Biology:Composition of the human body
Body composition may be analyzed in various ways. This can be done in terms of the chemical elements present, or by molecular structure e.g., water, protein, fats (or lipids), hydroxylapatite (in bones), carbohydrates (such as glycogen and glucose) and DNA. In terms of tissue type, the body may be analyzed into water, fat, connective tissue, muscle, bone, etc. In terms of cell type, the body contains hundreds of different types of cells, but notably, the largest number of cells contained in a human body (though not the largest mass of cells) are not human cells, but bacteria residing in the normal human gastrointestinal tract.
Elements
Element | Symbol | percent mass |
percent atoms | |
---|---|---|---|---|
Oxygen | O | 65.0 | 24.0 | |
Carbon | C | 18.5 | 12.0 | |
Hydrogen | H | 9.5 | 62.0 | |
Nitrogen | N | 3.2 | 1.1 | |
Calcium | Ca | 1.5 | 0.22 | |
Phosphorus | P | 1.0 | 0.22 | |
Potassium | K | 0.4 | 0.03 | |
Sulfur | S | 0.3 | 0.038 | |
Sodium | Na | 0.2 | 0.037 | |
Chlorine | Cl | 0.2 | 0.024 | |
Magnesium | Mg | 0.1 | 0.015 | |
All others | < 0.1 | < 0.3 |
About 99% of the mass of the human body is made up of six elements: oxygen, carbon, hydrogen, nitrogen, calcium, and phosphorus. Only about 0.85% is composed of another five elements: potassium, sulfur, sodium, chlorine, and magnesium. All 11 are necessary for life. The remaining elements are trace elements, of which more than a dozen are thought on the basis of good evidence to be necessary for life.[1] All of the mass of the trace elements put together (less than 10 grams for a human body) do not add up to the body mass of magnesium, the least common of the 11 non-trace elements.
Other elements
Not all elements which are found in the human body in trace quantities play a role in life. Some of these elements are thought to be simple common contaminants without function (examples: caesium, titanium), while many others are thought to be active toxins, depending on amount (cadmium, mercury, lead, radioactives). In humans, arsenic is toxic, and its levels in foods and dietary supplements are closely monitored to reduce or eliminate its intake.[2]
Some elements (silicon, boron, nickel, vanadium) are probably needed by mammals also, but in far smaller doses. Bromine is used by some (though not all) bacteria, fungi, diatoms, and seaweeds, and opportunistically in eosinophils in humans. One study has indicated bromine to be necessary to collagen IV synthesis in humans.[3] Fluorine is used by a number of plants to manufacture toxins but only functions in humans as a local topical hardening agent in tooth enamel.[4]
Elemental composition list
The average 70 kg (150 lb) adult human body contains approximately 7×1027 atoms and contains at least detectable traces of 60 chemical elements.[5] About 29 of these elements are thought to play an active positive role in life and health in humans.[6]
The relative amounts of each element vary by individual, mainly due to differences in the proportion of fat, muscle and bone in their body. Persons with more fat will have a higher proportion of carbon and a lower proportion of most other elements (the proportion of hydrogen will be about the same). The numbers in the table are averages of different numbers reported by different references.
The adult human body averages ~53% water.[7] This varies substantially by age, sex, and adiposity. In a large sample of adults of all ages and both sexes, the figure for water fraction by weight was found to be 48 ±6% for females and 58 ±8% water for males.[8] Water is ~11% hydrogen by mass but ~67% hydrogen by atomic percent, and these numbers along with the complementary % numbers for oxygen in water, are the largest contributors to overall mass and atomic composition figures. Because of water content, the human body contains more oxygen by mass than any other element, but more hydrogen by atom-fraction than any element.
