Orders of magnitude (angular velocity)

From HandWiki
Revision as of 15:23, 6 February 2024 by Wikisleeper (talk | contribs) (linkage)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

This page is a progressive and labeled list of the SI angular velocity orders of magnitude, with certain examples appended to some list objects.

List of orders of magnitude for angular velocity
Factor (rad·s−1) Value (rad·s−1) Value (prefixHz) Value (rpm) Item
1016 7.96×10−16–8.85×10−16 127 aHz 7.61×10−15–8.45×10−15 Galactic period of the Sun[1]
1012 7.73×10−12 1.23 pHz 2.05×10−14 Rate of Earth's axial precession and corresponding precession of the equinoxes.[2]
1011 1.65×10−11 2.63 pHz 1.58×10−10 Sedna's average sidereal orbit rate
1010 8.03×1010 127 pHz 7.66×109 Sidereal orbit rate of Pluto
109 1.21×10−9 192 pHz 1.15×10−8 Sidereal orbit rate of Neptune
108 1.68×10−8 2.2 nHz 1.6×10−7 Sidereal orbit rate of Jupiter
107 1.06×10−7 16 nHz 1×10−6 Sidereal orbit rate of Mars
1.99×10−7 31.7 nHz 1.90×10−6 Sidereal orbit rate of the Earth around the Sun
106 2.66×10−6 424 nHz 2.54×10−5 Moon's sidereal orbit rate around the Earth
105 7.27×10−5 11.6 µHz 6.94×10−4 Earth's sidereal rotation rate
104 1.45×10−4 23.1 µHz 1.39×10−3 Hour hand on an analog clock
1.75×10−4 28 µHz 1.68×10−3 Jupiter's sidereal rotation rate
103 1.75×103 278 µHz 0.0167 Minute hand on an analog clock
3.5×10−3 560 µHz 0.033 The London Eye giant Ferris wheel
102  
101 1.05×10−1 16.7 mHz 1 Second hand on an analog clock
100 3.49×100 556 mHz 33⅓ LP record
6×100–1.3×101 1–2 Hz 60–120 Low-speed diesel engines (used in ships)
101 1×101–3×101 2–5 Hz 100–300 Early diesel engines
2×101–5×101 3–8 Hz 200–500 Audio compact disc
4.7×101 7.5 Hz 450 Rotor blades of a helicopter in flight
9.4×101 15 Hz 900 Spin cycle of a typical washing machine
102 1.0×102 16 Hz 960 The wheels of a typical automobile driving at 112 kilometres per hour (70 mph)
1.0×102–1.2×102 17–18 Hz 1000–1100 Barrel assembly of M61 Vulcan cannon
1.3×102 20 Hz 1200 High-speed diesel engines (lorries, yachts, generators, etc.)
2×102 30 Hz 2000 Engine speed of typical automobile traveling at 100 kilometres per hour (60 mph)
3.14×102 50 Hz 3000 Turbo generator in an electrical power plant for a 50 Hz grid
5.8×102–7.3×102 92–120 Hz 5500–7000 Redline of typical automobile engine
7.54×102 120 Hz 7200 Consumer hard disk
103 1.01×103 161 Hz 9650 Pulsar PSR B1257+12
1.08×103 173 Hz 10,400 CD in 52× CD-ROM drive[3]
1.6×103 270 Hz 16,200 Flagellar motor top speed under light load[4]
2×103 300 Hz 18,000 Redline of a V8 Formula 1 race car (pre-2014)
4.50×103 716 Hz 43,000 Pulsar PSR J1748-2446ad (fastest known)[5]
9.42×103 1500 Hz 90 000 Zippe centrifuge
104 1.4×104 2.2 kHz 130,000 Analytical ultracentrifuge[6]
1.6×104 2.5 kHz 150,000
8×104 10 kHz 800,000 Ultrasonic dental drill
105 order of 2×105 order of 30 kHz order of 2,000,000 Microfabricated gas turbine[7]
107 6.28×107 10 MHz 600,000,000 Man-made rotational speed record: a calcium carbonate sphere, only four millionths of a metre in diameter, levitated using a laser in a vacuum chamber and spun up to speed using circularly polarized light.[8]
1044 1.16545×1044 1.85×1043 Hz 1.1×1045 Planck angular frequency

See also

References

  1. see Sun
  2. "Precession of the Equinox". Wwu.edu. http://www.wwu.edu/depts/skywise/a101_precession.html. Retrieved 2015-04-13. 
  3. "Hi Fi Writer – Killer CDs?". 2003. http://www.hifi-writer.com/he/misc/killercds.htm. Retrieved 2007-12-13. 
  4. Gabel, C. V.; Berg, H. C. (2003-06-04). "The speed of the flagellar rotary motor of Escherichia coli varies linearly with protonmotive force". Proceedings of the National Academy of Sciences 100 (15): 8748–8751. doi:10.1073/pnas.1533395100. Bibcode2003PNAS..100.8748G. 
  5. Hessels, JWT; Ransom, S. M.; Stairs, Ingrid H.; Freire, Paulo C. C.; Kaspi, Victoria M.; Camilo, Fernando (2006-01-16). "A Radio Pulsar Spinning at 716 Hz". Science 311 (5769): 1901–4. doi:10.1126/science.1123430. PMID 16410486. Bibcode2006Sci...311.1901H. 
  6. "Beckman Coulter ultracentrifuge product info page". BeckmanCoulter.com. Archived from the original on 2006-10-18. https://web.archive.org/web/20061018073145/http://www.beckmancoulter.com/products/Discipline/Life_Science_Research/pr_disc_gen_ulcent.asp?bhcp=1. Retrieved 2006-07-23. 
  7. Liu, L.X.; Teo, C.J.; Epstein, A.H.; Spakovszky, Z.S. (2005). "Hydrostatic Gas Journal Bearings for Micro-Turbomachinery". Journal of Vibration and Acoustics 127 (2): 157–164. doi:10.1115/1.1897738. 
  8. Yoshihiko Arita; Michael Mazilu; Kishan Dholakia (28 Aug 2013). "Laser-induced rotation and cooling of a trapped microgyroscope in vacuum". Nature Communications 4: 2374. doi:10.1038/ncomms3374. PMID 23982323. Bibcode2013NatCo...4E2374A.