Chemistry:Bismuth selenide

From HandWiki
Bismuth selenide
Names
IUPAC name
selenoxobismuth, selanylidenebismuth [1]
Identifiers
3D model (JSmol)
ChemSpider
EC Number
  • 235-104-7
UNII
Properties
Bi
2
Se
3
Molar mass 654.8 g/mol [2]
Appearance Dull grey [3]
Density 6.82 g/cm3[2]
Melting point 710 °C (1,310 °F; 983 K)[2]
insoluble
Solubility insoluble in organic solvents
soluble in strong acids [2]
Structure
rhombohedral
Thermochemistry
-140 kJ/mol
Hazards
Main hazards Toxic [3]
NFPA 704 (fire diamond)
Flammability code 0: Will not burn. E.g. waterHealth code 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformReactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no codeNFPA 704 four-colored diamond
0
2
0
Related compounds
Other anions
Bismuth(III) oxide
Bismuth trisulfide
Bismuth telluride
Other cations
Arsenic triselenide
Antimony triselenide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☑Y verify (what is ☑Y☒N ?)
Infobox references

Bismuth selenide (Bi
2
Se
3
) is a gray compound of bismuth and selenium also known as bismuth(III) selenide.

Properties

Bismuth selenide is a semiconductor and a thermoelectric material.[4] While stoichiometric bismuth selenide should be a semiconductor with a gap of 0.3 eV, naturally occurring selenium vacancies act as electron donors, so Bi2Se3 is intrinsically n-type.[5][6][7]

Bismuth selenide has a topologically insulating ground-state.[8] Topologically protected Dirac cone surface states have been observed in Bismuth selenide and its insulating derivatives leading to intrinsic topological insulators,[6][9][10][11] which later became the subject of world-wide scientific research.[12][13][14][15]

Bismuth selenide is a van der Waals material consisting of covalently bound five-atom layers (quintuple layers) which are held together by van der Waals interactions[16] and spin-orbit coupling effects.[17] Although the (0001) surface is chemically inert (mostly due to the inert-pair effect of Bi[17]), there are metallic surface states, protected by the non-trivial topology of the bulk. For this reason, the Bi2Se3 surface is an interesting candidate for van der Waals epitaxy and subject of scientific research. For instance, different phases of antimony layers can be grown on Bi2Se3,[18][19] by means of which topological pn-junctions can be realised.[20] More intriguingly, Sb layers undergo topological phase transitions when attached to the Bi2Se3 surface and thus inherit the non-trivial topological properties of the Bi2Se3 substrate.[21][22]

Production

Although bismuth selenide occurs naturally (as the mineral guanajuatite) at the Santa Catarina Mine in Guanajuato, Mexico[23] as well as some sites in the United States and Europe,[24] such deposits are rare and contain a significant level of sulfur[24] atoms as an impurity. For this reason, most bismuth selenide used in research into potential commercial applications is synthesized. Commercially-produced samples are available for use in research, but the concentration of selenium vacancies is heavily dependent upon growth conditions,[25][26] and so bismuth selenide used for research is often synthesized in the laboratory.

A stoichiometric mixture of elemental bismuth and selenium, when heated above the melting points of these elements in the absence of air, will become a liquid that freezes to crystalline Bi
2
Se
3
.[27] Large single crystals of bismuth selenide can be prepared by the Bridgman–Stockbarger method.[28]

