List of Johnson solids

From HandWiki
Revision as of 14:26, 6 February 2024 by Wincert (talk | contribs) (linkage)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: All 92 Johnson Solids listed here


In geometry, polyhedra is a three-dimensional object with lines meeting at a point that forms polygons. The points, lines, and polygons of polyhedra are respectively known as the vertices, edges, and faces.[1] A polyhedron is said to be convex if, for every two points inside the polyhedron, there is a line connecting them that lies within the polyhedra as well;[2] its faces are not coplanar (meaning every face are not in the same plane) and its edges are not colinear (meaning the edges are not in the same line).[3] A polyhedron is said to be regular if every polygonal faces are equilateral and equiangular,[4] and those with the polyhedron has vertex-transitive property are called a uniform polyhedron.[5] A Johnson solid (or Johnson–Zalgaller solid) is a convex polyhedron with its faces are regular polygons. Some authors do not require that the Johnson solid not be uniform, meaning that the Johnson solids may not be Platonic solid, Archimedean solid, prism, or antiprism.[6]

The 92 convex polyhedrons were published by Norman Johnson, conjecturing that there are no other solids. His conjecture was proved by Victor Zalgaller proved in 1969 that Johnson's list was complete.[7] Pyramids, cupolae, and rotunda are the first six Johnson solids that have regular faces and convexity. These solids may be applied to construct another polyhedron that has the same properties, a process known as augmentation; attaching prism or antiprism to those is known as elongation or gyroelongation, respectively. Some others may be constructed by diminishment, the removal of those from the component of polyhedra, or by snubification, a construction by cutting loose the edges, lifting the faces and rotate in certain angle, after which adding the equilateral triangles between them.[8]

Every polyhedra has own characteristics, including symmetry and measurement. An object is said to be symmetrical if there is such transformation preserving the immunity to change. All of those transformations may be composed in a concept of group, alongside the number of elements, known as order. In two-dimensional space, these transformations include rotating around the center of a polygon and reflecting an object around the perpendicular bisector of a polygon. A polygon that is rotated symmetrically in [math]\displaystyle{ \frac{360^\circ}{n} }[/math] is denoted by Cn, a cyclic group of order n; combining with the reflection symmetry results in the symmetry of dihedral group Dn of order 2n.[9] In three-dimensional symmetry point groups, the transformation of polyhedra's symmetry includes the rotation around the line passing through the base center, known as axis of symmetry, and reflection relative to perpendicular planes passing through the bisector of a base; this is known as the pyramidal symmetry Cnv of order 2n. Relatedly, polyhedra that preserve their symmetry by rotating it horizontally in [math]\displaystyle{ 180^\circ }[/math] are known as prismatic symmetry Dnv of order 2n. The antiprismatic symmetry Dnd of order 4n preserving the symmetry by rotating its half bottom and reflection across the horizontal plane.[10] The symmetry group Cnh of order 2n preserve the symmetry by rotation around the axis of symmetry and reflection on horizontal plane; one case that preserves the symmetry by one full rotation and one reflection horizontal plane is C1h of order 2, or simply denoted as Cs.[11] The mensuration of polyhedra includes the surface area and volume. An area is a two-dimensional measurement calculated by the product of length and width, and the surface area is the overall area of all faces of polyhedra that is measured by summing all of them.[12] A volume is a measurement of the region in three-dimensional space.[13]

The following table contains the 92 Johnson solids of the edge length a. Each of the columns includes the enumeration of Johnson solid (Jn),[14] the number of vertices, edges, and faces, symmetry, surface area A and volume V.

