The tables contain the prime factorization of the natural numbers from 1 to 1000.
When n is a prime number, the prime factorization is just n itself, written in bold below.
The number 1 is called a unit. It has no prime factors and is neither prime nor composite.
Properties
Many properties of a natural number n can be seen or directly computed from the prime factorization of n.
- The multiplicity of a prime factor p of n is the largest exponent m for which pm divides n. The tables show the multiplicity for each prime factor. If no exponent is written then the multiplicity is 1 (since p = p1). The multiplicity of a prime which does not divide n may be called 0 or may be considered undefined.
- Ω(n), the big Omega function, is the number of prime factors of n counted with multiplicity (so it is the sum of all prime factor multiplicities).
- A prime number has Ω(n) = 1. The first: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 (sequence A000040 in the OEIS). There are many special types of prime numbers.
- A composite number has Ω(n) > 1. The first: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21 (sequence A002808 in the OEIS). All numbers above 1 are either prime or composite. 1 is neither.
- A semiprime has Ω(n) = 2 (so it is composite). The first: 4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34 (sequence A001358 in the OEIS).
- A k-almost prime (for a natural number k) has Ω(n) = k (so it is composite if k > 1).
- An even number has the prime factor 2. The first: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 (sequence A005843 in the OEIS).
- An odd number does not have the prime factor 2. The first: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 (sequence A005408 in the OEIS). All integers are either even or odd.
- A square has even multiplicity for all prime factors (it is of the form a2 for some a). The first: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144 (sequence A000290 in the OEIS).
- A cube has all multiplicities divisible by 3 (it is of the form a3 for some a). The first: 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728 (sequence A000578 in the OEIS).
- A perfect power has a common divisor m > 1 for all multiplicities (it is of the form am for some a > 1 and m > 1). The first: 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100 (sequence A001597 in the OEIS). 1 is sometimes included.
- A powerful number (also called squareful) has multiplicity above 1 for all prime factors. The first: 1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72 (sequence A001694 in the OEIS).
- A prime power has only one prime factor. The first: 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19 (sequence A000961 in the OEIS). 1 is sometimes included.
- An Achilles number is powerful but not a perfect power. The first: 72, 108, 200, 288, 392, 432, 500, 648, 675, 800, 864, 968 (sequence A052486 in the OEIS).
- A square-free integer has no prime factor with multiplicity above 1. The first: 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17 (sequence A005117 in the OEIS). A number where some but not all prime factors have multiplicity above 1 is neither square-free nor squareful.
- The Liouville function λ(n) is 1 if Ω(n) is even, and is -1 if Ω(n) is odd.
- The Möbius function μ(n) is 0 if n is not square-free. Otherwise μ(n) is 1 if Ω(n) is even, and is −1 if Ω(n) is odd.
- A sphenic number has Ω(n) = 3 and is square-free (so it is the product of 3 distinct primes). The first: 30, 42, 66, 70, 78, 102, 105, 110, 114, 130, 138, 154 (sequence A007304 in the OEIS).
- a0(n) is the sum of primes dividing n, counted with multiplicity. It is an additive function.
- A Ruth-Aaron pair is two consecutive numbers (x, x+1) with a0(x) = a0(x+1). The first (by x value): 5, 8, 15, 77, 125, 714, 948, 1330, 1520, 1862, 2491, 3248 (sequence A039752 in the OEIS), another definition is the same prime only count once, if so, the first (by x value): 5, 24, 49, 77, 104, 153, 369, 492, 714, 1682, 2107, 2299 (sequence A006145 in the OEIS).
- A primorial x# is the product of all primes from 2 to x. The first: 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, 200560490130, 7420738134810 (sequence A002110 in the OEIS). 1# = 1 is sometimes included.
- A factorial x! is the product of all numbers from 1 to x. The first: 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600 (sequence A000142 in the OEIS). 0! = 1 is sometimes included.
- A k-smooth number (for a natural number k) has largest prime factor ≤ k (so it is also j-smooth for any j > k).
- m is smoother than n if the largest prime factor of m is below the largest of n.
- A regular number has no prime factor above 5 (so it is 5-smooth). The first: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16 (sequence A051037 in the OEIS).
- A k-powersmooth number has all pm ≤ k where p is a prime factor with multiplicity m.
