Chemistry:Zinc nitride

From HandWiki
Zinc nitride
Tl2O3structure.jpg
Identifiers
3D model (JSmol)
EC Number
  • 215-207-3
UNII
Properties
Zn3N2
Molar mass 224.154 g/mol
Appearance blue-gray cubic crystals[1]
Density 6.22 g/cm3, solid[1]
Melting point decomposes 700°C[1]
insoluble, reacts
Structure
Cubic, cI80
Ia-3, No. 206[2]
Hazards
GHS pictograms GHS07: Harmful
GHS Signal word Warning
H315, H319
P264, P280, P302+352, P305+351+338, P321, P332+313, P337+313, P362
NFPA 704 (fire diamond)
Flammability code 0: Will not burn. E.g. waterHealth code 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineReactivity code 2: Undergoes violent chemical change at elevated temperatures and pressures, reacts violently with water, or may form explosive mixtures with water. E.g. white phosphorusSpecial hazard W: Reacts with water in an unusual or dangerous manner. E.g. sodium, sulfuric acidNFPA 704 four-colored diamond
0
1
2
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☑Y verify (what is ☑Y☒N ?)
Infobox references

Zinc nitride (Zn3N2) is an inorganic compound of zinc and nitrogen, usually obtained as (blue)grey crystals. It is a semiconductor. In pure form, it has the anti-bixbyite structure.

Chemical properties

Zinc nitride can be obtained by thermally decomposing zincamide (zinc diamine)[3] in an anaerobic environment, at temperatures in excess of 200 °C. The by-product of the reaction is ammonia.[4]

3Zn(NH2)2 → Zn3N2 + 4NH3

It can also be formed by heating zinc to 600 °C in a current of ammonia; the by-product is hydrogen gas.[3][5]

3Zn + 2NH3 → Zn3N2 + 3H2

The decomposition of Zinc Nitride into the elements at the same temperature is a competing reaction.[6] At 700 °C Zinc Nitride decomposes.[1] It has also been made by producing an electric discharge between zinc electrodes in a nitrogen atmosphere.[6][7] Thin films have been produced by chemical vapour deposition of Bis(bis(trimethylsilyl)amido]zinc with ammonia gas onto silica or ZnO coated alumina at 275 to 410 °C.[8]

The crystal structure is anti-isomorphous with Manganese(III) oxide. (bixbyite).[2][7] The heat of formation is c. 24 kilocalories (100 kJ) per mol.[7] It is a semiconductor with a reported bandgap of c. 3.2eV,[9] however, a thin zinc nitride film prepared by electrolysis of molten salt mixture containing Li3N with a zinc electrode showed a band-gap of 1.01 eV.[10]

Zinc nitride reacts violently with water to form ammonia and zinc oxide.[3][4]

Zn3N2 + 3H2O → 3ZnO + 2NH3

Zinc nitride reacts with lithium (produced in an electrochemical cell) by insertion. The initial reaction is the irreversible conversion into LiZn in a matrix of beta-Li3N. These products then can be converted reversibly and electrochemically into LiZnN and metallic Zn.[11][12]