Table of all 92 Johnson solids
Jn Solid name Image Vertices Edges Faces Symmetry group and its order[15] Surface area and volume[16]
1 Equilateral
square
pyramid
Square pyramid.png 5 8 5 C4v of order 8 [math]\displaystyle{ \begin{align} A &= \left(1 + \sqrt{3}\right)a^2 \\ &\approx 2.7321a^2 \\ V &= \frac{\sqrt{2}}{6}a^3 \\ &\approx 0.2357a^3 \end{align} }[/math]
2 Pentagonal
pyramid
Pentagonal pyramid.png 6 10 6 C5v of order 10 [math]\displaystyle{ \begin{align} A &= \frac{a^2}{2}\sqrt{\frac{5}{2}\left(10+\sqrt{5}+\sqrt{75+30\sqrt{5}}\right)} \\ &\approx 3.8855a^2 \\ V &= \left(\frac{5 + \sqrt{5}}{24}\right)a^3 \\ &\approx 0.3015a^3 \end{align} }[/math]
3 Triangular
cupola
Triangular cupola.png 9 15 8 C3v of order 6 [math]\displaystyle{ \begin{align} A &= \left(3+\frac{5\sqrt{3}}{2} \right) a^2 \\ &\approx 7.3301a^2 \\ V &= \left(\frac{5}{3\sqrt{2}}\right) a^3 \\ &\approx 1.1785a^3 \end{align} }[/math]
4 Square
cupola
Square cupola.png 12 20 10 C4v of order 8 [math]\displaystyle{ \begin{align} A &= \left(7+2\sqrt{2}+\sqrt{3}\right)a^2 \\ &\approx 11.5605a^2 \\ V &= \left(1+\frac{2\sqrt{2}}{3}\right)a^3 \\ &\approx 1.9428a^3 \end{align} }[/math]
5 Pentagonal
cupola
Pentagonal cupola.png 15 25 12 C5v of order 10 [math]\displaystyle{ \begin{align} A &= \left(\frac{1}{4}\left(20+5\sqrt{3}+\sqrt{5\left(145+62\sqrt{5}\right)}\right)\right)a^2 \\ &\approx 16.5798a^2 \\ V &= \left(\frac{1}{6}\left(5+4\sqrt{5}\right)\right)a^3 \\ &\approx 2.3241a^3 \end{align} }[/math]
6 Pentagonal
rotunda
Pentagonal rotunda.png 20 35 17 C5v of order 10 [math]\displaystyle{ \begin{align} A &= \left(\frac{1}{2}\left(5\sqrt{3}+\sqrt{10\left(65+29\sqrt{5}\right)}\right)\right)a^2 \\ &\approx 22.3472a^2 \\ V &= \left(\frac{1}{12}\left(45+17\sqrt{5}\right)\right)a^3 \\ &\approx 6.9178a^3 \end{align} }[/math]
7 Elongated
triangular
pyramid
Elongated triangular pyramid.png 7 12 7 C3v of order 6 [math]\displaystyle{ \begin{align} A &= \left(3+\sqrt{3}\right)a^2 \\ &\approx 4.7321a^2 \\ V &= \left(\frac{1}{12}\left(\sqrt{2}+3\sqrt{3}\right)\right)a^3 \\ &\approx 0.5509a^3 \end{align} }[/math]
8 Elongated
square
pyramid
Elongated square pyramid.png 9 16 9 C4v of order 8 [math]\displaystyle{ \begin{align} A &= \left( 5 + \sqrt{3} \right)a^2 \\ &\approx 6.7321a^2 \\ V &= \left( 1 + \frac{\sqrt{2}}{6}\right)a^3 \\ &\approx 1.2357a^3 \end{align} }[/math]
9 Elongated
pentagonal
pyramid
Elongated pentagonal pyramid.png 11 20 11 C5v of order 10 [math]\displaystyle{ \begin{align} A &= \frac{20 + 5\sqrt{3} + \sqrt{25 + 10\sqrt{5}}}{4}a^2 \\ &\approx 8.8855a^2 \\ V &= \left(\frac{5 + \sqrt{5} + 6\sqrt{25 + 10\sqrt{5}}}{24} \right)a^3 \\ &\approx 2.022a^3 \end{align} }[/math]
10 Gyroelongated
square
pyramid
Gyroelongated square pyramid.png 9 20 13 C4v of order 8 [math]\displaystyle{ \begin{align} A &= (1 + 3\sqrt{3})a^2 \\ &\approx 6.1962a^2 \\ V &= \frac{1}{6} \left(\sqrt{2}+2 \sqrt{4+3 \sqrt{2}}\right)a^3 \\ &\approx 1.1927a^3 \end{align} }[/math]
11 Gyroelongated
pentagonal
pyramid
Gyroelongated pentagonal pyramid.png 11 25 16 C5v of order 10 [math]\displaystyle{ \begin{align} A &= \frac{1}{4} \left(15 \sqrt{3}+\sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 8.2157a^2 \\ V &= \frac{1}{24} \left(25+9 \sqrt{5}\right)a^3 \\ &\approx 1.8802a^3 \end{align} }[/math]
12 Triangular
bipyramid
Triangular dipyramid.png 5 9 6 D3h of order 12 [math]\displaystyle{ \begin{align} A &= \frac{3\sqrt{3}}{2}a^2 \\ &\approx 2.5981a^2 \\ V &= \frac{\sqrt{2}}{6}a^3 \\ &\approx 0.2358a^3 \end{align} }[/math]
13 Pentagonal
bipyramid
Pentagonal dipyramid.png 7 15 10 D5h of order 20 [math]\displaystyle{ \begin{align} A &= \frac{5 \sqrt{3}}{2}a^2 \\ &\approx 4.3301a^2 \\ V &= \frac{1}{12} \left(5+\sqrt{5}\right)a^3 \\ &\approx 0.603a^3 \end{align} }[/math]
14 Elongated
triangular
bipyramid
Elongated triangular dipyramid.png 8 15 9 D3h of order 12 [math]\displaystyle{ \begin{align} A &= \frac{3}{2} \left(2+\sqrt{3}\right)a^2 \\ &\approx 5.5981a^2 \\ V &= \frac{1}{12} \left(2 \sqrt{2}+3 \sqrt{3}\right)a^3 \\ &\approx 0.6687a^3 \end{align} }[/math]
