Chemistry:Neodymium(III) nitride

From HandWiki
Revision as of 01:35, 16 March 2024 by John Stpola (talk | contribs) (link)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Neodymium(III) nitride
Names
Other names
Neodymium mononitride, azanylidyneneodymium
Identifiers
3D model (JSmol)
ChemSpider
EC Number
  • 247-246-7
Properties
NdN
Molar mass 158.25 g/mol[1]
Structure[2]
Rock Salt (cubic)
Fm3m (No. 225)
a = 512.4 pm
4
Hazards
GHS pictograms GHS07: Harmful
Related compounds
Other anions
Neodymium(III) arsenide
Neodymium(III) phosphide
Neodymium(III) antimonide
Neodymium(III) bismuthide
Neodymium(III) oxide
Other cations
PrN
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is ☑Y☒N ?)
Infobox references

Neodymium(III) nitride is a chemical compound of neodymium and nitrogen with the formula NdN in which neodymium exhibits the +3 oxidation state and nitrogen exhibits the -3 oxidation state. It is ferromagnetic, like gadolinium(III) nitride, terbium(III) nitride and dysprosium(III) nitride.[3] Neodymium(III) nitride is not usually stoichiometric, and it is very hard to create pure stoichiometric neodymium nitride.[4]

Preparation

Neodymium(III) nitride can be prepared via an exothermic metathesis reaction between lithium nitride and anhydrous neodymium(III) chloride. Lithium chloride formed in the reaction can be removed by THF, a chemical in which lithium chloride dissolves.[5]

NdCl3 + Li3N → NdN + 3 LiCl

It can also be prepared directly when neodymium reacts directly with nitrogen:

2 Nd + N2 → 2 NdN

It can be prepared when decomposing neodymium amide:

Nd(NH2)3 → NdN + N2 + 3H2

It can also be produced when neodymium is ignited in air (which contains nitrogen),[6] but this also produces other compounds, such as neodymium oxide.

See also

References

  1. 1.0 1.1 1.2 "Neodymium nitride (NDN)". https://pubchem.ncbi.nlm.nih.gov/compound/Neodymium-nitride-_NdN. 
  2. Adachi, Jun; Katayama, Masahito; Kurosaki, Ken et al. (2008). "Thermal properties of polycrystalline NdN bulk samples with various porosities". Journal of Nuclear Materials (Elsevier BV) 376 (1): 83–87. doi:10.1016/j.jnucmat.2007.12.009. ISSN 0022-3115. 
  3. Temmerman, W. M. (2009). "Chapter 241: The Dual, Localized or Band‐Like, Character of the 4f‐States". in Gschneider Jr., K. A.. Handbook on the Physics and Chemistry of Rare Earths vol 39. Elsevier. pp. 100–110. ISBN 978-0-444-53221-3. 
  4. Nasirpouri, Farzad and Nogaret, Alain (eds.) (2011) Nanomagnetism and Spintronics: Fabrication, Materials, Characterization and Applications. World Scientific. ISBN:9789814273053
  5. Fitzmaurice, J.C.; Hector, A.; Rowley, A.T.; Parkin, I.P. (1994). "Rapid, low energy synthesis of lanthanide nitrides". Polyhedron (Elsevier BV) 13 (2): 235–240. doi:10.1016/s0277-5387(00)86597-3. ISSN 0277-5387. 
  6. Cotton, Simon (2006). Lanthanide and Actinide Chemistry. John Wiley & Sons Ltd. 
Salts and covalent derivatives of the nitride ion
NH3 He(N2)11
Li3N Be3N2 BN β-C3N4
g-C3N4
N2 NxOy NF3 Ne
Na3N Mg3N2 AlN Si3N4 PN
P3N5
SxNy
SN
S4N4
NCl3 Ar
K3N Ca3N2 ScN TiN VN CrN
Cr2N
MnxNy FexNy CoN Ni3N CuN Zn3N2 GaN Ge3N4 As Se NBr3 Kr
Rb3N Sr3N2 YN ZrN NbN β-Mo2N Tc Ru Rh PdN Ag3N CdN InN Sn Sb Te NI3 Xe
Cs3N Ba3N2   Hf3N4 TaN WN Re Os Ir Pt Au Hg3N2 TlN Pb BiN Po At Rn
Fr3N Ra3N   Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
La CeN Pr Nd Pm Sm Eu GdN Tb Dy Ho Er Tm Yb Lu
Ac Th Pa UN Np Pu Am Cm Bk Cf Es Fm Md No Lr