The elements listed below as "Essential in humans" are those listed by the US Food and Drug Administration as essential nutrients,[9] as well as six additional elements: oxygen, carbon, hydrogen, and nitrogen (the fundamental building blocks of life on Earth), sulfur (essential to all cells) and cobalt (a necessary component of vitamin B12). Elements listed as "Possibly" or "Probably" essential are those cited by the US National Research Council as beneficial to human health and possibly or probably essential.[10]
Atomic number | Element | Fraction of mass [11][12][13][14][15]Cite error: Closing </ref> missing for <ref> tag |
Reactive oxygen species | 16 | |||
---|---|---|---|---|---|---|---|
6 | Carbon | 0.18 | 13 | 12 | Yes[16] (organic compounds) | 14 | |
1 | Hydrogen | 0.10 | 7 | 62 | Yes[16] (e.g. water) | Acidosis | 1 |
7 | Nitrogen | 0.03 | 1.8 | 1.1 | Yes[16] (e.g. DNA and amino acids) | 15 | |
20 | Calcium | 0.014 | 1.0 | 0.22 | Yes[16][17][18] (e.g. Calmodulin and Hydroxylapatite in bones) | Hypercalcaemia | 2 |
15 | Phosphorus | 0.011 | 0.78 | 0.22 | Yes[16][17][18] (e.g. DNA, Phospholipids and Phosphorylation) | Hyperphosphatemia | 15 |
19 | Potassium | 2.0×10−3 | 0.14 | 0.033 | Yes[16][17] (e.g. Na+/K+-ATPase) | Hyperkalemia | 1 |
16 | Sulfur | 2.5×10−3 | 0.14 | 0.038 | Yes[16] (e.g. Cysteine, Methionine, Biotin, Thiamine) | Sulfhemoglobinemia | 16 |
11 | Sodium | 1.5×10−3 | 0.10 | 0.037 | Yes[17] (e.g. Na+/K+-ATPase) | Hypernatremia | 1 |
17 | Chlorine | 1.5×10−3 | 0.095 | 0.024 | Yes[17][18] (e.g. Cl-transporting ATPase) | Hyperchloremia | 17 |
12 | Magnesium | 500×10−6 | 0.019 | 0.0070 | Yes[17][18] (e.g. binding to ATP and other nucleotides) | Hypermagnesemia | 2 |
26 | Iron* | 60×10−6 | 0.0042 | 0.00067 | Yes[17][18] (e.g. Hemoglobin, Cytochromes) | Iron overload | 8 |
9 | Fluorine | 37×10−6 | 0.0026 | 0.0012 | Yes (Australia , NZ),[19] No (United States of America , EU),[20][21] Maybe (WHO)[22] | Fluorine: Highly toxic
Fluoride: Toxic in high amounts |
17 |
30 | Zinc | 32×10−6 | 0.0023 | 0.00031 | Yes[17][18] (e.g. Zinc finger proteins) | Zinc toxicity | 12 |
14 | Silicon | 20×10−6 | 0.0010 | 0.0058 | Probably[23] | 14 | |
31 | Gallium | 4.9×10−6 | 0.0007 | 0.00093 | No | Gallium halide poisoning[24] | 13 |
37 | Rubidium | 4.6×10−6 | 0.00068 | 0.000033 | No | Potassium replacement | 1 |
38 | Strontium | 4.6×10−6 | 0.00032 | 0.000033 | No | Calcium replacement | 2 |
35 | Bromine | 2.9×10−6 | 0.00026 | 0.000030 | Maybe[25] | Bromism | 17 |
82 | Lead | 1.7×10−6 | 0.00012 | 0.0000045 | No | Lead poisoning | 14 |
29 | Copper | 1×10−6 | 0.000072 | 0.0000104 | Yes[17][18] (e.g. copper proteins) | Copper toxicity | 11 |
13 | Aluminium | 870×10−9 | 0.000060 | 0.000015 | No | Aluminium poisoning | 13 |
48 | Cadmium | 720×10−9 | 0.000050 | 0.0000045 | No | Cadmium poisoning | 12 |
58 | Cerium | 570×10−9 | 0.000040 | No | |||
56 | Barium | 310×10−9 | 0.000022 | 0.0000012 | No | toxic in higher amounts | 2 |
