Astronomy:Kepler-13
Observation data {{#ifeq:J2000|J2000.0 (ICRS)|Epoch J2000.0 Equinox J2000.0 (ICRS)| Epoch J2000 [[Astronomy:Equinox (celestial coordinates)|Equinox J2000}} | |
---|---|
Constellation | Lyra[1] |
Kepler-13 A | |
Right ascension | 19h 07m 53.1397s[2] |
Declination | 46° 52′ 05.922″[2] |
Apparent magnitude (V) | 9.95[3] |
Kepler-13 B | |
Right ascension | 19h 07m 53.0281s[4] |
Declination | 46° 52′ 06.126″[4] |
Apparent magnitude (V) | 10.33[5] |
Characteristics | |
Spectral type | A0 |
Astrometry | |
Kepler-13 A | |
Proper motion (μ) | RA: −4.411(42)[2] mas/yr Dec.: −15.220(50)[2] mas/yr |
Parallax (π) | 2.0319 ± 0.0344[2] mas |
Distance | 1,610 ± 30 ly (492 ± 8 pc) |
Kepler-13 B | |
Proper motion (μ) | RA: −4.060(33) mas/yr Dec.: −15.512(40) mas/yr |
Parallax (π) | 2.0912 ± 0.0263[4] mas |
Distance | 1,560 ± 20 ly (478 ± 6 pc) |
Details[6] | |
Kepler-13A | |
Mass | 1.72±0.10 M☉ |
Radius | 1.71±0.04 R☉ |
Surface gravity (log g) | 4.2±0.5 cgs |
Temperature | 7650±250 K |
Metallicity [Fe/H] | 0.2±0.2 dex |
Rotational velocity (v sin i) | 78±15 km/s |
Age | 0.5±0.1 Gyr |
Kepler-13B | |
Mass | 1.68±0.10 M☉ |
Radius | 1.68±0.04 R☉ |
Surface gravity (log g) | 4.2±0.5 cgs |
Temperature | 7530±250 K |
Metallicity [Fe/H] | 0.2±0.2 dex |
Rotational velocity (v sin i) | 69±13 km/s |
Age | 0.5±0.1 Gyr |
Other designations | |
Database references | |
SIMBAD | data |
Kepler-13 or KOI-13 is a stellar triple star system consisting of Kepler-13A, around which an orbiting hot Jupiter exoplanet was discovered with the Kepler spacecraft in 2011, and Kepler-13B a common proper motion companion star which has an additional star orbiting it.[7]
Stellar system
The multiple nature of the system was discovered in 1904 by Robert Grant Aitken at Lick Observatory. He measured a separation between the A and B components of approximately one arc second and position angle of 281.3° with the 36" James Lick telescope.[8] The position of the two visual components of the system relative to each other has remained constant since 1904.[9] Radial velocity measurements taken with the SOPHIE échelle spectrograph at the Haute-Provence Observatory revealed an additional companion orbiting Kepler-13B. This companion has a mass of between 0.4 and 1 times that of the Sun and orbits with a period of 65.831 days with an eccentricity of 0.52[7]
Planetary system
Kepler-13 was identified as one of 1235 planetary candidates with transit-like signatures in the first four months of Kepler data.[10] It was confirmed as a planet by measuring the Doppler beaming effect on the Kepler light curve.[11] The planet that has been confirmed, having a radius of between 1.5 and 2.6 RJ, is also one of the largest known exoplanets.
The planet is likely to be tidally locked to the parent star. In 2015, the planetary nightside temperature was estimated to be equal to 2394±251 K.[12]
The study in 2012, utilizing a Rossiter–McLaughlin effect, have determined the planetary orbit is mildly misaligned with the equatorial plane of the star, misalignment equal to 24±4°.[13]
The planetary transits are changing in duration over time which is likely caused by the interaction of the planet with its host star.[14][15]
In 2017, it was revealed that titanium monoxide molecules in the dayside might be carried to the nightside of the planet, where they form clouds and precipitate.[16]
Companion (in order from star) |
Mass | Semimajor axis (AU) |
Orbital period (days) |
Eccentricity | Inclination | Radius |
---|---|---|---|---|---|---|
b | 9.28(16) MJ | 0.03641(87) | 1.763588(1) | 0.00064+0.00012 −0.00016 |
86.770+0.048 −0.052° |
2.216(87) RJ |
References
- ↑ Roman, Nancy G. (1987). "Identification of a Constellation From a Position". Publications of the Astronomical Society of the Pacific 99 (617): 695–699. doi:10.1086/132034. Bibcode: 1987PASP...99..695R. Vizier query form
- ↑ Jump up to: 2.0 2.1 2.2 2.3 Vallenari, A. et al. (2022). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy & Astrophysics. doi:10.1051/0004-6361/202243940 Gaia DR3 record for this source at VizieR.