15 Elongated
square
bipyramid
Elongated square dipyramid.png 10 20 12 D4h of order 16 [math]\displaystyle{ \begin{align} A &= 2 \left(2+\sqrt{3}\right)a^2 \\ &\approx 7.4641a^2 \\ V &= \frac{1}{3} \left(3+\sqrt{2}\right)a^3 \\ &\approx 1.4714a^3 \end{align} }[/math]
16 Elongated
pentagonal
bipyramid
Elongated pentagonal dipyramid.png 12 25 15 D5h of order 20 [math]\displaystyle{ \begin{align} A &= \frac{5}{2} \left(2+\sqrt{3}\right)a^2 \\ &\approx 9.3301a^2 \\ V &= \frac{1}{12} \left(5+\sqrt{5}+3 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^3 \\ &\approx 2.3235a^3 \end{align} }[/math]
17 Elongated
square
bipyramid
Gyroelongated square dipyramid.png 10 24 16 D4d of order 16 [math]\displaystyle{ \begin{align} A &= 4 \sqrt{3}a^2 \\ &\approx 6.9282a^2 \\ V &= \frac{1}{12} \left(5+\sqrt{5}+3 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^3 \\ &\approx 2.3235a^3 \end{align} }[/math]
18 Elongated
triangular
cupola
Elongated triangular cupola.png 15 27 14 C3v of order 6 [math]\displaystyle{ \begin{align} A &= \frac{1}{2} \left(18+5 \sqrt{3}\right)a^2 \\ &\approx 13.3301a^2 \\ V &= \frac{1}{3} \left(\sqrt{2}+\sqrt{4+3 \sqrt{2}}\right)a^3 \\ &\approx 1.4284a^3 \end{align} }[/math]
19 Elongated
square
cupola
Elongated square cupola.png 20 36 18 C4v of order 8 [math]\displaystyle{ \begin{align} A &= (15+2 \sqrt{2}+\sqrt{3})a^2\\ &\approx 19.5605a^2 \\ V &= \left(3+\frac{8 \sqrt{2}}{3}\right)a^3 \\ &\approx 6.7712a^3 \end{align} }[/math]
20 Elongated
pentagonal
cupola
Elongated pentagonal cupola.svg 25 45 22 C5v of order 10 [math]\displaystyle{ \begin{align} A &= \frac{1}{4} \left(60+5 \sqrt{3}+10 \sqrt{5+2 \sqrt{5}}+\sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 26.5798a^2 \\ V &= \frac{1}{6} \left(5+4 \sqrt{5}+15 \sqrt{5+2 \sqrt{5}}\right)a^3 \\ &\approx 10.0183a^3 \end{align} }[/math]
21 Elongated
pentagonal
rotunda
Elongated pentagonal rotunda.png 30 55 27 C5v of order 10 [math]\displaystyle{ \begin{align} A &= \frac{1}{2}a^2 \left(20+5 \sqrt{3}+5 \sqrt{5+2 \sqrt{5}}+3 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right) \\ &\approx 32.3472a^2 \\ V &= \frac{1}{12}a^3 \left(45+17 \sqrt{5}+30 \sqrt{5+2 \sqrt{5}}\right) \\ &\approx 14.612a^3 \end{align} }[/math]
22 Gyroelongated
triangular
cupola
Gyroelongated triangular cupola.png 15 33 20 C3v of order 6 [math]\displaystyle{ \begin{align} A &= \frac{1}{2} \left(6+11 \sqrt{3}\right)a^2 \\ &\approx 12.5263a^2 \\ V &= \frac{1}{3} \sqrt{\frac{61}{2}+18 \sqrt{3}+30 \sqrt{1+\sqrt{3}}}a^3 \\ &\approx 3.5161a^3 \end{align} }[/math]
23 Gyroelongated
square
cupola
Gyroelongated square cupola.png 20 44 26 C4v of order 8 [math]\displaystyle{ \begin{align} A &= (7+2 \sqrt{2}+5 \sqrt{3})a^2 \\ &\approx 18.4887a^2 \\ V &= \left(1+\frac{2}{3}\sqrt{2} + \frac{2}{3}\sqrt{4+2\sqrt{2}+2\sqrt{146+103\sqrt{2}}}\right)a^3 \\ &\approx 6.2108a^3 \end{align} }[/math]
24 Gyroelongated
pentagonal
cupola
Gyroelongated pentagonal cupola.png 25 55 32 C5v of order 10 [math]\displaystyle{ \begin{align} A &= \frac{1}{4} \left(20+25 \sqrt{3}+10 \sqrt{5+2 \sqrt{5}}+\sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 25.2400a^2 \\ V &= \left(\frac{5}{6}+\frac{2}{3}\sqrt{5} + \frac{5}{6}\sqrt{2\sqrt{650+290\sqrt{5}}-2\sqrt{5}-2}\right) a^3 \\ &\approx 9.0733a^3 \end{align} }[/math]
25 Gyroelongated
pentagonal
rotunda
Gyroelongated pentagonal rotunda.png 30 65 37 C5v of order 10 [math]\displaystyle{ \begin{align} A &= \frac{1}{2}\left( 15\sqrt{3}+\left(5+3\sqrt{5}\right)\sqrt{5+2\sqrt{5}}\right)a^2 \\ &\approx 31.0075a^2 \\ V &= \left(\frac{45}{12}+\frac{17}{12}\sqrt{5} + \frac{5}{6}\sqrt{2\sqrt{650+290\sqrt{5}}-2\sqrt{5}-2}\right) a^3 \\ &\approx 13.6671a^3 \end{align} }[/math]
26 Gyrobifastigium Gyrobifastigium.png 8 14 8 D2d of order 8 [math]\displaystyle{ \begin{align} A &= \left(4+\sqrt{3}\right)a^2 \\ &\approx 5.7321a^2 \\ V &= \left(\frac{\sqrt{3}}{2}\right)a^3 \\ &\approx 0.866a^3 \end{align} }[/math]
27 Triangular
orthobicupola
Triangular orthobicupola.png 12 24 14 D3h of order 12 [math]\displaystyle{ \begin{align} A &= 2\left(3+\sqrt{3}\right)a^2 \\ &\approx 9.4641a^2 \\ V &= \frac{5\sqrt{2}}{3}a^3 \\ &\approx 2.357a^3 \end{align} }[/math]