50 | Tin | 240×10−9 | 0.000020 | 6.0×10−7 | Maybe[26] | 14 | |
53 | Iodine | 160×10−9 | 0.000020 | 7.5×10−7 | Yes[17][18] (e.g. thyroxine, triiodothyronine) | Iodine-induced hyperthyroidism | 17 |
22 | Titanium | 130×10−9 | 0.000020 | No | 4 | ||
5 | Boron | 690×10−9 | 0.000018 | 0.0000030 | Probably[10][27] | 13 | |
34 | Selenium | 190×10−9 | 0.000015 | 4.5×10−8 | Yes[17][18] (e.g. selenocysteine) | Selenium toxicity | 16 |
28 | Nickel | 140×10−9 | 0.000015 | 0.0000015 | Maybe[26] | Nickel Toxicity | 10 |
24 | Chromium | 24×10−9 | 0.000014 | 8.9×10−8 | Maybe[26][17][18] | 6 | |
25 | Manganese | 170×10−9 | 0.000012 | 0.0000015 | Yes[17][18] (e.g. Mn-SOD) | Manganism | 7 |
33 | Arsenic | 260×10−9 | 0.000007 | 8.9×10−8 | Maybe[26][2] | Arsenic poisoning | 15 |
3 | Lithium | 31×10−9 | 0.000007 | 0.0000015 | Possibly (intercorrelated with the functions of several enzymes, hormones and vitamins) | Lithium toxicity | 1 |
80 | Mercury | 190×10−9 | 0.000006 | 8.9×10−8 | No | Mercury poisoning | 12 |
55 | Caesium | 21×10−9 | 0.000006 | 1.0×10−7 | No | 1 | |
42 | Molybdenum | 130×10−9 | 0.000005 | 4.5×10−8 | Yes[17][18] (e.g. the molybdenum oxotransferases, Xanthine oxidase and Sulfite oxidase) | 6 | |
32 | Germanium | 5×10−6 | No | 14 | |||
27 | Cobalt | 21×10−9 | 0.000003 | 3.0×10−7 | Yes (e.g. Cobalamin/Vitamin B12)[28][29] | 9 | |
44 | Ruthenium | 22×10−9 | 0.000007 | No [30] | 8 | ||
51 | Antimony | 110×10−9 | 0.000002 | No | toxic | 15 | |
47 | Silver | 10×10−9 | 0.000002 | No | 11 | ||
41 | Niobium | 1600×10−9 | 0.0000015 | No | 5 | ||
40 | Zirconium | 6×10−9 | 0.000001 | 3.0×10−7 | No | 4 | |
57 | Lanthanum | 1370×10−9 | 8×10−7 | No | |||
52 | Tellurium | 120×10−9 | 7×10−7 | No | 16 | ||
39 | Yttrium | 6×10−7 | No | 3 | |||
83 | Bismuth | 5×10−7 | No | 15 | |||
81 | Thallium | 5×10−7 | No | highly toxic | 13 | ||
49 | Indium | 4×10−7 | No | 13 | |||
79 | Gold | 3×10−9 | 2×10−7 | 3.0×10−7 | No | uncoated nanoparticles possibly genotoxic[31][32][33] | 11 |
21 | Scandium | 2×10−7 | No | 3 | |||
73 | Tantalum | 2×10−7 | No | 5 | |||
23 | Vanadium | 260×10−9 | 0.000020 | 1.2×10−8 | Possibly[10] (suggested osteo-metabolism (bone) growth factor) | 5 | |
90 | Thorium | 1×10−7 | No | toxic, radioactive | |||
92 | Uranium | 1×10−7 | 3.0×10−9 | No | toxic, radioactive | ||
62 | Samarium | 5.0×10−8 | No | ||||
74 | Tungsten | 2.0×10−8 | No | 6 | |||
4 | Beryllium | 3.6×10−8 | 4.5×10−8 | No | toxic in higher amounts | 2 | |
88 | Radium | 3×10−14 | 1×10−17 | No | toxic, radioactive | 2 | |
2 | Helium | 20.39×10−21 | 2.4×10−14 | 1×10−17 | No | noble gas | 18 |
10 | Neon | 8.5×10−23 | 1×10−14 | 1×10−17 | No | toxic, noble gas | 18 |
18 | Argon | 4.25×10−23 | 0.5×10−14 | 1×10−17 | No | toxic, noble gas | 18 |
36 | Krypton | 2.125×10−23 | 0.25×10−14 | 1×10−17 | No | toxic, noble gas | 18 |
*Iron = ~3 g in males, ~2.3 g in females
Of the 94 naturally occurring chemical elements, 61 are listed in the table above. Of the remaining 33, it is not known how many occur in the human body.