- A frugal number has more digits than the number of digits in its prime factorization (when written like below tables with multiplicities above 1 as exponents). The first in decimal: 125, 128, 243, 256, 343, 512, 625, 729, 1024, 1029, 1215, 1250 (sequence A046759 in the OEIS).
- An equidigital number has the same number of digits as its prime factorization. The first in decimal: 1, 2, 3, 5, 7, 10, 11, 13, 14, 15, 16, 17 (sequence A046758 in the OEIS).
- An extravagant number has fewer digits than its prime factorization. The first in decimal: 4, 6, 8, 9, 12, 18, 20, 22, 24, 26, 28, 30 (sequence A046760 in the OEIS).
- An economical number has been defined as a frugal number, but also as a number that is either frugal or equidigital.
- gcd(m, n) (greatest common divisor of m and n) is the product of all prime factors which are both in m and n (with the smallest multiplicity for m and n).
- m and n are coprime (also called relatively prime) if gcd(m, n) = 1 (meaning they have no common prime factor).
- lcm(m, n) (least common multiple of m and n) is the product of all prime factors of m or n (with the largest multiplicity for m or n).
- gcd(m, n) × lcm(m, n) = m × n. Finding the prime factors is often harder than computing gcd and lcm using other algorithms which do not require known prime factorization.
- m is a divisor of n (also called m divides n, or n is divisible by m) if all prime factors of m have at least the same multiplicity in n.
The divisors of n are all products of some or all prime factors of n (including the empty product 1 of no prime factors).
The number of divisors can be computed by increasing all multiplicities by 1 and then multiplying them.
Divisors and properties related to divisors are shown in table of divisors.
1 to 100
1 − 20
1 |
|
2 |
2
|
3 |
3
|
4 |
22
|
5 |
5
|
6 |
2·3
|
7 |
7
|
8 |
23
|
9 |
32
|
10 |
2·5
|
11 |
11
|
12 |
22·3
|
13 |
13
|
14 |
2·7
|
15 |
3·5
|
16 |
24
|
17 |
17
|
18 |
2·32
|
19 |
19
|
20 |
22·5
|
|
|
|
|
|
101 to 200
201 to 300
301 to 400
301 − 320
301 |
7·43
|
302 |
2·151
|
303 |
3·101
|
304 |
24·19
|
305 |
5·61
|
306 |
2·32·17
|
307 |
307
|
308 |
22·7·11
|
309 |
3·103
|
310 |
2·5·31
|
311 |
311
|
312 |
23·3·13
|
313 |
313
|
314 |
2·157
|
315 |
32·5·7
|
316 |
22·79
|
317 |
317
|
318 |
2·3·53
|
319 |
11·29
|
320 |
26·5
|
|
321 − 340
321 |
3·107
|
322 |
2·7·23
|
323 |
17·19
|
324 |
22·34
|
325 |
52·13
|
326 |
2·163
|
327 |
3·109
|
328 |
23·41
|
329 |
7·47
|
330 |
2·3·5·11
|
331 |
331
|
332 |
22·83
|
333 |
32·37
|
334 |
2·167
|
335 |
