Physics:Isotopes of calcium
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight Ar, standard(Ca) |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Calcium (20Ca) has 26 known isotopes, ranging from 35Ca to 60Ca. There are five stable isotopes (40Ca, 42Ca, 43Ca, 44Ca and 46Ca), plus one isotope (48Ca) with such a long half-life that for all practical purposes it can be considered stable. The most abundant isotope, 40Ca, as well as the rare 46Ca, are theoretically unstable on energetic grounds, but their decay has not been observed. Calcium also has a cosmogenic isotope, radioactive 41Ca, which has a half-life of 99,400 years. Unlike cosmogenic isotopes that are produced in the atmosphere, 41Ca is produced by neutron activation of 40Ca. Most of its production is in the upper metre of the soil column, where the cosmogenic neutron flux is still sufficiently strong. 41Ca has received much attention in stellar studies because it decays to 41K, a critical indicator of solar system anomalies. The most stable artificial radioisotopes are 45Ca with a half-life of 163 days and 47Ca with a half-life of 4.5 days. All other calcium isotopes have half-lives measured in minutes or less.[2]
40Ca comprises about 97% of naturally occurring calcium. 40Ca is also one of the daughter products of 40K decay, along with 40Ar. While K–Ar dating has been used extensively in the geological sciences, the prevalence of 40Ca in nature has impeded its use in dating. Techniques using mass spectrometry and a double spike isotope dilution have been used for K–Ca age dating.
List of isotopes
Nuclide |
Z | N | Isotopic mass (u) [n 1] |
Half-life [n 2] |
Decay mode [n 3] |
Daughter isotope [n 4] |
Spin and parity [n 5][n 6] |
Physics:Natural abundance (mole fraction) | |
---|---|---|---|---|---|---|---|---|---|
Normal proportion | Range of variation | ||||||||
35Ca | 20 | 15 | 35.00557(22)# | 25.7(2) ms | β+, p (95.8%) | 34Ar | 1/2+# | ||
β+, 2p (4.2%) | 33Cl | ||||||||
β+ (rare) | 35K | ||||||||
36Ca | 20 | 16 | 35.993074(43) | 100.9(13) ms | β+, p (51.2%) | 35Ar | 0+ | ||
β+ (48.8%) | 36K | ||||||||
37Ca | 20 | 17 | 36.98589785(68) | 181.0(9) ms | β+, p (76.8%) | 36Ar | 3/2+ | ||
β+ (23.2%) | 37K | ||||||||
38Ca | 20 | 18 | 37.97631922(21) | 443.70(25) ms | β+ | 38K | 0+ | ||
39Ca | 20 | 19 | 38.97071081(64) | 860.3(8) ms | β+ | 39K | 3/2+ | ||
40Ca[n 7] | 20 | 20 | 39.962590850(22) | Observationally stable[n 8] | 0+ | 0.9694(16) | 0.96933–0.96947 | ||
41Ca | 20 | 21 | 40.96227791(15) | 9.94(15)×104 y | EC | 41K | 7/2− | Trace[n 9] | |
42Ca | 20 | 22 | 41.95861778(16) | Stable | 0+ | 0.00647(23) | 0.00646–0.00648 | ||
43Ca | 20 | 23 | 42.95876638(24) | Stable | 7/2− | 0.00135(10) | 0.00135–0.00135 | ||
44Ca | 20 | 24 | 43.95548149(35) | Stable | 0+ | 0.0209(11) | 0.02082–0.02092 | ||
45Ca | 20 | 25 | 44.95618627(39) | 162.61(9) d | β− | 45Sc | 7/2− | ||
46Ca | 20 | 26 | 45.9536877(24) | Observationally stable[n 10] | 0+ | 4×10−5 | 4×10−5–4×10−5 | ||
47Ca | 20 | 27 | 46.9545411(24) | 4.536(3) d | β− | 47Sc | 7/2− | ||
48Ca[n 11][n 12] | 20 | 28 | 47.952522654(18) | 5.6(10)×1019 y | β−β−[n 13][n 14] | 48Ti | 0+ | 0.00187(21) | 0.00186–0.00188 |
49Ca | 20 | 29 | 48.95566263(19) | 8.718(6) min | β− | 49Sc | 3/2− | ||
50Ca | 20 | 30 | 49.9574992(17) | 13.45(5) s | β− | 50Sc | 0+ | ||
51Ca | 20 | 31 | 50.96099566(56) | 10.0(8) s | β− | 51Sc | 3/2− | ||
β−, n? | 50Sc | ||||||||
52Ca | 20 | 32 | 51.96321365(72) | 4.6(3) s | β− (>98%) | 52Sc | 0+ | ||
β−, n (<2%) | 51Sc | ||||||||
53Ca | 20 | 33 | 52.968451(47) | 461(90) ms | β− (60%) | 53Sc | 1/2−# | ||
β−, n (40%) | 52Sc | ||||||||
54Ca | 20 | 34 | 53.972989(52) | 90(6) ms | β− | 54Sc | 0+ | ||
β−, n? | 53Sc | ||||||||
β−, 2n? | 52Sc | ||||||||
55Ca | 20 | 35 | 54.97998(17) | 22(2) ms | β− | 55Sc | 5/2−# | ||
β−, n? | 54Sc | ||||||||
β−, 2n? | 53Sc | ||||||||
56Ca | 20 | 36 | 55.98550(27) | 11(2) ms | β− | 56Sc | 0+ | ||
β−, n? | 55Sc | ||||||||
β−, 2n? | 54Sc | ||||||||
57Ca | 20 | 37 | 56.99296(43)# | 8# ms [>620 ns] | β−? | 57Sc | 5/2−# | ||
β−, n? | 56Sc | ||||||||
β−, 2n? | 55Sc | ||||||||
58Ca | 20 | 38 | 57.99836(54)# | 4# ms [>620 ns] | β−? | 58Sc | 0+ | ||
β−, n? | 57Sc | ||||||||
β−, 2n? | 56Sc | ||||||||
59Ca | 20 | 39 | 59.00624(64)# | 5# ms [>400 ns] | β−? | 59Sc | 5/2−# | ||
β−, n? | 58Sc | ||||||||
β−, 2n? | 57Sc | ||||||||
60Ca | 20 | 40 | 60.01181(75)# | 2# ms [>400 ns] | β−? | 60Sc | 0+ | ||
β−, n? | 59Sc | ||||||||
β−, 2n? | 58Sc |
- ↑ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- ↑ Bold half-life – nearly stable, half-life longer than age of universe.