28 Square
orthobicupola
Square orthobicupola.png 16 32 18 D4h of order 16 [math]\displaystyle{ \begin{align} A &= 2(\sqrt{5} + \sqrt{3})a^2 \\ &\approx 13.4641a^2 \\ V &= \left(2 + \frac{4\sqrt{2}}{3}\right)a^3 \\ &\approx 3.8856a^3 \end{align} }[/math]
29 Square
gyrobicupola
Square gyrobicupola.png 16 32 18 D4d of order 16 [math]\displaystyle{ \begin{align} A &= 2(\sqrt{5} + \sqrt{3})a^2 \\ &\approx 13.4641a^2 \\ V &= \left(2 + \frac{4\sqrt{2}}{3}\right)a^3 \\ &\approx 3.8856a^3 \end{align} }[/math]
30 Pentagonal
orthobicupola
Pentagonal orthobicupola.png 20 40 22 D5h of order 20 [math]\displaystyle{ \begin{align} A &= \left(10+\sqrt{\frac{5}{2}\left(10+\sqrt{5}+\sqrt{75+30\sqrt{5}}\right)}\right)a^2 \\ &\approx 17.7711a^2 \\ V &= \frac{1}{3}\left(5+4\sqrt{5}\right)a^3 \\ &\approx 4.6481a^3 \end{align} }[/math]
31 Pentagonal
gyrobicupola
Pentagonal gyrobicupola.png 20 40 22 D5d of order 20 [math]\displaystyle{ \begin{align} A &= \left(10+\sqrt{\frac{5}{2}\left(10+\sqrt{5}+\sqrt{75+30\sqrt{5}}\right)}\right)a^2 \\ &\approx 17.7711a^2 \\ V &= \frac{1}{3}\left(5+4\sqrt{5}\right)a^3 \\ &\approx 4.6481a^3 \end{align} }[/math]
32 Pentagonal
orthocupolarotunda
Pentagonal orthocupolarotunda.png 25 50 27 C5v of order 10 [math]\displaystyle{ \begin{align} A &= \left(5+\frac{1}{4}\sqrt{1900+490\sqrt{5}+210\sqrt{75+30\sqrt{5}}}\right)a^2 \\ &\approx 23.5385a^2 \\ V &= \frac{5}{12}\left(11+5\sqrt{5}\right)a^3 \\ &\approx 9.2418a^3 \end{align} }[/math]
33 Pentagonal
gyrocupolarotunda
Pentagonal gyrocupolarotunda.png 25 50 27 C5v of order 10 [math]\displaystyle{ \begin{align} A &= \left(5+\frac{15}{4}\sqrt{3}+\frac{7}{4}\sqrt{25+10\sqrt{5}}\right)a^2 \\ &\approx 23.5385a^2 \\ V &= \frac{5}{12}\left(11+5\sqrt{5}\right)a^3 \\ &\approx 9.2418a^3 \end{align} }[/math]
34 Pentagonal
orthobirotunda
Pentagonal orthobirotunda.png 30 60 32 D5h of order 20 [math]\displaystyle{ \begin{align} A &= \left((5 \sqrt{3}+3 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 29.306a^2 \\ V &= \frac{1}{6}(45 + 17\sqrt{5})a^3 \\ &\approx 13.8355a^3 \end{align} }[/math]
35 Elongated
triangular
orthobicupola
Elongated triangular orthobicupola.png 18 36 20 D3h of order 12 [math]\displaystyle{ \begin{align} A &= 2(6 + \sqrt{3})a^2 \\ &\approx 15.4641a^2 \\ V &= \left(\frac{5 \sqrt{2}}{3} + \frac{3 \sqrt{3}}{2}\right)a^3 \\ &\approx 4.9551a^3 \end{align} }[/math]
36 Elongated
triangular
gyrobicupola
Elongated triangular gyrobicupola.png 18 36 20 D3d of order 12 [math]\displaystyle{ \begin{align} A &= 2(6 + \sqrt{3})a^2 \\ &\approx 15.4641a^2 \\ V &= \left(\frac{5 \sqrt{2}}{3} + \frac{3 \sqrt{3}}{2}\right)a^3 \\ &\approx 4.9551a^3 \end{align} }[/math]
37 Elongated
square
gyrobicupola
Elongated square gyrobicupola.png 24 48 26 D4d of order 16 [math]\displaystyle{ \begin{align} A &= 2(9 + \sqrt{3})a^2 \\ &\approx 21.4641a^2 \\ V &= \left(4 + \frac{10\sqrt{2}}{3}\right)a^3 \\ &\approx 8.714a^3 \end{align} }[/math]
38 Elongated
pentagonal
orthobicupola
Elongated pentagonal orthobicupola.png 30 60 32 D5h of order 20 [math]\displaystyle{ \begin{align} A &= \left(20+\sqrt{\frac{5}{2}\left(10+\sqrt{5}+\sqrt{75+30\sqrt{5}}\right)}\right)a^2 \\ &\approx 27.7711a^2 \\ V &= \frac{1}{6}\left(10+8\sqrt{5}+15\sqrt{5+2\sqrt{5}}\right)a^3 \\ &\approx 12.3423a^3 \end{align} }[/math]
39 Elongated
pentagonal
gyrobicupola
Elongated pentagonal gyrobicupola.png 30 60 32 D5d of order 20 [math]\displaystyle{ \begin{align} A &= \left(20+\sqrt{\frac{5}{2}\left(10+\sqrt{5}+\sqrt{75+30\sqrt{5}}\right)}\right)a^2 \\ &\approx 27.7711a^2 \\ V &= \frac{1}{6}\left(10+8\sqrt{5}+15\sqrt{5+2\sqrt{5}}\right)a^3 \\ &\approx 12.3423a^3 \end{align} }[/math]
40 Elongated
pentagonal
orthocupolarotunda
Elongated pentagonal orthocupolarotunda.png 35 70 37 C5v of order 10 [math]\displaystyle{ \begin{align} A &= \frac{1}{4}\left(60+\sqrt{10\left(190+49\sqrt{5}+21\sqrt{75+30\sqrt{5}}\right)}\right)a^2 \\ &\approx 33.5385a^2 \\ V &= \frac{5}{12}\left(11+5\sqrt{5}+6\sqrt{5+2\sqrt{5}}\right)a^3 \\ &\approx 16.936a^3 \end{align} }[/math]
41 Elongated
pentagonal