5·67
|
336 |
24·3·7
|
337 |
337
|
338 |
2·132
|
339 |
3·113
|
340 |
22·5·17
|
|
341 − 360
341 |
11·31
|
342 |
2·32·19
|
343 |
73
|
344 |
23·43
|
345 |
3·5·23
|
346 |
2·173
|
347 |
347
|
348 |
22·3·29
|
349 |
349
|
350 |
2·52·7
|
351 |
33·13
|
352 |
25·11
|
353 |
353
|
354 |
2·3·59
|
355 |
5·71
|
356 |
22·89
|
357 |
3·7·17
|
358 |
2·179
|
359 |
359
|
360 |
23·32·5
|
|
361 − 380
361 |
192
|
362 |
2·181
|
363 |
3·112
|
364 |
22·7·13
|
365 |
5·73
|
366 |
2·3·61
|
367 |
367
|
368 |
24·23
|
369 |
32·41
|
370 |
2·5·37
|
371 |
7·53
|
372 |
22·3·31
|
373 |
373
|
374 |
2·11·17
|
375 |
3·53
|
376 |
23·47
|
377 |
13·29
|
378 |
2·33·7
|
379 |
379
|
380 |
22·5·19
|
|
381 − 400
381 |
3·127
|
382 |
2·191
|
383 |
383
|
384 |
27·3
|
385 |
5·7·11
|
386 |
2·193
|
387 |
32·43
|
388 |
22·97
|
389 |
389
|
390 |
2·3·5·13
|
391 |
17·23
|
392 |
23·72
|
393 |
3·131
|
394 |
2·197
|
395 |
5·79
|
396 |
22·32·11
|
397 |
397
|
398 |
2·199
|
399 |
3·7·19
|
400 |
24·52
|
|
401 to 500
401 − 420
401 |
401
|
402 |
2·3·67
|
403 |
13·31
|
404 |
22·101
|
405 |
34·5
|
406 |
2·7·29
|
407 |
11·37
|
408 |
23·3·17
|
409 |
409
|
410 |
2·5·41
|
411 |
3·137
|
412 |
22·103
|
413 |
7·59
|
414 |
2·32·23
|
415 |
5·83
|
416 |
25·13
|
417 |
3·139
|
418 |
2·11·19
|
419 |
419
|
420 |
22·3·5·7
|
|
421 − 440
421 |
421
|
422 |
2·211
|
423 |
32·47
|
424 |
23·53
|
425 |
52·17
|
426 |
2·3·71
|
427 |
7·61
|
428 |
22·107
|
429 |
3·11·13
|
430 |
2·5·43
|
431 |
431
|
432 |
24·33
|
433 |
433
|
434 |
2·7·31
|
435 |
3·5·29
|
436 |
22·109
|
437 |
19·23
|
438 |
2·3·73
|
439 |
439
|
440 |
23·5·11
|
|
441 − 460
441 |
32·72
|
442 |
2·13·17
|
443 |
443
|
444 |
22·3·37
|
445 |
5·89
|
446 |
2·223
|
447 |
3·149
|
448 |
26·7
|
449 |
449
|
450 |
2·32·52
|
451 |
11·41
|
452 |
22·113
|
453 |
3·151
|
454 |
2·227
|
455 |
5·7·13
|
456 |
23·3·19
|
457 |
457
|
458 |
2·229
|
459 |
33·17
|
460 |
22·5·23
|
|
461 − 480
461 |
461
|
462 |
2·3·7·11
|
463 |
463
|
464 |
24·29
|
465 |
3·5·31
|
466 |
2·233
|
467 |
467
|
468 |
22·32·13
|
469 |
7·67
|
470 |
2·5·47
|
471 |
3·157
|
472 |
23·59
|
473 |
11·43
|
474 |
2·3·79
|
475 |
52·19
|
476 |
22·7·17
|
477 |
32·53
|
478 |
2·239
|
479 |
479
|
480 |
25·3·5
|
|
481 − 500
481 |
13·37
|
482 |
2·241
|
483 |
3·7·23
|
484 |
22·112
|
485 |
5·97
|
486 |
2·35
|
487 |
487
|
488 |
23·61
|
489 |
3·163
|
490 |
2·5·72
|
491 |
491
|
492 |
22·3·41
|
493 |
17·29
|
494 |
2·13·19
|
495 |
32·5·11
|
496 |
24·31
|
497 |
7·71
|
498 |
2·3·83
|
499 |
499
|
500 |
22·53
|
|
501 to 600
501 − 520
501 |
3·167
|
502 |
2·251
|
503 |
503
|
504 |
23·32·7
|
505 |
5·101
