Biology:Glycoside hydrolase family 5

From HandWiki
Short description: Family of enzymes that hydrolyse glycosidic bonds
Cellulase (glycosyl hydrolase family 5)
Identifiers
SymbolCellulase
PfamPF00150
Pfam clanCL0058
InterProIPR001547
PROSITEPDOC00565
SCOP22exo / SCOPe / SUPFAM
OPM superfamily117
OPM protein2osx
CAZyGH5
Membranome1365

In molecular biology, glycoside hydrolase family 5 is a family of glycoside hydrolases EC 3.2.1., which are a widespread group of enzymes that hydrolyse the glycosidic bond between two or more carbohydrates, or between a carbohydrate and a non-carbohydrate moiety. A classification system for glycoside hydrolases, based on sequence similarity, has led to the definition of >100 different families.[1][2][3] This classification is available on the CAZy web site,[4][5] and also discussed at CAZypedia, an online encyclopedia of carbohydrate active enzymes.[6][7]

Glycoside hydrolase family 5 CAZY GH_5 comprises enzymes with several known activities including endoglucanase (EC 3.2.1.4); beta-mannanase (EC 3.2.1.78); exo-1,3-glucanase (EC 3.2.1.58); endo-1,6-glucanase (EC 3.2.1.75); xylanase (EC 3.2.1.8); endoglycoceramidase (EC 3.2.1.123); xanthanase.[8]

The microbial degradation of cellulose and xylans requires several types of enzymes. Fungi and bacteria produces a spectrum of cellulolytic enzymes (cellulases) and xylanases which, on the basis of sequence similarities, can be classified into families. One of these families is known as the cellulase family A[9] or as the glycosyl hydrolases family 5.[10] One of the conserved regions in this family contains a conserved glutamic acid residue which is potentially involved[11] in the catalytic mechanism.

In a recent study using Molecular Dynamics simulations, a considerable correlation between thermal stability and structural rigidity of members of family 5 with solved structures has been proved.[12]

External links

References

  1. "Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases". Proceedings of the National Academy of Sciences of the United States of America 92 (15): 7090–4. July 1995. doi:10.1073/pnas.92.15.7090. PMID 7624375. Bibcode1995PNAS...92.7090H. 
  2. "Structures and mechanisms of glycosyl hydrolases". Structure 3 (9): 853–9. September 1995. doi:10.1016/S0969-2126(01)00220-9. PMID 8535779. 
  3. "Updating the sequence-based classification of glycosyl hydrolases". The Biochemical Journal 316 (Pt 2): 695–6. June 1996. doi:10.1042/bj3160695. PMID 8687420. 
  4. "Home" (in en). http://www.cazy.org/. 
  5. "The carbohydrate-active enzymes database (CAZy) in 2013". Nucleic Acids Research 42 (Database issue): D490-5. January 2014. doi:10.1093/nar/gkt1178. PMID 24270786. 
  6. "Glycoside Hydrolase Family 5" (in en). http://www.cazypedia.org/index.php/Glycoside_Hydrolase_Family_5. 
  7. CAZypedia Consortium (December 2018). "Ten years of CAZypedia: a living encyclopedia of carbohydrate-active enzymes". Glycobiology 28 (1): 3–8. doi:10.1093/glycob/cwx089. PMID 29040563. https://hal.archives-ouvertes.fr/hal-01886461/file/Hehemann_2018_01.pdf. 
  8. Ostrowski, Matthew P.; La Rosa, Sabina Leanti; Kunath, Benoit J.; Robertson, Andrew; Pereira, Gabriel; Hagen, Live H.; Varghese, Neha J.; Qiu, Ling et al. (April 2022). "Mechanistic insights into consumption of the food additive xanthan gum by the human gut microbiota". Nature Microbiology 7 (4): 556–569. doi:10.1038/s41564-022-01093-0. PMID 35365790. 
  9. "Cellulase families revealed by hydrophobic cluster analysis". Gene 81 (1): 83–95. September 1989. doi:10.1016/0378-1119(89)90339-9. PMID 2806912. 
  10. "A classification of glycosyl hydrolases based on amino acid sequence similarities". The Biochemical Journal 280 (2): 309–16. December 1991. doi:10.1042/bj2800309. PMID 1747104. 
  11. "Cellulase EGZ of Erwinia chrysanthemi: structural organization and importance of His98 and Glu133 residues for catalysis". Protein Engineering 4 (3): 325–33. February 1991. doi:10.1093/protein/4.3.325. PMID 1677466. 
  12. "Study and design of stability in GH5 cellulases". Biotechnology and Bioengineering 109 (1): 31–44. January 2012. doi:10.1002/bit.23280. PMID 21809329.