Astronomy:HD 168009

From HandWiki
Short description: High proper motion star
HD 168009
Observation data
Equinox J2000.0]] (ICRS)
Constellation Lyra[1]
Right ascension  18h 15m 32.463s[2]
Declination +45° 12′ 33.54″[2]
Apparent magnitude (V) 6.307[3]
Characteristics
Spectral type G1 V[4]
U−B color index 0.115[3]
B−V color index 0.635[3]
Astrometry
Radial velocity (Rv)−64.9±0.1[5] km/s
Proper motion (μ) RA: −77.290±0.018[2] mas/yr
Dec.: −114.748±0.019[2] mas/yr
Parallax (π)42.9348 ± 0.0158[2] mas
Distance75.97 ± 0.03 ly
(23.291 ± 0.009 pc)
Absolute magnitude (MV)4.52[3][6]
Absolute bolometric
magnitude
 (Mbol)
4.39±0.06[7]
Details[5]
Mass0.99 M
Radius1.14±0.04[7] R
Luminosity1.43[8] L
Surface gravity (log g)4.31 cgs
Temperature5,792±80 K
Metallicity [Fe/H]−0.02 dex
Rotation5.985±0.019 d[9]
Rotational velocity (v sin i)3[6] km/s
Age8.1 Gyr
Other designations
BD+45°2684, GJ 708.4, HD 168009, HIP 89474, HR 6847, SAO 47343, 2MASS J18153245+4512333[10]
Database references
SIMBADdata

HD 168009 is a star in the northern constellation of Lyra. It has an apparent visual magnitude of 6.3,[3] placing it just above to below the normal limit of stars visible to the naked eye under good viewing conditions of 6-6.5. An annual parallax shift of 42.93 mas provides a distance estimate of 76 light years. It is moving closer to the Sun with a heliocentric radial velocity of −65 km/s.[5] In about 328,000 years from now, the star will make its closest approach at a distance of around 17 ly (5.1 pc).[11]

This is a solar analog,[3] which means its measured properties are similar to those of the Sun. However, it is much older than the Sun with an estimated age of around 8.1 billion years.[5] The spectrum matches a stellar classification of G1 V,[4] indicating this is an ordinary G-type main-sequence star that is generating energy through hydrogen fusion at its core. The level of chromospheric activity is low, making it a candidate for a Maunder minimum event.[5]

HD 168009 has about the same mass as the Sun, but is 14% larger in radius.[7] It has a similar metallicity to the Sun – what astronomers term the abundance of elements other than hydrogen and helium – and is spinning with a rotation period of six days.[9] The star is radiating 1.43[8] times the Sun's luminosity from its photosphere at an effective temperature of 5,792 K.[5] It has been examined for an infrared excess that may indicate the presence of a circumstellar disk of dust, but no statistically significant excess was detected.[12][13]

Planetary system

In 2020, a candidate exoplanet was detected orbiting this star. With a minimum mass of 0.03 ||J}}}}}} (9.5 M) and an orbital period of 15 days, this would most likely be a hot mini-Neptune.[14] The planet existence was confirmed in 2021.[15]

The HD 168009 planetary system[14][15]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b ≥0.0300+0.0038−0.0037 MJ 0.1192+0.0017−0.0018 15.1479+0.0035−0.0037 0.121+0.110−0.082