|
506 |
2·11·23
|
507 |
3·132
|
508 |
22·127
|
509 |
509
|
510 |
2·3·5·17
|
511 |
7·73
|
512 |
29
|
513 |
33·19
|
514 |
2·257
|
515 |
5·103
|
516 |
22·3·43
|
517 |
11·47
|
518 |
2·7·37
|
519 |
3·173
|
520 |
23·5·13
|
|
521 − 540
521 |
521
|
522 |
2·32·29
|
523 |
523
|
524 |
22·131
|
525 |
3·52·7
|
526 |
2·263
|
527 |
17·31
|
528 |
24·3·11
|
529 |
232
|
530 |
2·5·53
|
531 |
32·59
|
532 |
22·7·19
|
533 |
13·41
|
534 |
2·3·89
|
535 |
5·107
|
536 |
23·67
|
537 |
3·179
|
538 |
2·269
|
539 |
72·11
|
540 |
22·33·5
|
|
541 − 560
541 |
541
|
542 |
2·271
|
543 |
3·181
|
544 |
25·17
|
545 |
5·109
|
546 |
2·3·7·13
|
547 |
547
|
548 |
22·137
|
549 |
32·61
|
550 |
2·52·11
|
551 |
19·29
|
552 |
23·3·23
|
553 |
7·79
|
554 |
2·277
|
555 |
3·5·37
|
556 |
22·139
|
557 |
557
|
558 |
2·32·31
|
559 |
13·43
|
560 |
24·5·7
|
|
561 − 580
561 |
3·11·17
|
562 |
2·281
|
563 |
563
|
564 |
22·3·47
|
565 |
5·113
|
566 |
2·283
|
567 |
34·7
|
568 |
23·71
|
569 |
569
|
570 |
2·3·5·19
|
571 |
571
|
572 |
22·11·13
|
573 |
3·191
|
574 |
2·7·41
|
575 |
52·23
|
576 |
26·32
|
577 |
577
|
578 |
2·172
|
579 |
3·193
|
580 |
22·5·29
|
|
581 − 600
581 |
7·83
|
582 |
2·3·97
|
583 |
11·53
|
584 |
23·73
|
585 |
32·5·13
|
586 |
2·293
|
587 |
587
|
588 |
22·3·72
|
589 |
19·31
|
590 |
2·5·59
|
591 |
3·197
|
592 |
24·37
|
593 |
593
|
594 |
2·33·11
|
595 |
5·7·17
|
596 |
22·149
|
597 |
3·199
|
598 |
2·13·23
|
599 |
599
|
600 |
23·3·52
|
|
601 to 700
601 − 620
601 |
601
|
602 |
2·7·43
|
603 |
32·67
|
604 |
22·151
|
605 |
5·112
|
606 |
2·3·101
|
607 |
607
|
608 |
25·19
|
609 |
3·7·29
|
610 |
2·5·61
|
611 |
13·47
|
612 |
22·32·17
|
613 |
613
|
614 |
2·307
|
615 |
3·5·41
|
616 |
23·7·11
|
617 |
617
|
618 |
2·3·103
|
619 |
619
|
620 |
22·5·31
|
|
621 − 640
621 |
33·23
|
622 |
2·311
|
623 |
7·89
|
624 |
24·3·13
|
625 |
54
|
626 |
2·313
|
627 |
3·11·19
|
628 |
22·157
|
629 |
17·37
|
630 |
2·32·5·7
|
631 |
631
|
632 |
23·79
|
633 |
3·211
|
634 |
2·317
|
635 |
5·127
|
636 |
22·3·53
|
637 |
72·13
|
638 |
2·11·29
|
639 |
32·71
|
640 |
27·5
|
|
641 − 660
641 |
641
|
642 |
2·3·107
|
643 |
643
|
644 |
22·7·23
|
645 |
3·5·43
|
646 |
2·17·19
|
647 |
647
|
648 |
23·34
|
649 |
11·59
|
650 |
2·52·13
|
651 |
3·7·31
|
652 |
22·163
|
653 |
653
|
654 |
2·3·109
|
655 |
5·131
|
656 |
24·41
|
657 |
32·73
|
658 |
2·7·47
|
659 |
659
|
660 |
22·3·5·11
|
|
661 − 680
661 |
661
|
662 |
2·331
|
663 |
3·13·17
|
664 |
23·83
|
665 |
5·7·19
|
666 |
2·32·37
|
667 |
23·29
|
668 |
22·167
|
669 |
3·223
|
670 |
2·5·67
|
671 |
11·61
|
672 |
25·3·7
|
673 |
673
|
674 |
2·337
