Chemistry:Indium nitride

From HandWiki
Indium nitride
Wurtzite polyhedra.png
Names
Other names
Indium(III) nitride
Identifiers
3D model (JSmol)
ChemSpider
UNII
Properties
InN
Molar mass 128.83 g/mol
Appearance black powder
Density 6.81 g/cm3
Melting point 1,100 °C (2,010 °F; 1,370 K)
hydrolysis
Band gap 0.65 eV (300 K)
Electron mobility 3200 cm2/(V.s) (300 K)
Thermal conductivity 45 W/(m.K) (300 K)
2.9
Structure
Wurtzite (hexagonal)
C46v-P63mc
a = 354.5 pm, c = 570.3 pm [1]
Tetrahedral
Hazards
Main hazards Irritant, hydrolysis to ammonia
Safety data sheet External SDS
Related compounds
Other anions
Indium phosphide
Indium arsenide
Indium antimonide
Other cations
Boron nitride
Aluminium nitride
Gallium nitride
Related compounds
Indium gallium nitride
Indium gallium aluminium nitride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☑Y verify (what is ☑Y☒N ?)
Infobox references

Indium nitride (InN) is a small bandgap semiconductor material which has potential application in solar cells[2] and high speed electronics.[3][4]

The bandgap of InN has now been established as ~0.7 eV depending on temperature[5] (the obsolete value is 1.97 eV). The effective electron mass has been recently determined by high magnetic field measurements,[6][7] m* =0.055 m0.

Alloyed with GaN, the ternary system InGaN has a direct bandgap span from the infrared (0.69 eV) to the ultraviolet (3.4 eV).

Currently there is research into developing solar cells using the nitride based semiconductors. Using one or more alloys of indium gallium nitride (InGaN), an optical match to the solar spectrum can be achieved.[citation needed] The bandgap of InN allows a wavelengths as long as 1900 nm to be utilized. However, there are many difficulties to be overcome if such solar cells are to become a commercial reality: p-type doping of InN and indium-rich InGaN is one of the biggest challenges. Heteroepitaxial growth of InN with other nitrides (GaN, AlN) has proved to be difficult.

Thin layers of InN can be grown using metalorganic chemical vapour deposition (MOCVD).[8]

Superconductivity

Thin polycrystalline films of indium nitride can be highly conductive and even superconductive at liquid helium temperatures. The superconducting transition temperature Tc depends on each sample's film structure and carrier density and varies from 0 K to about 3 K.[8][9] With magnesium doping the Tc can be 3.97 K.[9] The superconductivity persists under high magnetic field (few teslas), that differs from superconductivity in In metal which is quenched by fields of only 0.03 tesla. Nevertheless, the superconductivity is attributed to metallic indium chains[8] or nanoclusters, where the small size increases the critical magnetic field according to the Ginzburg–Landau theory.[10]

See also

References

  1. Pichugin, I. G.; Tlachala, M. (1978). "Rentgenovsky analiz nitrida indiya" (in Russian). Izvestiya Akademii Nauk SSSR: Neorganicheskie Materialy 14 (1): 175–176. 
  2. Nanishi, Y.; Araki, T.; Yamaguchi, T. (2010). "Molecular-beam epitaxy of InN". in Veal, T. D.; McConville, C. F.; Schaff, W. J.. Indium Nitride and Related Alloys. CRC Press. p. 31. ISBN 978-1-138-11672-6. 
  3. Yim, J. W. L.; Wu, J. (2010). "Optical properties of InN and related alloys". in Veal, T. D.; McConville, C. F.; Schaff, W. J.. Indium Nitride and Related Alloys. CRC Press. p. 266. ISBN 978-1-138-11672-6. 
  4. Christen, Jürgen; Gil, Bernard (2014). "Group III nitrides". Physica Status Solidi C 11 (2): 238. doi:10.1002/pssc.201470041. Bibcode2014PSSCR..11..238C. 
  5. Monemar, B.; Paskov, P. P.; Kasic, A. (2005-07-01). "Optical properties of InN—the bandgap question" (in en). Superlattices and Microstructures 38 (1): 38–56. doi:10.1016/j.spmi.2005.04.006. ISSN 0749-6036. Bibcode2005SuMi...38...38M. https://www.sciencedirect.com/science/article/pii/S0749603605000558. 
  6. Goiran, Michel; Millot, Marius; Poumirol, Jean-Marie; Gherasoiu, Iulian et al. (2010). "Electron cyclotron effective mass in indium nitride". Applied Physics Letters 96 (5): 052117. doi:10.1063/1.3304169. Bibcode2010ApPhL..96e2117G. 
  7. Millot, Marius; Ubrig, Nicolas; Poumirol, Jean-Marie; Gherasoiu, Iulian et al. (2011). "Determination of effective mass in InN by high-field oscillatory magnetoabsorption spectroscopy". Physical Review B 83 (12): 125204. doi:10.1103/PhysRevB.83.125204. Bibcode2011PhRvB..83l5204M. 
  8. 8.0 8.1 8.2 Inushima, Takashi (2006). "Electronic structure of superconducting InN". Science and Technology of Advanced Materials 7 (S1): S112–S116. doi:10.1016/j.stam.2006.06.004. Bibcode2006STAdM...7S.112I. 
  9. 9.0 9.1 Tiras, E.; Gunes, M.; Balkan, N.; Airey, R. et al. (2009). "Superconductivity in heavily compensated Mg-doped InN". Applied Physics Letters 94 (14): 142108. doi:10.1063/1.3116120. Bibcode2009ApPhL..94n2108T. https://repository.essex.ac.uk/2240/1/063_1.pdf. 
  10. Komissarova, T. A.; Parfeniev, R. V.; Ivanov, S. V. (2009). "Comment on 'Superconductivity in heavily compensated Mg-doped InN' [Appl. Phys. Lett. 94, 142108 (2009)]". Applied Physics Letters 95 (8): 086101. doi:10.1063/1.3212864. Bibcode2009ApPhL..95h6101K. 

External links

Salts and covalent derivatives of the nitride ion
NH3 He(N2)11
Li3N Be3N2 BN β-C3N4
g-C3N4
N2 NxOy NF3 Ne
Na3N Mg3N2 AlN Si3N4 PN
P3N5
SxNy
SN
S4N4
NCl3 Ar
K3N Ca3N2 ScN TiN VN CrN
Cr2N
MnxNy FexNy CoN Ni3N CuN Zn3N2 GaN Ge3N4 As Se NBr3 Kr
Rb3N Sr3N2 YN ZrN NbN β-Mo2N Tc Ru Rh PdN Ag3N CdN InN Sn Sb Te NI3 Xe
Cs3N Ba3N2   Hf3N4 TaN WN Re Os Ir Pt Au Hg3N2 TlN Pb BiN Po At Rn
Fr3N Ra3N   Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
La CeN Pr Nd Pm Sm Eu GdN Tb Dy Ho Er Tm Yb Lu
Ac Th Pa UN Np Pu Am Cm Bk Cf Es Fm Md No Lr