gyrocupolarotunda
Elongated pentagonal gyrocupolarotunda.png 35 70 37 C5v of order 10 [math]\displaystyle{ \begin{align} A &= \frac{1}{4}\left(60+\sqrt{10\left(190+49\sqrt{5}+21\sqrt{75+30\sqrt{5}}\right)}\right)a^2 \\ &\approx 33.5385a^2 \\ V &= \frac{5}{12}\left(11+5\sqrt{5}+6\sqrt{5+2\sqrt{5}}\right)a^3 \\ &\approx 16.936a^3 \end{align} }[/math]
42 Elongated
pentagonal
orthobirotunda
Elongated pentagonal orthobirotunda.png 40 80 42 D5h of order 20 [math]\displaystyle{ \begin{align} A &= \left(10+\sqrt{30\left(10+3\sqrt{5}+\sqrt{75+30\sqrt{5}}\right)}\right)a^2 \\ &\approx 39.306a^2 \\ V &= \frac{1}{6}\left(45+17\sqrt{5}+15\sqrt{5+2\sqrt{5}}\right)a^3 \\ &\approx 21.5297a^3 \end{align} }[/math]
43 Elongated
pentaognal
gyrobirotunda
Elongated pentagonal gyrobirotunda.png 40 80 42 D5d of order 20 [math]\displaystyle{ \begin{align} A &= \left(10+\sqrt{30\left(10+3\sqrt{5}+\sqrt{75+30\sqrt{5}}\right)}\right)a^2 \\ &\approx 39.306a^2 \\ V &= \frac{1}{6}\left(45+17\sqrt{5}+15\sqrt{5+2\sqrt{5}}\right)a^3 \\ &\approx 21.5297a^3 \end{align} }[/math]
44 Gyroelongated
triangular
bicupola
Gyroelongated triangular bicupola.png 18 42 26 D3 of order 6 [math]\displaystyle{ \begin{align} A &= \left(6+5\sqrt{3}\right)a^2 \\ &\approx 14.6603a^2 \\ V &= \sqrt{2} \left(\frac{5}{3}+\sqrt{1+\sqrt{3}}\right) a^3 \\ &\approx 4.6946a^3 \end{align} }[/math]
45 Gyroelongated
square
bicupola
Gyroelongated square bicupola.png 24 56 34 D4 of order 8 [math]\displaystyle{ \begin{align} A &= \left(10+6\sqrt{3}\right) a^2 \\ &\approx 20.3923a^2 \\ V &= \left(2+\frac{4}{3}\sqrt{2} + \frac{2}{3}\sqrt{4+2\sqrt{2}+2\sqrt{146+103\sqrt{2}}}\right) a^3 \\ &\approx 8.1536a^3 \end{align} }[/math]
46 Gyroelongated
pentagonal
bicupola
Gyroelongated pentagonal bicupola.png 30 70 42 D5 of order 10 [math]\displaystyle{ \begin{align} A &= \frac{1}{2}\left(20+15\sqrt{3}+\sqrt{25+10\sqrt{5}}\right)a^2 \\ &\approx 26.4313a^2 \\ V &= \left(\frac{5}{3}+\frac{4}{3}\sqrt{5} + \frac{5}{6}\sqrt{2\sqrt{650+290\sqrt{5}}-2\sqrt{5}-2}\right) a^3 \\ &\approx 11.3974a^3 \end{align} }[/math]
47 Gyroelongated
pentagonal
cupolarotunda
Gyroelongated pentagonal cupolarotunda.png 35 80 47 C5 of order 5 [math]\displaystyle{ \begin{align} A &= \frac{1}{4}\left(20+35\sqrt{3}+7\sqrt{25+10\sqrt{5}}\right)a^2 \\ &\approx 32.1988a^2 \\ V &= \left(\frac{55}{12}+\frac{25}{12}\sqrt{5}+ \frac{5}{6}\sqrt{2\sqrt{650+290\sqrt{5}}-2\sqrt{5}-2}\right) a^3 \\ &\approx 15.9911a^3 \end{align} }[/math]
48 Gyroelongated
pentagonal
birotunda
Gyroelongated pentagonal birotunda.png 40 90 52 D5 of order 10 [math]\displaystyle{ \begin{align} A &= \left(10\sqrt{3} + 3\sqrt{25+10\sqrt{5}}\right) a^2 \\ &\approx 37.9662a^2 \\ V &= \left(\frac{45}{6}+\frac{17}{6}\sqrt{5} + \frac{5}{6}\sqrt{2\sqrt{650+290\sqrt{5}}-2\sqrt{5}-2}\right) a^3 \\ &\approx 20.5848a^3 \end{align} }[/math]
49 Augmented
triangular
prism
Augmented triangular prism.png 7 13 8 C2v of order 4 [math]\displaystyle{ \begin{align} A &= \frac{1}{2}(4 + 3\sqrt{3})a^2 \\ &\approx 4.5981a^2 \\ V &= \frac{1}{12}(2\sqrt{2} + 3\sqrt{3})a^3 \\ &\approx 0.6687a^3 \end{align} }[/math]
50 Biaugmented
triangular
prism
Biaugmented triangular prism.png 8 17 11 C2v of order 4 [math]\displaystyle{ \begin{align} A &= \frac{1}{2}(2 + 5\sqrt{3})a^2 \\ &\approx 5.3301a^2 \\ V &= \left(\frac{59}{144} + \frac{1}{\sqrt{6}}\right)a^3 \\ &\approx 0.9044a^3 \end{align} }[/math]
51 Triaugmented
triangular
prism
Triaugmented triangular prism.png 9 21 14 D3h of order 12 [math]\displaystyle{ \begin{align} A &= \frac{7\sqrt{3}}{2}a^2 \\ &\approx 6.0622a^2 \\ V &= \frac{2\sqrt{2}+\sqrt{3}}{4}a^3 \\ &\approx 1.1401a^3 \end{align} }[/math]
52 Augmented
pentagonal
prism
Augmented pentagonal prism.png 11 19 10 C2v of order 4 [math]\displaystyle{ \begin{align} A &= \frac{1}{2} \left(8+2 \sqrt{3}+\sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 9.173a^2 \\ V &= \frac{1}{12} \sqrt{233+90 \sqrt{5}+12 \sqrt{50+20 \sqrt{5}}}a^3 \\ &\approx 1.9562a^3 \end{align} }[/math]
53 Biaugmented
pentagonal
prism