Most of the elements needed for life are relatively common in the Earth's crust. Aluminium, the third most common element in the Earth's crust (after oxygen and silicon), serves no function in living cells, but is toxic in large amounts, depending on its physical and chemical forms and magnitude, duration, frequency of exposure, and how it was absorbed by the human body.[34] Transferrins can bind aluminium.[35]
Periodic table
Composition
The composition of the human body can be classified as follows:
- Water
- Proteins
- Fats (or lipids)
- Hydroxyapatite in bones
- Carbohydrates such as glycogen and glucose
- DNA and RNA
- Inorganic ions such as sodium, potassium, chloride, bicarbonate, phosphate
- Gases mainly being oxygen, carbon dioxide
- Many cofactors.
The estimated contents of a typical 20-micrometre human cell is as follows:[36]
Compound type | Percent of mass | Mol. weight (daltons) | Compound | Percent of molecules |
---|---|---|---|---|
Water | 65 | 18 | 1.74×1014 | 98.73 |
Other inorganics | 1.5 | N/A | 1.31×1012 | 0.74 |
Lipids | 12 | N/A | 8.4×1011 | 0.475 |
Other organics | 0.4 | N/A | 7.7×1010 | 0.044 |
Protein | 20 | N/A | 1.9×1010 | 0.011 |
RNA | 1.0 | N/A | 5×107 | 3×10−5 |
DNA | 0.1 | 1×1011 | 46 | 3×10−11 |
Tissues
Cell type | % mass | % cell count | |
---|---|---|---|
Erythrocytes (red blood cells) | 4.2 | 85.0 | |
Muscle cells | 28.6 | 0.001 | |
Adipocytes (fat cells) | 18.6 | 0.2 | |
Other cells | 14.3 | 14.8 | |
Extracellular components | 34.3 | - |
Body composition can also be expressed in terms of various types of material, such as:
- Muscle
- Fat
- Bone and teeth
- Nervous tissue (brain and nerves)
- Hormones
- Connective tissue
- Body fluids (blood, lymph, urine)
- Contents of digestive tract, including intestinal gas
- Air in lungs
- Epithelium
Composition by cell type
There are many species of bacteria and other microorganisms that live on or inside the healthy human body. In fact, there are roughly as many microbial as human cells in the human body by number.[37][40][41][42][43] (much less by mass or volume). Some of these symbionts are necessary for our health. Those that neither help nor harm humans are called commensal organisms.
See also
- List of organs of the human body
- Hydrostatic weighing
- Dietary element
- Composition of blood
- List of human blood components
- Body composition
- Abundance of elements in Earth's crust
- Abundance of the chemical elements
References
- ↑ M.A. Zoroddu; J. Aashet; G. Crisponi; S. Medici; M. Peana; V.M. Nurchi (June 2019). "The essential metals for humans: a brief overview". Journal of Inorganic Biochemistry 195: 120–129. doi:10.1016/j.jinorgbio.2019.03.013. PMID 30939379.
- ↑ 2.0 2.1 "Arsenic in Food and Dietary Supplements". US Food and Drug Administration. 22 May 2019. https://www.fda.gov/food/metals/arsenic-food-and-dietary-supplements.
- ↑ "Bromine Is an Essential Trace Element for Assembly of Collagen IV Scaffolds in Tissue Development and Architecture". Cell 157 (6): 1380–92. 2014. doi:10.1016/j.cell.2014.05.009. PMID 24906154.
- ↑ Nelson, David L; Cox, Michael M (2021). Lehninger Principles of Biochemistry (8th ed.). New York: Macmillan. ISBN 9781319230906.
- ↑ "Questions and Answers - How many atoms are in the human body?". https://education.jlab.org/qa/mathatom_04.html. Retrieved 4 April 2023.
- ↑ "Ultratrace minerals". Authors: Nielsen, Forrest H. USDA, ARS Source: Modern nutrition in health and disease / editors, Maurice E. Shils ... et al.. Baltimore : Williams & Wilkins, c. 1999, p. 283-303. Issue Date: 1999 URI: [1]
- ↑ Use WP:CALC for the mean of means for males and females, since the two groups are of about equal size
- ↑ See table 1. here
- ↑ "Guidance for Industry: A Food Labeling Guide 14. Appendix F". US Food and Drug Administration. 1 January 2013. https://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/LabelingNutrition/ucm064928.htm.
- ↑ 10.0 10.1 10.2 Institute of Medicine (29 September 2006). Dietary Reference Intakes: The Essential Guide to Nutrient Requirements. National Academies Press. pp. 313–19, 415–22. ISBN 978-0-309-15742-1. https://books.google.com/books?id=dYZZTgjDeccC&pg=PA415. Retrieved 21 June 2016.
