Chemistry:Petalite
Petalite | |
---|---|
Petalite from Minas Gerais State, Brazil (size: 3x4 cm) | |
General | |
Category | Phyllosilicate |
Formula (repeating unit) | LiAlSi4O10 |
Strunz classification | 9.EF.05 |
Crystal system | Monoclinic |
Crystal class | Prismatic (2/m) (same H-M symbol) |
Space group | P2/a |
Unit cell | a = 11.737 Å, b = 5.171 Å, c = 7.63 Å; β = 112.54°; Z = 2 |
Identification | |
Color | Colorless, grey, yellow, pink, to white |
Crystal habit | Tabular prismatic crystals and columnar masses |
Twinning | Common on {001}, lamellar |
Cleavage | Perfect on {001}, poor on {201} with 38.5° angle between the two |
Fracture | Subconchoidal |
Tenacity | Brittle |
Mohs scale hardness | 6–6.5 |
|re|er}} | Vitreous, pearly on cleavages |
Streak | Colorless |
Diaphaneity | Transparent to translucent |
Specific gravity | 2.4 |
Optical properties | Biaxial (+) |
Refractive index | nα = 1.504, nβ = 1.510, nγ = 1.516 |
Birefringence | δ = 0.012 |
2V angle | 82–84° measured |
Melting point | 1350 °C[1] |
Fusibility | 5 |
Solubility | Insoluble |
References | [2][3][4][5] |
Petalite, also known as castorite, is a lithium aluminum phyllosilicate mineral LiAlSi4O10, crystallizing in the monoclinic system. Petalite occurs as colorless, pink, grey, yellow, yellow grey, to white tabular crystals and columnar masses. It occurs in lithium-bearing pegmatites with spodumene, lepidolite, and tourmaline. Petalite is an important ore of lithium, and is converted to spodumene and quartz by heating to ~500 °C and under 3 kbar of pressure in the presence of a dense hydrous alkali borosilicate fluid with a minor carbonate component.[7] Petalite (and secondary spodumene formed from it) is lower in iron than primary spodumene, making it a more useful source of lithium in, e.g., the production of glass. The colorless varieties are often used as gemstones. [citation needed]
Discovery and occurrence
Petalite was discovered in 1800, by Brazilian naturalist and statesman Jose Bonifacio de Andrada e Silva. Type locality: Utö Island, Haninge, Stockholm, Sweden. The name is derived from the Greek word petalon, which means leaf, alluding to its perfect cleavage.[4]<ref>{{cite journal | url = https://www.biodiversitylibrary.org/item/29658#page/256/mode/1up | page= 239 | title = Des caractères et des propriétés de plusieurs nouveaux minérauxde Suède et de Norwège , avec quelques observations chimiques faites sur ces substances
Economic deposits of petalite are found near Kalgoorlie, Western Australia; Aracuai, Minas Gerais, Brazil ; Karibib, Namibia; Manitoba, Canada ; and Bikita, Zimbabwe.
The first important economic application for petalite was as a raw material for the glass-ceramic cooking ware CorningWare.[citation needed] It has been used as a raw material for ceramic glazes.
References
- ↑ "Petalite". Digital Fire. http://digitalfire.com/4sight/material/petalite_1114.html.
- ↑ Anthony, John W.; Bideaux, Richard A.; Bladh, Kenneth W.; Nichols, Monte C. (2005). "Petalite". Mineral Data Publishing. http://www.handbookofmineralogy.org/pdfs/petalite.pdf.
- ↑ Webmineral
- ↑ 4.0 4.1 Petalite, MinDat.org, http://www.mindat.org/show.php?id=3171
- ↑ *Hurlbut, Cornelius S. and Klein, Cornelis, 1985, Manual of Mineralogy, Wiley, 20th ed., pp. 459–460 ISBN:0-471-80580-7
- ↑ Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine 85 (3): 291–320. doi:10.1180/mgm.2021.43. Bibcode: 2021MinM...85..291W.
- ↑ Deer, W. A. (2004). Framework silicates: silica minerals, feldspathoids and the zeolites (2. ed.). London: Geological Soc.. pp. 296. ISBN 978-1-86239-144-4.
External links
Original source: https://en.wikipedia.org/wiki/Petalite.
Read more |