Disphenocingulum

From HandWiki
Short description: 90th Johnson solid (22 faces)
Disphenocingulum
Disphenocingulum.png
TypeJohnson
J89J90J91
Faces4+2x8 triangles
4 squares
Edges38
Vertices16
Vertex configuration4(32.42)
4(35)
8(34.4)
Symmetry groupD2d
Dual polyhedronOrder-5 truncated snub disphenoid
Propertiesconvex
Net
Johnson solid 90 net.png

File:J90 disphenocingulum.stl

In geometry, the disphenocingulum or pentakis elongated gyrobifastigium is one of the Johnson solids (J90). It is one of the elementary Johnson solids that do not arise from "cut and paste" manipulations of the Platonic and Archimedean solids.

A Johnson solid is one of 92 strictly convex polyhedra that is composed of regular polygon faces but are not uniform polyhedra (that is, they are not Platonic solids, Archimedean solids, prisms, or antiprisms). They were named by Norman Johnson, who first listed these polyhedra in 1966.[1]

Cartesian coordinates

Let a ≈ 0.76713 be the second smallest positive root of the polynomial

[math]\displaystyle{ \begin{align} &256x^{12} - 512x^{11} - 1664x^{10} + 3712x^9 + 1552x^8 - 6592x^7 \\ &\quad{} + 1248x^6 + 4352x^5 - 2024x^4 - 944x^3 + 672x^2 - 24x - 23 \end{align} }[/math]

and [math]\displaystyle{ h = \sqrt{2+8a-8a^2} }[/math] and [math]\displaystyle{ c = \sqrt{1-a^2} }[/math].

Then, Cartesian coordinates of a disphenocingulum with edge length 2 are given by the union of the orbits of the points

[math]\displaystyle{ \left(1,2a,\frac{h}{2}\right),\ \left(1,0,2c+\frac{h}{2}\right),\ \left(1+\frac{\sqrt{3-4a^2}}{c},0,2c-\frac{1}{c}+\frac{h}{2}\right) }[/math]

under the action of the group generated by reflections about the xz-plane and the yz-plane.[2]

References

  1. Johnson, Norman W. (1966), "Convex polyhedra with regular faces", Canadian Journal of Mathematics 18: 169–200, doi:10.4153/cjm-1966-021-8 .
  2. Timofeenko, A. V. (2009-10-17). "The non-platonic and non-Archimedean noncomposite polyhedra". Journal of Mathematical Sciences 162 (5): 710–729. doi:10.1007/s10958-009-9655-0. ISSN 1072-3374. 

External links