- ↑ Thomas J. Glover, comp., Pocket Ref, 3rd ed. (Littleton: Sequoia, 2003), p. 324 (LCCN 2002-91021), which in
- ↑ turn cites Geigy Scientific Tables, Ciba-Geigy Limited, Basel, Switzerland, 1984.
- ↑ Chang, Raymond (2007). Chemistry, Ninth Edition. McGraw-Hill. pp. 52. ISBN 978-0-07-110595-8.
- ↑ "Elemental Composition of the Human Body" by Ed Uthman, MD Retrieved 17 June 2016
- ↑ Frausto Da Silva, J. J. R; Williams, R. J. P (2001-08-16). The Biological Chemistry of the Elements: The Inorganic Chemistry of Life. OUP Oxford. ISBN 9780198508489. https://books.google.com/books?id=qXbKF1Pw_GsC&q=The+Chemical+Elements+of+Life+Scientific+American&pg=PA27.
- ↑ 16.0 16.1 16.2 16.3 16.4 16.5 16.6 Cite error: Invalid
<ref>
tag; no text was provided for refs namedSalmAllen2015
- ↑ 17.00 17.01 17.02 17.03 17.04 17.05 17.06 17.07 17.08 17.09 17.10 17.11 17.12 17.13 Subcommittee on the Tenth Edition of the Recommended Dietary Allowances, Food and Nutrition Board; Commission on Life Sciences, National Research Council (1 February 1989). "9-10". Recommended Dietary Allowances: 10th Edition. National Academies Press. ISBN 978-0-309-04633-6. https://www.ncbi.nlm.nih.gov/books/NBK234927/. Retrieved 18 June 2016.
- ↑ 18.00 18.01 18.02 18.03 18.04 18.05 18.06 18.07 18.08 18.09 18.10 18.11 "Federal Register :: Request Access". https://unblock.federalregister.gov/. Retrieved 4 April 2023.
- ↑ Australian National Health and Medical Research Council (NHMRC) and New Zealand Ministry of Health (MoH)
- ↑ "Fluoride in Drinking Water: A Review of Fluoridation and Regulation Issues"
- ↑ "Scientific Opinion on Dietary Reference Values for fluoride". EFSA Journal 11 (8): 3332. 2013. doi:10.2903/j.efsa.2013.3332. ISSN 1831-4732. http://orbit.dtu.dk/files/57406955/17%20dietary%20ref.pdf.
- ↑ "WHO/SDE/WSH/03.04/96 "Fluoride in Drinking-water"". https://www.who.int/water_sanitation_health/dwq/chemicals/fluoride.pdf. Retrieved 4 April 2023.
- ↑ Muhammad Ansar Farooq; Karl-Josef Dietz (2015). "Silicon as Versatile Player in Plant and Human Biology: Overlooked and Poorly Understood". Front. Plant Sci. 6 (994): 994. doi:10.3389/fpls.2015.00994. PMID 26617630.
- ↑ Ivanoff, C. S.; Ivanoff, A. E.; Hottel, T. L. (February 2012). "Gallium poisoning: a rare case report.". Food Chem. Toxicol. 50 (2): 212–5. doi:10.1016/j.fct.2011.10.041. PMID 22024274.
- ↑ "Bromine is an essential trace element for assembly of collagen IV scaffolds in tissue development and architecture". Cell 157 (6): 1380–92. June 2014. doi:10.1016/j.cell.2014.05.009. PMID 24906154.
- ↑ 26.0 26.1 26.2 26.3 Zoroddu, Maria Antonietta; Aaseth, Jan; Crisponi, Guido; Medici, Serenella; Peana, Massimiliano; Nurchi, Valeria Marina (2019). "The essential metals for humans: a brief overview". Journal of Inorganic Biochemistry 195: 120–129. doi:10.1016/j.jinorgbio.2019.03.013.
- ↑ Safe Upper Levels for Vitamins and Mineral (2003), boron p. 164-71, nickel p. 225-31, EVM, Food Standards Agency, UK ISBN:1-904026-11-7
- ↑ Yamada, Kazuhiro (2013). "Cobalt: Its Role in Health and Disease". Interrelations between Essential Metal Ions and Human Diseases. Metal Ions in Life Sciences. 13. pp. 295–320. doi:10.1007/978-94-007-7500-8_9. ISBN 978-94-007-7499-5.
