Physics:Isotopes of xenon

From HandWiki
Short description: Nuclides with atomic number of 54 but with different mass numbers
Main isotopes of xenon (54Xe)
Iso­tope Decay
abun­dance half-life (t1/2) mode pro­duct
124Xe 0.095% 1.8×1022 y[1] εε 124Te
125Xe syn 16.9 h ε 125I
126Xe 0.089% stable
127Xe syn 36.345 d ε 127I
128Xe 1.910% stable
129Xe 26.401% stable
130Xe 4.071% stable
131Xe 21.232% stable
132Xe 26.909% stable
133Xe syn 5.247 d β 133Cs
134Xe 10.436% stable
135Xe syn 9.14 h β 135Cs
136Xe 8.857% 2.165×1021 y[2] ββ 136Ba
Standard atomic weight Ar, standard(Xe)
view · talk · edit

Naturally occurring xenon (54Xe) consists of seven stable isotopes and two very long-lived isotopes. Double electron capture has been observed in 124Xe (half-life 1.8 ± 0.5(stat) ± 0.1(sys) ×1022 years)[4] and double beta decay in 136Xe (half-life 2.165 ± 0.016(stat) ± 0.059(sys) ×1021 years),[5] which are among the longest measured half-lives of all nuclides. The isotopes 126Xe and 134Xe are also predicted to undergo double beta decay,[6] but this has never been observed in these isotopes, so they are considered to be stable.[7][8] Beyond these stable forms, 32 artificial unstable isotopes and various isomers have been studied, the longest-lived of which is 127Xe with a half-life of 36.345 days. All other isotopes have half-lives less than 12 days, most less than 20 hours. The shortest-lived isotope, 108Xe,[9] has a half-life of 58 μs, and is the heaviest known nuclide with equal numbers of protons and neutrons. Of known isomers, the longest-lived is 131mXe with a half-life of 11.934 days. 129Xe is produced by beta decay of 129I (half-life: 16 million years); 131mXe, 133Xe, 133mXe, and 135Xe are some of the fission products of both 235U and 239Pu, so are used as indicators of nuclear explosions.

The artificial isotope 135Xe is of considerable significance in the operation of nuclear fission reactors. 135Xe has a huge cross section for thermal neutrons, 2.65×106 barns, so it acts as a neutron absorber or "poison" that can slow or stop the chain reaction after a period of operation. This was discovered in the earliest nuclear reactors built by the American Manhattan Project for plutonium production. Because of this effect, designers must make provisions to increase the reactor's reactivity (the number of neutrons per fission that go on to fission other atoms of nuclear fuel) over the initial value needed to start the chain reaction. For the same reason, the fission products produced in a nuclear explosion and a power plant differ significantly as a large share of 135Xe will absorb neutrons in a steady state reactor, while basically none of the 135I will have had time to decay to xenon before the explosion of the bomb removes it from the neutron radiation.

Relatively high concentrations of radioactive xenon isotopes are also found emanating from nuclear reactors due to the release of this fission gas from cracked fuel rods or fissioning of uranium in cooling water.[citation needed] The concentrations of these isotopes are still usually low compared to the naturally occurring radioactive noble gas 222Rn.

Because xenon is a tracer for two parent isotopes, Xe isotope ratios in meteorites are a powerful tool for studying the formation of the Solar System. The I-Xe method of dating gives the time elapsed between nucleosynthesis and the condensation of a solid object from the solar nebula (xenon being a gas, only that part of it that formed after condensation will be present inside the object). Xenon isotopes are also a powerful tool for understanding terrestrial differentiation. Excess 129Xe found in carbon dioxide well gases from New Mexico was believed to be from the decay of mantle-derived gases soon after Earth's formation.[10] It has been suggested that the isotopic composition of atmospheric xenon fluctuated prior to the GOE before stabilizing, perhaps as a result of the rise in atmospheric O2.[11]