See also

References

  1. 1.0 1.1 1.2 1.3 CRC Handbook of Chemistry and Physics (96 ed.), §4-100 Physical Constants of Inorganic Compounds 
  2. 2.0 2.1 Partin, D. E.; Williams, D. J.; O'Keeffe, M. (1997). "The Crystal Structures of Mg3N2 and Zn3N2". Journal of Solid State Chemistry 132 (1): 56–59. doi:10.1006/jssc.1997.7407. Bibcode1997JSSCh.132...56P. 
  3. 3.0 3.1 3.2 Roscoe, H. E.; Schorlemmer, C. (1907). A Treatise on Chemistry: Volume II, The Metals (4th ed.). London: Macmillan. pp. 650–651. https://books.google.com/books?id=-K0EAAAAYAAJ&pg=PA650. Retrieved 2007-11-01. 
  4. 4.0 4.1 Bloxam, C. L. (1903). Chemistry, Inorganic and Organic (9th ed.). Philadelphia: P. Blakiston's Son & Co.. p. 380. https://archive.org/details/chemistryinorga02bloxgoog. Retrieved 2007-10-31. 
  5. Lowry, M. T. (1922). Inorganic Chemistry. Macmillan. p. 872. https://books.google.com/books?id=umQ6AAAAMAAJ&q=%22zinc+nitride%22. Retrieved 2007-11-01. 
  6. 6.0 6.1 Maxtead, E.B. (1921), Ammonia and the Nitrides, pp. 69–20 
  7. 7.0 7.1 7.2 Mellor, J.W. (1964), A Comprehensive Treatise on Inorganic and Theoretical Chemistry, 8, Part 1, pp. 160–161 
  8. Maile, E.; Fischer, R. A. (Oct 2005), "MOCVD of the Cubic Zinc Nitride Phase, Zn3N2, Using Zn[N(SiMe3)2]2 and Ammonia as Precursors", Chemical Vapor Deposition 11 (10): 409–414, doi:10.1002/cvde.200506383 
  9. Ebru, S.T.; Ramazan, E.; Hamide, K. (2007), "Structural and Optical Properties of Zinc Nitride Films Prepared by Pulsed Filtered Cathodic Vacuum Arc Deposition", Chin. Phys. Lett. 24 (12): 3477, doi:10.1088/0256-307x/24/12/051, Bibcode2007ChPhL..24.3477S, http://cpl.iphy.ac.cn/fileup/PDF/2007-1061.pdf 
  10. Toyoura, Kazuaki; Tsujimura, Hiroyuki; Goto, Takuya; Hachiya, Kan; Hagiwara, Rika; Ito, Yasuhiko (2005), "Optical properties of zinc nitride formed by molten salt electrochemical process", Thin Solid Films 492 (1–2): 88–92, doi:10.1016/j.tsf.2005.06.057, Bibcode2005TSF...492...88T 
  11. Amatucci, G. G.; Pereira, N. (2004). "Nitride and Silicide Negative Electrodes". Lithium Batteries: Science and Technology. Kluwer Academic Publishers. p. 256. ISBN 978-1-4020-7628-2. https://books.google.com/books?id=k4duxuea3eIC&pg=PA256. Retrieved 2007-11-01. 
  12. Pereiraa, N.; Klein, L.C.; Amatuccia, G.G. (2002), "The Electrochemistry of Zn3 N 2 and LiZnN - A Lithium Reaction Mechanism for Metal Nitride Electrodes", Journal of the Electrochemical Society 149 (3): A262, doi:10.1149/1.1446079, Bibcode2002JElS..149A.262P 

Further reading

External links

Salts and covalent derivatives of the nitride ion
NH3 He(N2)11
Li3N Be3N2 BN β-C3N4
g-C3N4
N2 NxOy NF3 Ne
Na3N Mg3N2 AlN Si3N4 PN
P3N5
SxNy
SN
S4N4
NCl3 Ar
K3N Ca3N2 ScN TiN VN CrN
Cr2N
MnxNy FexNy CoN Ni3N CuN Zn3N2 GaN Ge3N4 As Se NBr3 Kr
Rb3N Sr3N2 YN ZrN NbN β-Mo2N Tc Ru Rh PdN Ag3N CdN InN Sn Sb Te NI3 Xe
Cs3N Ba3N2   Hf3N4 TaN WN Re Os Ir Pt Au Hg3N2 TlN Pb BiN Po At Rn
Fr3N Ra3N   Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
La CeN Pr Nd Pm Sm Eu GdN Tb Dy Ho Er Tm Yb Lu
Ac Th Pa UN Np Pu Am Cm Bk Cf Es Fm Md No Lr