- ↑
Modes of decay:
EC: Electron capture
n: Neutron emission p: Proton emission - ↑ Bold symbol as daughter – Daughter product is stable.
- ↑ ( ) spin value – Indicates spin with weak assignment arguments.
- ↑ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
- ↑ Heaviest observationally stable nuclide with equal numbers of protons and neutrons
- ↑ Believed to undergo double electron capture to 40Ar with a half-life no less than 9.9×1021 y
- ↑ Cosmogenic nuclide
- ↑ Believed to undergo β−β− decay to 46Ti
- ↑ Primordial radionuclide
- ↑ Believed to be capable of undergoing triple beta decay with very long partial half-life
- ↑ Lightest nuclide known to undergo double beta decay
- ↑ Theorized to also undergo β− decay to 48Sc with a partial half-life exceeding 1.1+0.8−0.6×1021 years[3]
Calcium-60
Calcium-60 is the heaviest known isotope (As of 2020).[4] First observed in 2018 at Riken alongside 59Ca and seven isotopes of other elements,[5] its existence suggests that there are additional even-N isotopes of calcium up to at least 70Ca, while 59Ca is probably the last bound isotope with odd N.[6] Earlier predictions had estimated the neutron drip line to occur at 60Ca, with 59Ca unbound.[5]
In the neutron-rich region, N = 40 becomes a magic number, so 60Ca was considered early on to be a possibly doubly magic nucleus, as is observed for the 68Ni isotone.[7][8] However, subsequent spectroscopic measurements of the nearby nuclides 56Ca, 58Ca, and 62Ti instead predict that it should lie on the island of inversion known to exist around 64Cr.[8][9]
References
- ↑ Meija, Juris; Coplen, Tyler B.; Berglund, Michael; Brand, Willi A.; De Bièvre, Paul; Gröning, Manfred; Holden, Norman E.; Irrgeher, Johanna et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure and Applied Chemistry 88 (3): 265–91. doi:10.1515/pac-2015-0305.
- ↑ Template:Nubase 2016
- ↑ Aunola, M.; Suhonen, J.; Siiskonen, T. (1999). "Shell-model study of the highly forbidden beta decay 48Ca → 48Sc". EPL 46 (5): 577. doi:10.1209/epl/i1999-00301-2. Bibcode: 1999EL.....46..577A.
- ↑ Cite error: Invalid
<ref>
tag; no text was provided for refs namedNUBASE2020
- ↑ 5.0 5.1 Tarasov, O. B.; Ahn, D. S.; Bazin, D. et al. (11 July 2018). "Discovery of 60Ca and Implications For the Stability of 70Ca". Physical Review Letters 121 (2). doi:10.1103/PhysRevLett.121.022501.
- ↑ Neufcourt, Léo; Cao, Yuchen; Nazarewicz, Witold et al. (14 February 2019). "Neutron Drip Line in the Ca Region from Bayesian Model Averaging". Physical Review Letters 122 (6). doi:10.1103/PhysRevLett.122.062502.
- ↑ Gade, A.; Janssens, R. V. F.; Weisshaar, D. et al. (21 March 2014). "Nuclear Structure Towards N = 40 60Ca: In-Beam γ -Ray Spectroscopy of 58, 60Ti". Physical Review Letters 112 (11). doi:10.1103/PhysRevLett.112.112503.
- ↑ 8.0 8.1 Cortés, M.L.; Rodriguez, W.; Doornenbal, P. et al. (January 2020). "Shell evolution of N = 40 isotones towards 60Ca: First spectroscopy of 62Ti". Physics Letters B 800: 135071. doi:10.1016/j.physletb.2019.135071.
- ↑ Chen, S.; Browne, F.; Doornenbal, P. et al. (August 2023). "Level structures of 56, 58Ca cast doubt on a doubly magic 60Ca". Physics Letters B 843: 138025. doi:10.1016/j.physletb.2023.138025.
Further reading
- C. Michael Hogan. 2010. Calcium. ed. A. Jorgenson and C. Cleveland. Encyclopedia of Earth, National Council for Science and the Environment, Washington, D.C.
External links
- National Isotope Development Center Official website[yes|permanent dead link|dead link}}]
- Calcium isotopes data from The Berkeley Laboratory Isotopes Project's
Original source: https://en.wikipedia.org/wiki/Isotopes of calcium.
Read more |