List of isotopes

Nuclide
[n 1]
Z N Isotopic mass (u)
[n 2][n 3]
Half-life
[n 4]
Decay
mode

[n 5]
Daughter
isotope

[n 6]
Spin and
parity
[n 7][n 8]
Physics:Natural abundance (mole fraction)
Excitation energy Normal proportion Range of variation
108Xe[9] 54 54 58+106
−23
 μs
α 104Te 0+
109Xe 54 55 13(2) ms α 105Te
110Xe 54 56 109.94428(14) 310(190) ms
[105+35
−25
 ms
]
β+ 110I 0+
α 106Te
111Xe 54 57 110.94160(33)# 740(200) ms β+ (90%) 111I 5/2+#
α (10%) 107Te
112Xe 54 58 111.93562(11) 2.7(8) s β+ (99.1%) 112I 0+
α (.9%) 108Te
113Xe 54 59 112.93334(9) 2.74(8) s β+ (92.98%) 113I (5/2+)#
β+, p (7%) 112Te
α (.011%) 109Te
β+, α (.007%) 109Sb
114Xe 54 60 113.927980(12) 10.0(4) s β+ 114I 0+
115Xe 54 61 114.926294(13) 18(4) s β+ (99.65%) 115I (5/2+)
β+, p (.34%) 114Te
β+, α (3×10−4%) 111Sb
116Xe 54 62 115.921581(14) 59(2) s β+ 116I 0+
117Xe 54 63 116.920359(11) 61(2) s β+ (99.99%) 117I 5/2(+)
β+, p (.0029%) 116Te
118Xe 54 64 117.916179(11) 3.8(9) min β+ 118I 0+
119Xe 54 65 118.915411(11) 5.8(3) min β+ 119I 5/2(+)
120Xe 54 66 119.911784(13) 40(1) min β+ 120I 0+
121Xe 54 67 120.911462(12) 40.1(20) min β+ 121I (5/2+)
122Xe 54 68 121.908368(12) 20.1(1) h EC 122I 0+
123Xe 54 69 122.908482(10) 2.08(2) h β+ 123I 1/2+
123mXe 185.18(22) keV 5.49(26) μs 7/2(−)
124Xe[n 9] 54 70 123.905893(2) 1.8(5 (stat), 1 (sys))×1022 y[4] Double EC 124Te 0+ 9.52(3)×10−4
125Xe 54 71 124.9063955(20) 16.9(2) h β+ 125I 1/2(+)
125m1Xe 252.60(14) keV 56.9(9) s IT 125Xe 9/2(−)
125m2Xe 295.86(15) keV 0.14(3) μs 7/2(+)
126Xe 54 72 125.904274(7) Observationally Stable[n 10] 0+ 8.90(2)×10−4
127Xe 54 73 126.905184(4) 36.345(3) d EC 127I 1/2+
127mXe 297.10(8) keV 69.2(9) s IT 127Xe 9/2−
128Xe 54 74 127.9035313(15) Stable 0+ 0.019102(8)
129Xe[n 11] 54 75 128.9047794(8) Stable 1/2+ 0.264006(82)
129mXe 236.14(3) keV 8.88(2) d IT 129Xe 11/2−
130Xe 54 76 129.9035080(8) Stable 0+ 0.040710(13)
131Xe[n 12] 54 77 130.9050824(10) Stable 3/2+ 0.212324(30)
131mXe 163.930(8) keV 11.934(21) d IT 131Xe 11/2−
132Xe[n 12] 54 78 131.9041535(10) Stable 0+ 0.269086(33)
132mXe 2752.27(17) keV 8.39(11) ms IT 132Xe (10+)
133Xe[n 12][n 13] 54 79 132.9059107(26) 5.2475(5) d β 133Cs 3/2+
133mXe 233.221(18) keV 2.19(1) d IT 133Xe 11/2−
134Xe[n 12] 54 80 133.9053945(9) Observationally Stable[n 14] 0+ 0.104357(21)
134m1Xe 1965.5(5) keV 290(17) ms IT 134Xe 7−
134m2Xe 3025.2(15) keV 5(1) μs (10+)
135Xe[n 15] 54 81 134.907227(5) 9.14(2) h β 135Cs 3/2+
135mXe 526.551(13) keV 15.29(5) min IT (99.99%) 135Xe 11/2−
β (.004%) 135Cs
136Xe[n 9] 54 82 135.907219(8) 2.165(16 (stat), 59 (sys))×1021 y[5] ββ 136Ba 0+ 0.088573(44)
136mXe 1891.703(14) keV 2.95(9) μs 6+
137Xe 54 83 136.911562(8) 3.818(13) min β 137Cs 7/2−
138Xe 54 84 137.91395(5) 14.08(8) min β 138Cs 0+
139Xe 54 85 138.918793(22) 39.68(14) s β 139Cs 3/2−
140Xe 54 86 139.92164(7) 13.60(10) s β 140Cs 0+
141Xe 54 87 140.92665(10) 1.73(1) s β (99.45%) 141Cs 5/2(−#)
β, n (.043%) 140Cs
142Xe 54 88 141.92971(11) 1.22(2) s β (99.59%) 142Cs 0+
β, n (.41%) 141Cs
143Xe 54 89 142.93511(21)# 0.511(6) s β 143Cs 5/2−
144Xe 54 90 143.93851(32)# 0.388(7) s β 144Cs 0+
β, n 143Cs
145Xe 54 91 144.94407(32)# 188(4) ms β 145Cs (3/2−)#
146Xe 54 92 145.94775(43)# 146(6) ms β 146Cs 0+
147Xe 54 93 146.95356(43)# 130(80) ms
[0.10(+10−5) s]
β 147Cs 3/2−#
β, n 146Cs
148Xe 54 94 85(15) ms β 148Cs 0+
149Xe 54 95 50 ms# 3/2−#
150Xe 54 96 40 ms# 0+
  1. mXe – Excited nuclear isomer.
  2. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Bold half-life – nearly stable, half-life longer than age of universe.
  5. Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    n: Neutron emission
  6. Bold symbol as daughter – Daughter product is stable.
  7. ( ) spin value – Indicates spin with weak assignment arguments.
  8. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  9. 9.0 9.1 Primordial radionuclide
  10. Suspected of undergoing β+β+ decay to 126Te
  11. Used in a method of radiodating groundwater and to infer certain events in the Solar System's history
  12. 12.0 12.1 12.2 12.3 Fission product
  13. Has medical uses
  14. Suspected of undergoing ββ decay to 134Ba with a half-life over 11×1015 years
  15. Most powerful known neutron absorber, produced in nuclear power plants as a decay product of 135I, itself a decay product of 135Te, a fission product. Normally absorbs neutrons in the high neutron flux environments to become 136Xe; see iodine pit for more information
  • The isotopic composition refers to that in air.