- ↑ Jump up to: 3.0 3.1 "Kepler-13". SIMBAD. Centre de données astronomiques de Strasbourg. http://simbad.u-strasbg.fr/simbad/sim-basic?Ident=Kepler-13.
- ↑ Jump up to: 4.0 4.1 4.2 Vallenari, A. et al. (2022). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy & Astrophysics. doi:10.1051/0004-6361/202243940 Gaia DR3 record for this source at VizieR.
- ↑ Howarth, Ian D.; Morello, Giuseppe (2017). "Rapid rotators revisited: Absolute dimensions of KOI-13". Monthly Notices of the Royal Astronomical Society 470 (1): 932–939. doi:10.1093/mnras/stx1260. Bibcode: 2017MNRAS.470..932H.
- ↑ Shporer, Avi et al. (2014). "Atmospheric Characterization of the Hot Jupiter Kepler-13Ab". The Astrophysical Journal 788 (1): 92. doi:10.1088/0004-637X/788/1/92. Bibcode: 2014ApJ...788...92S.
- ↑ Jump up to: 7.0 7.1 Santerne, A. et al. (2012). "SOPHIE velocimetry of Kepler transit candidates. VI. An additional companion in the KOI-13 system". Astronomy and Astrophysics 544: L12. doi:10.1051/0004-6361/201219899. Bibcode: 2012A&A...544L..12S.
- ↑ Aitken, Robert Grant (1904). "Measures of one hundred fifty-five new double stars". Lick Observatory Bulletin 3: 6–18. doi:10.5479/ADS/bib/1904LicOB.3.6A. Bibcode: 1904LicOB...3....6A.
- ↑ Szabó, Gy. M. et al. (2011). "Asymmetric Transit Curves As Indication of Orbital Obliquity: Clues from the Late-Type Dwarf Companion in Koi-13". The Astrophysical Journal Letters 736 (1): L4. doi:10.1088/2041-8205/736/1/L4. Bibcode: 2011ApJ...736L...4S.
- ↑ Borucki, William J. et al. (2011). "Characteristics of Planetary Candidates Observed by Kepler. II. Analysis of the First Four Months of Data". The Astrophysical Journal 736 (1): 19. doi:10.1088/0004-637X/736/1/19. Bibcode: 2011ApJ...736...19B.
- ↑ Shporer, Avi et al. (2011). "Detection of Koi-13.01 Using the Photometric Orbit". The Astronomical Journal 142 (6): 195. doi:10.1088/0004-6256/142/6/195. Bibcode: 2011AJ....142..195S.
- ↑ Angerhausen, Daniel et al. (2015). "A Comprehensive Study of Kepler Phase Curves and Secondary Eclipses: Temperatures and Albedos of Confirmed Kepler Giant Planets". Publications of the Astronomical Society of the Pacific 127 (957): 1113–1130. doi:10.1086/683797. Bibcode: 2015PASP..127.1113A.
- ↑ Albrecht, Simon et al. (2012). "Obliquities of Hot Jupiter host stars: Evidence for tidal interactions and primordial misalignments". The Astrophysical Journal 757 (1). doi:10.1088/0004-637X/757/1/18. Bibcode: 2012ApJ...757...18A.
- ↑ Szabó, Gy. M. et al. (2011). "Spin-orbit resonance, transit duration variation and possible secular perturbations in KOI-13". MNRAS 421 (1): L122. doi:10.1111/j.1745-3933.2012.01219.x. Bibcode: 2012MNRAS.421L.122S.
- ↑ Shahaf, Sahar et al. (12 May 2021). "Systematic search for long-term transit duration changes in Kepler transiting planets". Monthly Notices of the Royal Astronomical Society 505 (1): 1293–1310. doi:10.1093/mnras/stab1359. Bibcode: 2021MNRAS.505.1293S.
- ↑ "Hubble Observes Exoplanet that Snows Sunscreen - NASA Science" (in en). https://science.nasa.gov/missions/hubble/hubble-observes-exoplanet-that-snows-sunscreen/.
- ↑ Esteves, Lisa J.; Mooij, Ernst J. W. De; Jayawardhana, Ray (2015). "Changing Phases of Alien Worlds: Probing Atmospheres Of Kepler planets with High-Precision Photometry". The Astrophysical Journal 804 (2): 150. doi:10.1088/0004-637X/804/2/150. Bibcode: 2015ApJ...804..150E.
Coordinates: 19h 07m 33.107s, +46° 52′ 5.95″
Original source: https://en.wikipedia.org/wiki/Kepler-13.
Read more |