See also

References

  1. "Bismuth(III) selenide - PubChem Public Chemical Database". Pubchem.ncbi.nlm.nih.gov. 2011-10-21. https://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=6379269&loc=ec_rcs. 
  2. 2.0 2.1 2.2 2.3 "bismuth selenide | Bi2Se3". ChemSpider. http://www.chemspider.com/Chemical-Structure.145787.html?rid=3fc8a50b-333b-41f7-9e99-8990bb23c118. 
  3. 3.0 3.1 "Bismuth Selenide | Bismuth Selenide". Espimetals.com. http://www.espimetals.com/index.php/msds/427-bismuth-selenide-. 
  4. Mishra, S K; S Satpathy; O Jepsen (1997-01-13). "Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide". Journal of Physics 9 (2): 461–470. doi:10.1088/0953-8984/9/2/014. ISSN 0953-8984. Bibcode1997JPCM....9..461M. 
  5. Analytis, James G.; Chu, Jiun-Haw; Chen, Yulin; Corredor, Felipe; McDonald, Ross D.; Shen, Z. X.; Fisher, Ian R. (2010-05-05). "Bulk Fermi surface coexistence with Dirac surface state in Bi 2 Se 3 : A comparison of photoemission and Shubnikov–de Haas measurements" (in en). Physical Review B 81 (20): 205407. doi:10.1103/PhysRevB.81.205407. ISSN 1098-0121. Bibcode2010PhRvB..81t5407A. https://link.aps.org/doi/10.1103/PhysRevB.81.205407. 
  6. 6.0 6.1 Xia, Y; Qian, D; Hsieh, D; Wray, L; Pal, A; Lin, H; Bansil, A; Grauer, D et al. (2009). "Observation of a large-gap topological-insulator class with a single Dirac cone on the surface". Nature Physics 5 (6): 398–402. doi:10.1038/nphys1274. Bibcode2009NatPh...5..398X. 
  7. Hor, Y. S.; A. Richardella; P. Roushan; Y. Xia; J. G. Checkelsky; A. Yazdani; M. Z. Hasan; N. P. Ong et al. (2009-05-21). "p-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications". Physical Review B 79 (19): 195208. doi:10.1103/PhysRevB.79.195208. Bibcode2009PhRvB..79s5208H. 
  8. Xia, Y.; Qian, D.; Hsieh, D.; Wray, L.; Pal, A.; Lin, H.; Bansil, A.; Grauer, D. et al. (2009). "Discovery (theoretical prediction and experimental observation) of a large-gap topological-insulator class with spin-polarized single-Dirac-cone on the surface". Nature Physics. doi:10.1038/nphys1274. ISSN 1745-2473. 
  9. Hsieh, D.; Y. Xia; D. Qian; L. Wray; J. H. Dil; F. Meier; J. Osterwalder; L. Patthey et al. (2009). "A tunable topological insulator in the spin helical Dirac transport regime". Nature 460 (7259): 1101–1105. doi:10.1038/nature08234. ISSN 0028-0836. PMID 19620959. Bibcode2009Natur.460.1101H. 
  10. Hasan, M. Zahid; Moore, Joel E. (2011-02-08). "Three-Dimensional Topological Insulators". Annual Review of Condensed Matter Physics 2 (1): 55–78. doi:10.1146/annurev-conmatphys-062910-140432. ISSN 1947-5454. Bibcode2011ARCMP...2...55H. 
  11. Xu, Yang; Miotkowski, Ireneusz; Liu, Chang; Tian, Jifa; Nam, Hyoungdo; Alidoust, Nasser; Hu, Jiuning; Shih, Chih-Kang et al. (2014). "Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator" (in en). Nature Physics 10 (12): 956–963. doi:10.1038/nphys3140. ISSN 1745-2481. Bibcode2014NatPh..10..956X. 
  12. Hasan, M. Z.; Kane, C. L. (2010-11-08). "Colloquium: Topological insulators". Reviews of Modern Physics 82 (4): 3045–3067. doi:10.1103/RevModPhys.82.3045. Bibcode2010RvMP...82.3045H. 
  13. "The Strange Topology That Is Reshaping Physics" (in en). https://www.scientificamerican.com/article/the-strange-topology-that-is-reshaping-physics/. 
  14. "Welcome to the Weird Mathematical World of Topology" (in en). https://www.discovermagazine.com/technology/welcome-to-the-weird-mathematical-world-of-topology. 
  15. Ornes, Stephen (2016-09-13). "Topological insulators promise computing advances, insights into matter itself" (in en). Proceedings of the National Academy of Sciences 113 (37): 10223–10224. doi:10.1073/pnas.1611504113. ISSN 0027-8424. PMID 27625422. 