Xenon-124

Xenon-124 is an isotope of xenon that undergoes double electron capture to tellurium-124 with a very long half-life of 1.8×1022 years, more than 12 orders of magnitude longer than the age of the universe ((13.799±0.021)×109 years). Such decays have been observed in the XENON1T detector in 2019, and are the rarest processes ever directly observed.[12] (Even slower decays of other nuclei have been measured, but by detecting decay products that have accumulated over billions of years rather than observing them directly.[13])

Xenon-133

xenon-133, 133Xe
General
Symbol133Xe
Namesisotopes of xenon, Xe-133
Protons54
Neutrons79
Nuclide data
Natural abundancesyn
Half-life5.243(1) d
Decay products133Cs
Isotope mass132.9059107 u
Spin3/2+
Decay modes
Decay modeDecay energy (MeV)
Beta0.427
Isotopes of xenon
Complete table of nuclides

Xenon-133 (sold as a drug under the brand name Xeneisol, ATC code V09EX03 (WHO)) is an isotope of xenon. It is a radionuclide that is inhaled to assess pulmonary function, and to image the lungs.[14] It is also used to image blood flow, particularly in the brain.[15] 133Xe is also an important fission product.[citation needed] It is discharged to the atmosphere in small quantities by some nuclear power plants.[16]

Xenon-135

Main page: Physics:Xenon-135

Xenon-135 is a radioactive isotope of xenon, produced as a fission product of uranium. It has a half-life of about 9.2 hours and is the most powerful known neutron-absorbing nuclear poison (having a neutron absorption cross-section of 2 million barns[17]). The overall yield of xenon-135 from fission is 6.3%, though most of this results from the radioactive decay of fission-produced tellurium-135 and iodine-135. Xe-135 exerts a significant effect on nuclear reactor operation (xenon pit). It is discharged to the atmosphere in small quantities by some nuclear power plants.[16]

Xenon-136

Xenon-136 is an isotope of xenon that undergoes double beta decay to barium-136 with a very long half-life of 2.11×1021 years, more than 10 orders of magnitude longer than the age of the universe ((13.799±0.021)×109 years). It is being used in the Enriched Xenon Observatory experiment to search for neutrinoless double beta decay.