|
675 |
33·52
|
676 |
22·132
|
677 |
677
|
678 |
2·3·113
|
679 |
7·97
|
680 |
23·5·17
|
|
681 − 700
681 |
3·227
|
682 |
2·11·31
|
683 |
683
|
684 |
22·32·19
|
685 |
5·137
|
686 |
2·73
|
687 |
3·229
|
688 |
24·43
|
689 |
13·53
|
690 |
2·3·5·23
|
691 |
691
|
692 |
22·173
|
693 |
32·7·11
|
694 |
2·347
|
695 |
5·139
|
696 |
23·3·29
|
697 |
17·41
|
698 |
2·349
|
699 |
3·233
|
700 |
22·52·7
|
|
701 to 800
701 − 720
701 |
701
|
702 |
2·33·13
|
703 |
19·37
|
704 |
26·11
|
705 |
3·5·47
|
706 |
2·353
|
707 |
7·101
|
708 |
22·3·59
|
709 |
709
|
710 |
2·5·71
|
711 |
32·79
|
712 |
23·89
|
713 |
23·31
|
714 |
2·3·7·17
|
715 |
5·11·13
|
716 |
22·179
|
717 |
3·239
|
718 |
2·359
|
719 |
719
|
720 |
24·32·5
|
|
721 − 740
721 |
7·103
|
722 |
2·192
|
723 |
3·241
|
724 |
22·181
|
725 |
52·29
|
726 |
2·3·112
|
727 |
727
|
728 |
23·7·13
|
729 |
36
|
730 |
2·5·73
|
731 |
17·43
|
732 |
22·3·61
|
733 |
733
|
734 |
2·367
|
735 |
3·5·72
|
736 |
25·23
|
737 |
11·67
|
738 |
2·32·41
|
739 |
739
|
740 |
22·5·37
|
|
741 − 760
741 |
3·13·19
|
742 |
2·7·53
|
743 |
743
|
744 |
23·3·31
|
745 |
5·149
|
746 |
2·373
|
747 |
32·83
|
748 |
22·11·17
|
749 |
7·107
|
750 |
2·3·53
|
751 |
751
|
752 |
24·47
|
753 |
3·251
|
754 |
2·13·29
|
755 |
5·151
|
756 |
22·33·7
|
757 |
757
|
758 |
2·379
|
759 |
3·11·23
|
760 |
23·5·19
|
|
761 − 780
761 |
761
|
762 |
2·3·127
|
763 |
7·109
|
764 |
22·191
|
765 |
32·5·17
|
766 |
2·383
|
767 |
13·59
|
768 |
28·3
|
769 |
769
|
770 |
2·5·7·11
|
771 |
3·257
|
772 |
22·193
|
773 |
773
|
774 |
2·32·43
|
775 |
52·31
|
776 |
23·97
|
777 |
3·7·37
|
778 |
2·389
|
779 |
19·41
|
780 |
22·3·5·13
|
|
781 − 800
781 |
11·71
|
782 |
2·17·23
|
783 |
33·29
|
784 |
24·72
|
785 |
5·157
|
786 |
2·3·131
|
787 |
787
|
788 |
22·197
|
789 |
3·263
|
790 |
2·5·79
|
791 |
7·113
|
792 |
23·32·11
|
793 |
13·61
|
794 |
2·397
|
795 |
3·5·53
|
796 |
22·199
|
797 |
797
|
798 |
2·3·7·19
|
799 |
17·47
|
800 |
25·52
|
|
801 to 900
801 - 820
801 |
32·89
|
802 |
2·401
|
803 |
11·73
|
804 |
22·3·67
|
805 |
5·7·23
|
806 |
2·13·31
|
807 |
3·269
|
808 |
23·101
|
809 |
809
|
810 |
2·34·5
|
811 |
811
|
812 |
22·7·29
|
813 |
3·271
|
814 |
2·11·37
|
815 |
5·163
|
816 |
24·3·17
|
817 |
19·43
|
818 |
2·409
|
819 |
32·7·13
|
820 |
22·5·41
|
|
821 - 840
821 |
821
|
822 |
2·3·137
|
823 |
823
|
824 |
23·103
|
825 |
3·52·11
|
826 |
2·7·59
|
827 |
827
|
828 |
22·32·23
|
829 |
829
|
830 |
2·5·83
|
831 |
3·277
|
832 |
26·13
|
833 |
72·17
|
834 |
2·3·139
|
835 |
5·167
|
836 |
22·11·19
|
837 |
33·31
|
838 |
2·419
|
839 |
839
|
840 |
23·3·5·7
|
|