Biaugmented pentagonal prism.png 12 23 13 C2v of order 4 [math]\displaystyle{ \begin{align} A &= \frac{1}{2}a^2 \left(6+4 \sqrt{3}+\sqrt{5 \left(5+2 \sqrt{5}\right)}\right) \\ &\approx 9.9051a^2 \\ V &= \frac{1}{12}a^3 \sqrt{257+90 \sqrt{5}+24 \sqrt{50+20 \sqrt{5}}} \\ &\approx 2.1919a^3 \end{align} }[/math]
54 Augmented
hexagonal
prism
Augmented hexagonal prism.png 13 22 11 C2v of order 4 [math]\displaystyle{ \begin{align} A &= (5+4 \sqrt{3})a^2 \\ &\approx 11.9282a^2 \\ V &= \frac{1}{6} \left(\sqrt{2}+9 \sqrt{3}\right)a^3 \\ &\approx 2.8338a^3 \end{align} }[/math]
55 Parabiaugmented
hexagonal
prism
Parabiaugmented hexagonal prism.png 14 26 14 D2h of order 8 [math]\displaystyle{ \begin{align} A &= (4+5 \sqrt{3})a^2 \\ &\approx 12.6603a^2 \\ V &= \frac{1}{6} \left(2 \sqrt{2}+9 \sqrt{3}\right)a^3 \\ &\approx 3.0695a^3 \end{align} }[/math]
56 Metabiaugmented
hexagonal
prism
Metabiaugmented hexagonal prism.png 14 26 14 C2v of order 4 [math]\displaystyle{ \begin{align} A &= (4+5 \sqrt{3})a^2 \\ &\approx 12.6603a^2 \\ V &= \frac{1}{6} \left(2 \sqrt{2}+9 \sqrt{3}\right)a^3 \\ &\approx 3.0695a^3 \end{align} }[/math]
57 Triaugmented
hexagonal
prism
Triaugmented hexagonal prism.png 15 30 17 D3h of order 12 [math]\displaystyle{ \begin{align} A &= 3 \left(1+2 \sqrt{3}\right)a^2 \\ &\approx 13.3923a^2 \\ V &= \left(\frac{1}{\sqrt{2}}+\frac{3 \sqrt{3}}{2}\right)a^3 \\ &\approx 3.3052a^3 \end{align} }[/math]
58 Augmented
dodecahedron
Augmented dodecahedron.png 21 35 16 C5v of order 10 [math]\displaystyle{ \begin{align} A &= \frac{1}{4} \left(5 \sqrt{3}+11 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 21.0903a^2 \\ V &= \frac{1}{24} \left(95+43 \sqrt{5}\right)a^3 \\ &\approx 7.9646a^3 \end{align} }[/math]
59 Parabiaugmented
dodecahedron
Parabiaugmented dodecahedron.png 22 40 20 D5d of order 20 [math]\displaystyle{ \begin{align} A &= \frac{5}{2} \left(\sqrt{3}+\sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 21.5349a^2 \\ V &= \frac{1}{6} \left(25+11 \sqrt{5}\right)a^3 \\ &\approx 8.2661a^3 \end{align} }[/math]
60 Metabiaugmented
dodecahedron
Metabiaugmented dodecahedron.png 22 40 20 C2v of order 4 [math]\displaystyle{ \begin{align} A &= \frac{5}{2} \left(\sqrt{3}+\sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 21.5349a^2 \\ V &= \frac{1}{6} \left(25+11 \sqrt{5}\right)a^3 \\ &\approx 8.2661a^3 \end{align} }[/math]
61 Triaugmented
dodecahedron
Triaugmented dodecahedron.png 23 45 24 C3v of order 6 [math]\displaystyle{ \begin{align} A &= \frac{3}{4} \left(5 \sqrt{3}+3 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 21.9795a^2 \\ V &= \frac{5}{8} \left(7+3 \sqrt{5}\right)a^3 \\ &\approx 8.5676a^3 \end{align} }[/math]
62 Metabidiminished
icosahedron
Metabidiminished icosahedron.png 10 20 12 C2v of order 4 [math]\displaystyle{ \begin{align} A &= \frac{1}{2} \left(5 \sqrt{3}+\sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 7.7711a^2 \\ V &= \frac{1}{6} \left(5+2 \sqrt{5}\right)a^3 \\ &\approx 1.5787a^3 \end{align} }[/math]
63 Tridiminished
icosahedron
Tridiminished icosahedron.png 9 15 8 C3v of order 6 [math]\displaystyle{ \begin{align} A &= \frac{1}{4} \left(5 \sqrt{3}+3 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^3 \\ &\approx 7.3265a^3 \\ V &= \left(\frac{5}{8}+\frac{7 \sqrt{5}}{24}\right)a^3 \\ &\approx 1.2772a^3 \end{align} }[/math]
64 Augmented
tridiminished
icosahedron
Augmented tridiminished icosahedron.png 10 18 10 C3v of order 6 [math]\displaystyle{ \begin{align} A &= \frac{1}{4} \left(7 \sqrt{3}+3 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 8.1925a^2 \\ V &= \frac{1}{24} \left(15+2 \sqrt{2}+7 \sqrt{5}\right)a^3 \\ &\approx 1.395a^3 \end{align} }[/math]
65 Augmented
truncated
tetrahedron
Augmented truncated tetrahedron.png 15 27 14 C3v of order 6 [math]\displaystyle{ \begin{align} A &= \frac{1}{2} \left(6+13 \sqrt{3}\right)a^2 \\ &\approx 14.2583a^2 \\ V &= \frac{11}{2 \sqrt{2}}a^3 \\ &\approx 3.8891a^3 \end{align} }[/math]
66 Augmented
truncated
cube
Augmented truncated cube.png 28 48 22 C4v of order 8 [math]\displaystyle{ \begin{align} A &= (15+10 \sqrt{2}+3 \sqrt{3})a^2 \\ &\approx 34.3383a^2 \\ V &= \left(8+\frac{16 \sqrt{2}}{3}\right)a^3 \\ &\approx 15.5425a^3 \end{align} }[/math]