See also

References

  1. "Observation of two-neutrino double electron capture in 124Xe with XENON1T". Nature 568 (7753): 532–535. 2019. doi:10.1038/s41586-019-1124-4. 
  2. Albert, J. B.; Auger, M.; Auty, D. J.; Barbeau, P. S.; Beauchamp, E.; Beck, D.; Belov, V.; Benitez-Medina, C. et al. (2014). "Improved measurement of the 2νββ half-life of 136Xe with the EXO-200 detector". Physical Review C 89. doi:10.1103/PhysRevC.89.015502. Bibcode2014PhRvC..89a5502A. 
  3. Meija, Juris; Coplen, Tyler B.; Berglund, Michael; Brand, Willi A.; De Bièvre, Paul; Gröning, Manfred; Holden, Norman E.; Irrgeher, Johanna et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure and Applied Chemistry 88 (3): 265–91. doi:10.1515/pac-2015-0305. 
  4. 4.0 4.1 Cite error: Invalid <ref> tag; no text was provided for refs named XENON1T
  5. 5.0 5.1 Albert, J. B.; Auger, M.; Auty, D. J.; Barbeau, P. S.; Beauchamp, E.; Beck, D.; Belov, V.; Benitez-Medina, C. et al. (2014). "Improved measurement of the 2νββ half-life of 136Xe with the EXO-200 detector". Physical Review C 89 (1): 015502. doi:10.1103/PhysRevC.89.015502. Bibcode2014PhRvC..89a5502A. https://authors.library.caltech.edu/44641/. Retrieved 2023-01-24. 
  6. Wang, M.; Audi, G.; Kondev, F. G.; Huang, W. J.; Naimi, S.; Xu, X. (2017). "The AME2016 atomic mass evaluation (II). Tables, graphs, and references". Chinese Physics C 41 (3): 030003-1—030003-442. doi:10.1088/1674-1137/41/3/030003. http://nuclearmasses.org/resources_folder/Wang_2017_Chinese_Phys_C_41_030003.pdf. 
  7. Status of ββ-decay in Xenon, Roland Lüscher, accessed online September 17, 2007.
  8. Barros, N.; Thurn, J.; Zuber, K. (2014). "Double beta decay searches of 134Xe, 126Xe, and 124Xe with large scale Xe detectors". Journal of Physics G 41 (11): 115105–1–115105–12. doi:10.1088/0954-3899/41/11/115105. Bibcode2014JPhG...41k5105B. 
  9. 9.0 9.1 Auranen, K. (2018). "Superallowed α decay to doubly magic 100Sn". Physical Review Letters 121 (18): 182501. doi:10.1103/PhysRevLett.121.182501. PMID 30444390. Bibcode2018PhRvL.121r2501A. https://www.pure.ed.ac.uk/ws/files/77942573/PhysRevLett.121.pdf. 
  10. Boulos, M. S.; Manuel, O. K. (1971). "The xenon record of extinct radioactivities in the Earth.". Science 174 (4016): 1334–1336. doi:10.1126/science.174.4016.1334. PMID 17801897. Bibcode1971Sci...174.1334B. 
  11. Ardoin, L.; Broadley, M.W.; Almayrac, M.; Avice, G.; Byrne, D.J.; Tarantola, A.; Lepland, A.; Saito, T. et al. (2022). "The end of the isotopic evolution of atmospheric xenon". Geochemical Perspectives Letters 20: 43–47. doi:10.7185/geochemlet.2207. Bibcode2022GChPL..20...43A. 
  12. David Nield (26 Apr 2019). "A Dark Matter Detector Just Recorded One of The Rarest Events Known to Science". https://www.sciencealert.com/a-dark-matter-detector-just-detected-one-of-the-rarest-events-ever-in-science. 
  13. Hennecke, Edward W.; Manuel, O. K.; Sabu, Dwarka D. (1975). "Double beta decay of Te 128". Physical Review C 11 (4): 1378–1384. doi:10.1103/PhysRevC.11.1378. http://scholarsmine.mst.edu/cgi/viewcontent.cgi?article=2240&context=chem_facwork. 
  14. Jones, R. L.; Sproule, B. J.; Overton, T. R. (1978). "Measurement of regional ventilation and lung perfusion with Xe-133". Journal of Nuclear Medicine 19 (10): 1187–1188. PMID 722337. 
  15. Hoshi, H.; Jinnouchi, S.; Watanabe, K.; Onishi, T.; Uwada, O.; Nakano, S.; Kinoshita, K. (1987). "Cerebral blood flow imaging in patients with brain tumor and arterio-venous malformation using Tc-99m hexamethylpropylene-amine oxime--a comparison with Xe-133 and IMP". Kaku Igaku 24 (11): 1617–1623. PMID 3502279. 
  16. 16.0 16.1 (in en) Effluent Releases from Nuclear Power Plants and Fuel-Cycle Facilities. National Academies Press (US). 2012-03-29. https://www.ncbi.nlm.nih.gov/books/NBK201991/. 
  17. Chart of the Nuclides 13th Edition