posits that DOPAL oligomerizes with α-synuclein resulting in accumulation of oligomerized α-synuclein (i.e., synucleinopathy) and that this contributes to cytotoxicity.[1][2][5][3]

See also

  • Amyloid hypothesis

References

{{Navbox

| name = Neurotransmitter metabolism intermediates
| title = Neurotransmitter metabolic intermediates
| state = autocollapse|
| listclass = hlist
| group1 = catecholamines
  | list1 = {{Navbox|child
  | group1 = Anabolism
(tyrosineepinephrine) | list1 =
  | group2 = Catabolism/
metabolites

| list2 =

}} 
| group3 = tryptophanserotonin
| list3 =
| group4 = serotoninmelatonin
| list4 =

}}