- ↑ Banci, Lucia (18 April 2013). Metallomics and the Cell. Springer Science & Business Media. pp. 333–368. ISBN 978-94-007-5561-1. https://books.google.com/books?id=gVQ_AAAAQBAJ&pg=PA333. Retrieved 19 June 2016.
- ↑ Toeniskoetter, Steve (2020). "Ruthenium". Biochemical Periodic Table. http://eawag-bbd.ethz.ch/periodic/elements/ru.html.
- ↑ Fratoddi, Ilaria; Venditti, Iole; Cametti, Cesare; Russo, Maria Vittoria (2015). "How toxic are gold nanoparticles? The state-of-the-art". Nano Research 8 (6): 1771–1799. doi:10.1007/s12274-014-0697-3. ISSN 1998-0124.
- ↑ "Scientific Opinion on the re-evaluation of gold (E 175) as a food additive". EFSA Journal 14 (1): 4362. 2016. doi:10.2903/j.efsa.2016.4362. ISSN 1831-4732.
- ↑ Hillyer, Julián F.; Albrecht, Ralph M. (2001). "Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles". Journal of Pharmaceutical Sciences 90 (12): 1927–1936. doi:10.1002/jps.1143. ISSN 0022-3549. PMID 11745751.
- ↑ Willhite, Calvin C.; Karyakina, Nataliya A.; Yokel, Robert A.; Yenugadhati, Nagarajkumar; Wisniewski, Thomas M.; Arnold, Ian M.F.; Momoli, Franco; Krewski, Daniel (2014-09-18). "Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts". Critical Reviews in Toxicology 44 (sup4): 1–80. doi:10.3109/10408444.2014.934439. ISSN 1040-8444. PMID 25233067.
- ↑ Mizutani, K.; Mikami, B.; Aibara, S.; Hirose, M. (2005). "Structure of aluminium-bound ovotransferrin at 2.15 Å resolution". Acta Crystallographica Section D 61 (12): 1636–42. doi:10.1107/S090744490503266X. PMID 16301797.
- ↑ Freitas Jr., Robert A. (1999). Nanomedicine. Landes Bioscience. pp. Tables 3–1 & 3–2. ISBN 978-1-57059-680-3. http://www.foresight.org/Nanomedicine/Ch03_1.html.
- ↑ 37.0 37.1 Hatton, Ian A.; Galbraith, Eric D.; Merleau, Nono S. C.; Miettinen, Teemu P.; Smith, Benjamin McDonald; Shander, Jeffery A. (2023-09-26). "The human cell count and size distribution" (in en). Proceedings of the National Academy of Sciences 120 (39). doi:10.1073/pnas.2303077120. ISSN 0027-8424. PMID 37722043. PMC 10523466. https://pnas.org/doi/10.1073/pnas.2303077120.
- ↑ Sender, Ron; Fuchs, Shai; Milo, Ron (2016). "Revised estimates for the number of human and bacteria cells in the body". PLOS Biology 14 (8): e1002533. doi:10.1371/journal.pbio.1002533. PMID 27541692.
- ↑ Bianconi, Eva; Piovesan, Allison; Facchin, Federica et al. (2013-11-01). "An estimation of the number of cells in the human body" (in en). Annals of Human Biology 40 (6): 463–471. doi:10.3109/03014460.2013.807878. ISSN 0301-4460. http://www.tandfonline.com/doi/full/10.3109/03014460.2013.807878.
- ↑ American Academy of Microbiology FAQ: Human Microbiome January 2014
- ↑ Judah L. Rosner for Microbe Magazine, February 2014. Ten Times More Microbial Cells than Body Cells in Humans?
- ↑ Gilbert, Jack; Blaser, Martin J.; Caporaso, J. Gregory; Jansson, Janet; Lynch, Susan V.; Knight, Rob (2018-04-10). "Current understanding of the human microbiome". Nature Medicine 24 (4): 392–400. doi:10.1038/nm.4517. ISSN 1078-8956. PMID 29634682.
- ↑ "Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans". Cell 164 (3): 337–40. January 2016. doi:10.1016/j.cell.2016.01.013. PMID 26824647.
Original source: https://en.wikipedia.org/wiki/Composition of the human body.
Read more |