Biology:Signal transducing adaptor protein
Signal transducing adaptor proteins (STAPs) are proteins that are accessory to main proteins in a signal transduction pathway.[1] Adaptor proteins contain a variety of protein-binding modules that link protein-binding partners together and facilitate the creation of larger signaling complexes. These proteins tend to lack any intrinsic enzymatic activity themselves,[2] instead mediating specific protein–protein interactions that drive the formation of protein complexes. Examples of adaptor proteins include MYD88,[3][4] Grb2 and SHC1.
Signaling components
Much of the specificity of signal transduction depends on the recruitment of several signalling components such as protein kinases and G-protein GTPases into short-lived active complexes in response to an activating signal such as a growth factor binding to its receptor.
Domains
Adaptor proteins usually contain several domains within their structure (e.g., Src homology 2 (SH2) and SH3 domains) that allow specific interactions with several other specific proteins. SH2 domains recognise specific amino acid sequences within proteins containing phosphotyrosine residues and SH3 domains recognise proline-rich sequences within specific peptide sequence contexts of proteins.
There are many other types of interaction domains found within adaptor and other signalling proteins that allow a rich diversity of specific and coordinated protein–protein interactions to occur within the cell during signal transduction.
Examples of adaptor proteins
Adaptor proteins include:
- BCAR3 – Breast cancer anti-estrogen resistance protein 3
- CBL – Casitas B-lineage Lymphoma
- FRS2 – Fibroblast growth factor receptor substrate 2
- GAB2 – GRB2-associated binding protein 2
- GRAP – GRB2-related adaptor protein
- GRAP2 – GRB2-related adaptor protein 2
- GRB2 – Growth factor receptor-bound protein 2
- IRS1 – Insulin receptor substrate 1
- LDLRAP1 – low-density lipoprotein receptor adaptor protein 1
- MYD88 - Myeloid differentiation primary response gene 88
- NCDN - Neurochondrin
- NCK1 – NCK adaptor protein 1
- NCK2 – NCK adaptor protein 2
- NOS1AP – nitric oxide synthase 1 (neuronal) adaptor protein
- PIK3AP1 – phosphoinositide-3-kinase adaptor protein 1
- SH2B1 – SH2B adaptor protein 1
- SH2B2 – SH2B adaptor protein 2
- SH2B3 – SH2B adaptor protein 3
- SH2D3A -SH2 domain containing 3A
- SH2D3C – SH2 domain containing 3C
- SNTA1 – Syntrophin, alpha 1
- SHB – Src homology 2 domain containing adaptor protein B
- SLC4A1AP – solute carrier family 4 (anion exchanger), member 1, adaptor protein
See also
- Wikipedia:MeSH D12.776#MeSH D12.776.157.057 --- adaptor proteins.2C signal transducing
- Wikipedia:MeSH D12.776#MeSH D12.776.543.990.150 --- adaptor proteins.2C vesicular transport
References
- ↑ "Role of Signal Transducing Adaptor Protein (STAP) Family in Chronic Myelogenous Leukemia". http://www.bloodjournal.org/content/130/Suppl_1/1583?sso-checked=true.
- ↑ Signal+Transducing+Adaptor+Proteins at the US National Library of Medicine Medical Subject Headings (MeSH)
- ↑ "Entrez Gene: MYD88 Myeloid differentiation primary response gene (88)". https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=4615.
- ↑ "The cloning and characterization of human MyD88: a member of an IL-1 receptor related family". FEBS Letters 402 (1): 81–4. January 1997. doi:10.1016/S0014-5793(96)01506-2. PMID 9013863.
Further reading
- TAB2 is an adaptor protein involved in the IL-1 signal transduction pathway: "TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway". Molecular Cell 5 (4): 649–58. April 2000. doi:10.1016/S1097-2765(00)80244-0. PMID 10882101.
- Good article about adaptor proteins involved in protein kinase C-mediated signal transduction: "Adaptor proteins in protein kinase C-mediated signal transduction". Oncogene 20 (44): 6339–47. October 2001. doi:10.1038/sj.onc.1204778. PMID 11607837.
- A good article regarding the role of adaptor proteins involved with the T-cell antigen receptor: "Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins". Annual Review of Immunology 20 (1): 371–94. 2002. doi:10.1146/annurev.immunol.20.092601.111357. PMID 11861607. https://zenodo.org/record/1234997.
- Signalling discussed with regards to adaptor proteins: Pawson, T. (1997). "Signaling Through Scaffold, Anchoring, and Adaptor Proteins". Science 278 (5346): 2075–2080. doi:10.1126/science.278.5346.2075. ISSN 0036-8075. PMID 9405336. Bibcode: 1997Sci...278.2075P.
Original source: https://en.wikipedia.org/wiki/Signal transducing adaptor protein.
Read more |