841 - 860
841 |
292
|
842 |
2·421
|
843 |
3·281
|
844 |
22·211
|
845 |
5·132
|
846 |
2·32·47
|
847 |
7·112
|
848 |
24·53
|
849 |
3·283
|
850 |
2·52·17
|
851 |
23·37
|
852 |
22·3·71
|
853 |
853
|
854 |
2·7·61
|
855 |
32·5·19
|
856 |
23·107
|
857 |
857
|
858 |
2·3·11·13
|
859 |
859
|
860 |
22·5·43
|
|
861 - 880
861 |
3·7·41
|
862 |
2·431
|
863 |
863
|
864 |
25·33
|
865 |
5·173
|
866 |
2·433
|
867 |
3·172
|
868 |
22·7·31
|
869 |
11·79
|
870 |
2·3·5·29
|
871 |
13·67
|
872 |
23·109
|
873 |
32·97
|
874 |
2·19·23
|
875 |
53·7
|
876 |
22·3·73
|
877 |
877
|
878 |
2·439
|
879 |
3·293
|
880 |
24·5·11
|
|
881 - 900
881 |
881
|
882 |
2·32·72
|
883 |
883
|
884 |
22·13·17
|
885 |
3·5·59
|
886 |
2·443
|
887 |
887
|
888 |
23·3·37
|
889 |
7·127
|
890 |
2·5·89
|
891 |
34·11
|
892 |
22·223
|
893 |
19·47
|
894 |
2·3·149
|
895 |
5·179
|
896 |
27·7
|
897 |
3·13·23
|
898 |
2·449
|
899 |
29·31
|
900 |
22·32·52
|
|
901 to 1000
901 - 920
901 |
17·53
|
902 |
2·11·41
|
903 |
3·7·43
|
904 |
23·113
|
905 |
5·181
|
906 |
2·3·151
|
907 |
907
|
908 |
22·227
|
909 |
32·101
|
910 |
2·5·7·13
|
911 |
911
|
912 |
24·3·19
|
913 |
11·83
|
914 |
2·457
|
915 |
3·5·61
|
916 |
22·229
|
917 |
7·131
|
918 |
2·33·17
|
919 |
919
|
920 |
23·5·23
|
|
921 - 940
921 |
3·307
|
922 |
2·461
|
923 |
13·71
|
924 |
22·3·7·11
|
925 |
52·37
|
926 |
2·463
|
927 |
32·103
|
928 |
25·29
|
929 |
929
|
930 |
2·3·5·31
|
931 |
72·19
|
932 |
22·233
|
933 |
3·311
|
934 |
2·467
|
935 |
5·11·17
|
936 |
23·32·13
|
937 |
937
|
938 |
2·7·67
|
939 |
3·313
|
940 |
22·5·47
|
|
941 - 960
941 |
941
|
942 |
2·3·157
|
943 |
23·41
|
944 |
24·59
|
945 |
33·5·7
|
946 |
2·11·43
|
947 |
947
|
948 |
22·3·79
|
949 |
13·73
|
950 |
2·52·19
|
951 |
3·317
|
952 |
23·7·17
|
953 |
953
|
954 |
2·32·53
|
955 |
5·191
|
956 |
22·239
|
957 |
3·11·29
|
958 |
2·479
|
959 |
7·137
|
960 |
26·3·5
|
|
961 - 980
961 |
312
|
962 |
2·13·37
|
963 |
32·107
|
964 |
22·241
|
965 |
5·193
|
966 |
2·3·7·23
|
967 |
967
|
968 |
23·112
|
969 |
3·17·19
|
970 |
2·5·97
|
971 |
971
|
972 |
22·35
|
973 |
7·139
|
974 |
2·487
|
975 |
3·52·13
|
976 |
24·61
|
977 |
977
|
978 |
2·3·163
|
979 |
11·89
|
980 |
22·5·72
|
|
981 - 1000
981 |
32·109
|
982 |
2·491
|
983 |
983
|
984 |
23·3·41
|
985 |
5·197
|
986 |
2·17·29
|
987 |
3·7·47
|
988 |
22·13·19
|
989 |
23·43
|
990 |
2·32·5·11
|
991 |
991
|
992 |
25·31
|
993 |
3·331
|
994 |
2·7·71
|
995 |
5·199
|
996 |
22·3·83
|
997 |
997
|
998 |
2·499
|
999 |
33·37
|
1000 |
23·53
|
|
See also
| Original source: https://en.wikipedia.org/wiki/Table of prime factors. Read more |