67 Biaugmented
truncated
cube
Biaugmented truncated cube.png 32 60 30 D4h of order 16 [math]\displaystyle{ \begin{align} A &= 2 \left(9+4 \sqrt{2}+2 \sqrt{3}\right)a^2 \\ &\approx 36.2419a^2 \\ V &= (9+6 \sqrt{2})a^3 \\ &\approx 17.4853a^3 \end{align} }[/math]
68 Augmented
truncated
dodecahedron
Augmented truncated dodecahedron.png 65 105 42 C5v of order 10 [math]\displaystyle{ \begin{align} A &= \frac{1}{4} \left(20+25 \sqrt{3}+110 \sqrt{5+2 \sqrt{5}}+\sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 102.1821a^2 \\ V &= \left(\frac{505}{12}+\frac{81 \sqrt{5}}{4}\right)a^3 \\ &\approx 87.3637a^3 \end{align} }[/math]
69 Parabiaugmented
truncated
dodecahedron
Parabiaugmented truncated dodecahedron.png 70 120 52 D5d of order 20 [math]\displaystyle{ \begin{align} A &= \frac{1}{2} \left(20+15 \sqrt{3}+50 \sqrt{5+2 \sqrt{5}}+\sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 103.3734a^2 \\ V &= \frac{1}{12} \left(515+251 \sqrt{5}\right)a^3 \\ &\approx 89.6878a^3 \end{align} }[/math]
70 Metabiaugmented
truncated
dodecahedron
Metabiaugmented truncated dodecahedron.png 70 120 52 C2v of order 4 [math]\displaystyle{ \begin{align} A &= \frac{1}{2} \left(20+15 \sqrt{3}+50 \sqrt{5+2 \sqrt{5}}+\sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 103.3734a^2 \\ V &= \frac{1}{12} \left(515+251 \sqrt{5}\right)a^3 \\ &\approx 89.6878a^3 \end{align} }[/math]
71 Triaugmented
truncated
dodecahedron
Triaugmented truncated dodecahedron.png 75 135 62 C3v of order 6 [math]\displaystyle{ \begin{align} A &= \frac{1}{4} \left(60+35 \sqrt{3}+90 \sqrt{5+2 \sqrt{5}}+3 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 104.5648a^2 \\ V &= \frac{7}{12} \left(75+37 \sqrt{5}\right)a^3 \\ &\approx 92.0118a^3 \end{align} }[/math]
72 Gyrate
rhombicosidodecahedron
Gyrate rhombicosidodecahedron.png 60 120 62 C5v of order 10 [math]\displaystyle{ \begin{align} A &= \left(30+5 \sqrt{3}+3 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 59.306a^2 \\ V &= \left(20+\frac{29 \sqrt{5}}{3}\right)a^3 \\ &\approx 41.6153a^3 \end{align} }[/math]
73 Parabigyrate
rhombicosidodecahedron
Parabigyrate rhombicosidodecahedron.png 60 120 62 D5d of order 20 [math]\displaystyle{ \begin{align} A &= \left(30+5 \sqrt{3}+3 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 59.306a^2 \\ V &= \left(20+\frac{29 \sqrt{5}}{3}\right)a^3 \\ &\approx 41.6153a^3 \end{align} }[/math]
74 Metabigyrate
rhombicosidodecahedron
Metabigyrate rhombicosidodecahedron.png 60 120 62 C2v of order 4 [math]\displaystyle{ \begin{align} A &= \left(30+5 \sqrt{3}+3 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 59.306a^2 \\ V &= \left(20+\frac{29 \sqrt{5}}{3}\right)a^3 \\ &\approx 41.6153a^3 \end{align} }[/math]
75 Trigyrate
rhombicosidodecahedron
Trigyrate rhombicosidodecahedron.png 60 120 62 C3v of order 6 [math]\displaystyle{ \begin{align} A &= \left(30+5 \sqrt{3}+3 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 59.306a^2 \\ V &= \left(20+\frac{29 \sqrt{5}}{3}\right)a^3 \\ &\approx 41.6153a^3 \end{align} }[/math]
76 Diminished
rhombicosidodecahedron
Diminished rhombicosidodecahedron.png 55 105 52 C5v of order 10 [math]\displaystyle{ \begin{align} A &= \frac{1}{4} \left(100+15 \sqrt{3}+10 \sqrt{5+2 \sqrt{5}}+11 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 58.1147a^2 \\ V &= \left(\frac{115}{6}+9 \sqrt{5}\right)a^3 \\ &\approx 39.2913a^3 \end{align} }[/math]
77 Paragyrate
diminished
rhombicosidodecahedron
Paragyrate diminished rhombicosidodecahedron.png 55 105 52 C5v of order 10 [math]\displaystyle{ \begin{align} A &= \frac{1}{4} \left(100+15 \sqrt{3}+10 \sqrt{5+2 \sqrt{5}}+11 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 58.1147a^2 \\ V &= \left(\frac{115}{6}+9 \sqrt{5}\right)a^3 \\ &\approx 39.2913a^3 \end{align} }[/math]
78 Metagyrate
diminished
rhombicosidodecahedron
Metagyrate diminished rhombicosidodecahedron.png 55 105 52 Cs of order 2 [math]\displaystyle{ \begin{align} A &= \frac{1}{4} \left(100+15 \sqrt{3}+10 \sqrt{5+2 \sqrt{5}}+11 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 58.1147a^2 \\ V &= \left(\frac{115}{6}+9 \sqrt{5}\right)a^3 \\ &\approx 39.2913a^3 \end{align} }[/math]