  16. Luo, Xin; Sullivan, Michael B.; Quek, Su Ying (2012-11-27). "First-principles investigations of the atomic, electronic, and thermoelectric properties of equilibrium and strained Bi 2 Se 3 and Bi 2 Te 3 including van der Waals interactions" (in en). Physical Review B 86 (18): 184111. doi:10.1103/PhysRevB.86.184111. ISSN 1098-0121. Bibcode2012PhRvB..86r4111L. https://link.aps.org/doi/10.1103/PhysRevB.86.184111. 
  17. 17.0 17.1 Holtgrewe, Kris (2022). Theoretical modelling of nano-scaled systems with heavy ions. Universitätsbibliothek Gießen (Thesis). doi:10.22029/jlupub-7899.
  18. Flammini, R; Colonna, S; Hogan, C; Mahatha, S K; Papagno, M; Barla, A; Sheverdyaeva, P M; Moras, P et al. (2018-02-09). "Evidence of β -antimonene at the Sb/Bi 2 Se 3 interface". Nanotechnology 29 (6): 065704. doi:10.1088/1361-6528/aaa2c4. ISSN 0957-4484. PMID 29320369. Bibcode2018Nanot..29f5704F. https://iopscience.iop.org/article/10.1088/1361-6528/aaa2c4. 
  19. Hogan, Conor; Holtgrewe, Kris; Ronci, Fabio; Colonna, Stefano; Sanna, Simone; Moras, Paolo; Sheverdyaeva, Polina M.; Mahatha, Sanjoy et al. (2019-09-24). "Temperature Driven Phase Transition at the Antimonene/Bi 2 Se 3 van der Waals Heterostructure" (in en). ACS Nano 13 (9): 10481–10489. doi:10.1021/acsnano.9b04377. ISSN 1936-0851. PMID 31469534. https://pubs.acs.org/doi/10.1021/acsnano.9b04377. 
  20. Jin, Kyung-Hwan; Yeom, Han Woong; Jhi, Seung-Hoon (2016-02-19). "Band structure engineering of topological insulator heterojunctions" (in en). Physical Review B 93 (7): 075308. doi:10.1103/PhysRevB.93.075308. ISSN 2469-9950. Bibcode2016PhRvB..93g5308J. https://link.aps.org/doi/10.1103/PhysRevB.93.075308. 
  21. Holtgrewe, K.; Mahatha, S. K.; Sheverdyaeva, P. M.; Moras, P.; Flammini, R.; Colonna, S.; Ronci, F.; Papagno, M. et al. (2020-09-03). "Topologization of β-antimonene on Bi2Se3 via proximity effects" (in en). Scientific Reports 10 (1): 14619. doi:10.1038/s41598-020-71624-4. ISSN 2045-2322. PMID 32884112. Bibcode2020NatSR..1014619H. 
  22. Holtgrewe, Kris; Hogan, Conor; Sanna, Simone (2021-04-02). "Evolution of Topological Surface States Following Sb Layer Adsorption on Bi2Se3" (in en). Materials 14 (7): 1763. doi:10.3390/ma14071763. ISSN 1996-1944. PMID 33918428. Bibcode2021Mate...14.1763H. 
  23. "Santa Catarina Mine, Rancho Calvillo, Santa Rosa, Sierra de Santa Rosa, Guanajuato Municipality, Guanajuato, Mexico". https://www.mindat.org/loc-21325.html. 
  24. 24.0 24.1 Anthony, John W.; Bideaux, Richard A.; Bladh, Kenneth W.; Nichols, Monte C.. "Guanajuatite". Mineralogical Society of America. http://www.handbookofmineralogy.org/pdfs/guanajuatite.pdf. 
  25. Nisson, D. M.; Dioguardi, A. P.; Klavins, P.; Lin, C. H.; Shirer, K.; Shockley, A. C.; Crocker, J.; Curro, N. J. (2013-05-13). "Nuclear magnetic resonance as a probe of electronic states of Bi 2 Se 3" (in en). Physical Review B 87 (19): 195202. doi:10.1103/PhysRevB.87.195202. ISSN 1098-0121. Bibcode2013PhRvB..87s5202N. https://link.aps.org/doi/10.1103/PhysRevB.87.195202. 
  26. Butch, N. P.; Kirshenbaum, K.; Syers, P.; Sushkov, A. B.; Jenkins, G. S.; Drew, H. D.; Paglione, J. (2010-06-01). "Strong surface scattering in ultrahigh-mobility Bi 2 Se 3 topological insulator crystals" (in en). Physical Review B 81 (24): 241301. doi:10.1103/PhysRevB.81.241301. ISSN 1098-0121. Bibcode2010PhRvB..81x1301B. https://link.aps.org/doi/10.1103/PhysRevB.81.241301. 
  27. Chen, Yang; Liu, Yajun; Chu, Maoyou; Wang, Lijun (2014-12-25). "Phase diagrams and thermodynamic descriptions for the Bi–Se and Zn–Se binary systems" (in en). Journal of Alloys and Compounds 617: 423–428. doi:10.1016/j.jallcom.2014.08.001. ISSN 0925-8388. https://www.sciencedirect.com/science/article/pii/S0925838814018568. 
  28. Atuchin, V. V.; Golyashov, V. A.; Kokh, K. A.; Korolkov, I. V.; Kozhukhov, A. S.; Kruchinin, V. N.; Makarenko, S. V.; Pokrovsky, L. D. et al. (2011-12-07). "Formation of Inert Bi2Se3(0001) Cleaved Surface". Crystal Growth & Design 11 (12): 5507–5514. doi:10.1021/cg201163v. ISSN 1528-7483. https://doi.org/10.1021/cg201163v.