References

  1. Roman, Nancy G. (1987). "Identification of a constellation from a position". Publications of the Astronomical Society of the Pacific 99 (617): 695. doi:10.1086/132034. Bibcode1987PASP...99..695R.  Constellation record for this object at VizieR.
  2. 2.0 2.1 2.2 2.3 Brown, A. G. A. (2021). "Gaia Early Data Release 3: Summary of the contents and survey properties". Astronomy & Astrophysics 649: A1. doi:10.1051/0004-6361/202039657. Bibcode2021A&A...649A...1G.  Gaia EDR3 record for this source at VizieR.
  3. 3.0 3.1 3.2 3.3 3.4 3.5 Soubiran, C.; Triaud, A. (May 2004), "The Top Ten solar analogs in the ELODIE library", Astronomy and Astrophysics 418 (3): 1089−1100, doi:10.1051/0004-6361:20035708, Bibcode2004A&A...418.1089S. 
  4. 4.0 4.1 Mahdi, D. et al. (March 2016), "Solar twins in the ELODIE archive", Astronomy & Astrophysics 587: 9, doi:10.1051/0004-6361/201527472, A131, Bibcode2016A&A...587A.131M. 
  5. 5.0 5.1 5.2 5.3 5.4 5.5 Lubin, Dan et al. (March 2012), "Frequency of Maunder Minimum Events in Solar-type Stars Inferred from Activity and Metallicity Observations", The Astrophysical Journal Letters 747 (2): 6, doi:10.1088/2041-8205/747/2/L32, L32, Bibcode2012ApJ...747L..32L. 
  6. 6.0 6.1 Takeda, Yoichi et al. (February 2005), "High-Dispersion Spectra Collection of Nearby F--K Stars at Okayama Astrophysical Observatory: A Basis for Spectroscopic Abundance Standards", Publications of the Astronomical Society of Japan 57 (1): 13–25, doi:10.1093/pasj/57.1.13, Bibcode2005PASJ...57...13T. 
  7. 7.0 7.1 7.2 Fuhrmann, Klaus (July 2011), "Nearby stars of the Galactic disc and halo - V", Monthly Notices of the Royal Astronomical Society 414 (4): 2893−2922, doi:10.1111/j.1365-2966.2011.18476.x, Bibcode2011MNRAS.414.2893F. 
  8. 8.0 8.1 McDonald, I. et al. (2012), "Fundamental parameters and infrared excesses of Hipparcos stars", Monthly Notices of the Royal Astronomical Society 427 (1): 343–357, doi:10.1111/j.1365-2966.2012.21873.x, Bibcode2012MNRAS.427..343M. 
  9. 9.0 9.1 Hempelmann, A. et al. (February 2016), "Measuring rotation periods of solar-like stars using TIGRE. A study of periodic CaII H+K S-index variability", Astronomy & Astrophysics 586: 19, doi:10.1051/0004-6361/201526972, A14, Bibcode2016A&A...586A..14H. 
  10. "HD 168009". SIMBAD. Centre de données astronomiques de Strasbourg. http://simbad.u-strasbg.fr/simbad/sim-basic?Ident=HD+168009. 
  11. Bailer-Jones, C. A. L. (March 2015), "Close encounters of the stellar kind", Astronomy & Astrophysics 575: 13, doi:10.1051/0004-6361/201425221, A35, Bibcode2015A&A...575A..35B. 
  12. Sierchio, J. M. et al. (April 2014), "The Decay of Debris Disks around Solar-type Stars", The Astrophysical Journal 785 (1): 13, doi:10.1088/0004-637X/785/1/33, 33, Bibcode2014ApJ...785...33S. 
  13. Ballering, Nicholas P. et al. (September 2013), "A Trend between Cold Debris Disk Temperature and Stellar Type: Implications for the Formation and Evolution of Wide-orbit Planets", The Astrophysical Journal 775 (1): 14, doi:10.1088/0004-637X/775/1/55, 55, Bibcode2013ApJ...775...55B. 
  14. 14.0 14.1 Hirsch, Lea A. et al. (December 2020), "Understanding the Impacts of Stellar Companions on Planet Formation and Evolution: A Survey of Stellar and Planetary Companions within 25 pc", The Astronomical Journal 161 (3): 134, doi:10.3847/1538-3881/abd639, Bibcode2021AJ....161..134H. 
  15. 15.0 15.1 Rosenthal, Lee J. et al. (2021), "The California Legacy Survey. I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades", The Astrophysical Journal Supplement Series 255 (1): 8, doi:10.3847/1538-4365/abe23c, Bibcode2021ApJS..255....8R