79 Bigyrate
diminished
rhombicosidodecahedron
Bigyrate diminished rhombicosidodecahedron.png 55 105 52 Cs of order 2 [math]\displaystyle{ \begin{align} A &= \frac{1}{4} \left(100+15 \sqrt{3}+10 \sqrt{5+2 \sqrt{5}}+11 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 58.1147a^2 \\ V &= \left(\frac{115}{6}+9 \sqrt{5}\right)a^3 \\ &\approx 39.2913a^3 \end{align} }[/math]
80 Parabidiminished
rhombicosidodecahedron
Parabidiminished rhombicosidodecahedron.png 50 90 42 D5d of order 20 [math]\displaystyle{ \begin{align} A &= \frac{5}{2} \left(8+\sqrt{3}+2 \sqrt{5+2 \sqrt{5}}+\sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 56.9233a^2 \\ V &= \frac{5}{3} \left(11+5 \sqrt{5}\right)a^3 \\ &\approx 36.9672a^3 \end{align} }[/math]
81 Metabidiminished
rhombicosidodecahedron
Metabidiminished rhombicosidodecahedron.png 50 90 42 C2v of order 4 [math]\displaystyle{ \begin{align} A &= \frac{5}{2} \left(8+\sqrt{3}+2 \sqrt{5+2 \sqrt{5}}+\sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 56.9233a^2 \\ V &= \frac{5}{3} \left(11+5 \sqrt{5}\right)a^3 \\ &\approx 36.9672a^3 \end{align} }[/math]
82 Gyrate
bidiminished
rhombicosidodecahedron
Gyrate bidiminished rhombicosidodecahedron.png 50 90 42 Cs of order 2 [math]\displaystyle{ \begin{align} A &= \frac{5}{2} \left(8+\sqrt{3}+2 \sqrt{5+2 \sqrt{5}}+\sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 56.9233a^2 \\ V &= \frac{5}{3} \left(11+5 \sqrt{5}\right)a^3 \\ &\approx 36.9672a^3 \end{align} }[/math]
83 Tridiminished
rhombicosidodecahedron
Tridiminished rhombicosidodecahedron.png 45 75 32 C3v of order 6 [math]\displaystyle{ \begin{align} A &= \frac{1}{4} \left(60+5 \sqrt{3}+30 \sqrt{5+2 \sqrt{5}}+9 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 55.732a^2 \\ V &= \left(\frac{35}{2}+\frac{23 \sqrt{5}}{3}\right)a^3 \\ &\approx 34.6432a^3 \end{align} }[/math]
84 Snub
disphenoid
Snub disphenoid.png 8 18 12 D2d of order 8 [math]\displaystyle{ \begin{align} A &= 2 \left(1+3 \sqrt{3}\right)a^2 \\ &\approx 12.3923a^2 \\ V &\approx 0.8595a^3 \end{align} }[/math]
85 Snub
square
antiprism
Snub square antiprism.png 16 40 26 D4d of order 16 [math]\displaystyle{ \begin{align} A &= 2 \left(1+3 \sqrt{3}\right)a^2 \\ &\approx 12.3923a^2 \\ V &\approx 3.6012a^3 \end{align} }[/math]
86 Sphenocorona Sphenocorona.png 10 22 14 C2v of order 4 [math]\displaystyle{ \begin{align} A &= (2+3 \sqrt{3})a^2 \\ &\approx 7.1962a^2 \\ V &= \frac{1}{2}a^3 \sqrt{1+3 \sqrt{\frac{3}{2}}+\sqrt{13+3 \sqrt{6}}} \\ &\approx 1.5154a^3 \end{align} }[/math]
87 Augmented
sphenocorona
Augmented sphenocorona.png 11 26 17 Cs of order 2 [math]\displaystyle{ \begin{align} A &= (1+4 \sqrt{3})a^2 \\ &\approx 7.9282a^2 \\ V &= \frac{1}{2}a^3\sqrt{1 + 3 \sqrt{\frac{3}{2}} + \sqrt{13 + 3 \sqrt{6}}}+\frac{1}{3\sqrt{2}} \\ &\approx 1.7511a^3 \end{align} }[/math]
88 Sphenomegacorona Sphenomegacorona.png 12 28 18 C2v of order 4 [math]\displaystyle{ \begin{align} A &= 2 \left(1+2 \sqrt{3}\right)a^2 \\ &\approx 8.9282a^2 \\ V &\approx 1.9481a^3 \end{align} }[/math]
89 Hebesphenomegacorona Hebesphenomegacorona.png 14 33 21 C2v of order 4 [math]\displaystyle{ \begin{align} A &= \frac{3}{2} \left(2+3 \sqrt{3}\right)a^2 \\ &\approx 10.7942a^2 \\ V &\approx 2.9129a^3 \end{align} }[/math]
90 Disphenocingulum Disphenocingulum.png 16 38 24 D2d of order 8 [math]\displaystyle{ \begin{align} A &= (4+5 \sqrt{3})a^2 \\ &\approx 12.6603a^2 \\ V &\approx 3.7776a^3 \end{align} }[/math]
91 Bilunabirotunda Bilunabirotunda.png 14 26 14 D2h of order 8 [math]\displaystyle{ \begin{align} A &= \left(2+2 \sqrt{3}+\sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 12.346a^2 \\ V &= \frac{1}{12} \left(17+9 \sqrt{5}\right)a^3 \\ &\approx 3.0937a^3 \end{align} }[/math]
92 Triangular
hebespenorotunda
Triangular hebesphenorotunda.png 18 36 20 C3v of order 6 [math]\displaystyle{ \begin{align} A &= \frac{1}{4} \left(12+19 \sqrt{3}+3 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 16.3887a^2 \\ V &= \left(\frac{5}{2}+\frac{7 \sqrt{5}}{6}\right)a^3 \\ &\approx 5.1087a^3 \end{align} }[/math]

back to top WWC arrow up.png

Notes

References

External links