Elongated pentagonal bipyramid
From HandWiki
Short description: 16th Johnson solid; pentagonal prism capped by pyramids
Elongated pentagonal bipyramid | |
---|---|
Type | Johnson J15 – J16 – J17 |
Faces | 10 triangles 5 squares |
Edges | 25 |
Vertices | 12 |
Vertex configuration | 10(32.42) 2(35) |
Symmetry group | D5h, [5,2], (*522) |
Rotation group | D5, [5,2]+, (522) |
Dual polyhedron | Pentagonal bifrustum |
Properties | convex |
Net | |
In geometry, the elongated pentagonal bipyramid or pentakis pentagonal prism is one of the Johnson solids (J16). As the name suggests, it can be constructed by elongating a pentagonal bipyramid (J13) by inserting a pentagonal prism between its congruent halves.
A Johnson solid is one of 92 strictly convex polyhedra that is composed of regular polygon faces but are not uniform polyhedra (that is, they are not Platonic solids, Archimedean solids, prisms, or antiprisms). They were named by Norman Johnson, who first listed these polyhedra in 1966.[1]
Dual polyhedron
The dual of the elongated square bipyramid is a pentagonal bifrustum.
See also
External links
Original source: https://en.wikipedia.org/wiki/Elongated pentagonal bipyramid.
Read more |
- ↑ Johnson, Norman W. (1966), "Convex polyhedra with regular faces", Canadian Journal of Mathematics 18: 169–200, doi:10.4153/cjm-1966-021-8.