Biaugmented pentagonal prism
From HandWiki
Short description: 53rd Johnson solid
Biaugmented pentagonal prism | |
---|---|
Type | Johnson J52 – J53 – J54 |
Faces | 8 equilateral triangles 3 squares 2 pentagons |
Edges | 23 |
Vertices | 12 |
Vertex configuration | 2(42.5) 2(34) 2x4(32.4.5) |
Symmetry group | C2v |
Dual polyhedron | parabilaterotruncated pentagonal bipyramid |
Properties | convex |
Net | |
In geometry, the biaugmented pentagonal prism is one of the Johnson solids (J53). As the name suggests, it can be constructed by doubly augmenting a pentagonal prism by attaching square pyramids (J1) to two of its nonadjacent equatorial faces. (The solid obtained by attaching pyramids to adjacent equatorial faces is not convex, and thus not a Johnson solid.)
A Johnson solid is one of 92 strictly convex polyhedra that is composed of regular polygon faces but are not uniform polyhedra (that is, they are not Platonic solids, Archimedean solids, prisms, or antiprisms). They were named by Norman Johnson, who first listed these polyhedra in 1966.[1]
External links
Original source: https://en.wikipedia.org/wiki/Biaugmented pentagonal prism.
Read more |
- ↑ Johnson, Norman W. (1966), "Convex polyhedra with regular faces", Canadian Journal of Mathematics 18: 169–200, doi:10.4153/cjm-1966-021-8.