Biology:2018 in non-avian dinosaur archosaur paleontology

From HandWiki
Short description: Overview of the events of 2018 in non-avian dinosaur archosaur paleontology
Main page: 2018 in archosaur paleontologyThe year 2018 in non-avian dinosaur archosaur paleontology was eventful. Archosaurs include the only living dinosaur group — birds — and the reptile crocodilians, plus all extinct dinosaurs, extinct crocodilian relatives, and pterosaurs. Archosaur palaeontology is the scientific study of those animals, especially as they existed before the Holocene Epoch began about 11,700 years ago. This article records new taxa of fossil archosaurs of the non-avian variety that have been described during the year 2018, as well as other significant discoveries and events related to paleontology of archosaurs that occurred in the year 2018.

Research

  • A study intending to identify the evolutionary processes that drove the diversification of dinosaur body mass is published by Benson et al. (2018).[1]
  • A study on the impact of geography on the evolutionary radiation of dinosaurs is published by O’Donovan, Meade & Venditti (2018), who note increasing amounts of sympatric speciation as terrestrial space became a limiting factor.[2]
  • A study on the impact of publication history on the estimates of dinosaur diversity patterns through time is published by Tennant, Chiarenza & Baron (2018).[3]
  • A study evaluating the possible influence of cuirassal ventilation and a herbivorous diet on the orientation of the pubis of dinosaurs is published by Macaluso & Tschopp (2018).[4]
  • A study on embryos of extant reptiles and birds, aiming to determine the developmental mechanism underlying the acquisition of the dinosaur-type perforated acetabulum, is published by Egawa et al. (2018).[5]
  • A study on the nesting style and incubation heat source in non-avian dinosaurs as indicated by comparison with extant crocodylians and megapode birds is published by Tanaka et al. (2018).[6]
  • A study on pigment traces in fossilized dinosaur eggshells is published by Wiemann, Yang & Norell (2018), who interpret their findings as indicating that eggshell coloration and pigment pattern originated in nonavian theropod dinosaurs.[7][8][9]
  • A study on the nutritional value of plants grown under elevated CO2 levels, evaluating the hypothesis that constraints on sauropod diet quality were driven by Mesozoic CO2 concentration, is published by Gill et al. (2018).[10]
  • Studies evaluating the link between the Carnian Pluvial Event and the explosive diversification of dinosaurs in the early Late Triassic are published by Bernardi et al. (2018)[11] and Benton, Bernardi & Kinsella (2018).[12]
  • A study comparing non-avian dinosaur faunas of Appalachia and Laramidia from the Aptian to Maastrichtian stages of the Cretaceous period is published by Brownstein (2018), who also evaluates dinosaur provincialism and ecology on Appalachia.[13]
  • A study on the bone histology of sauropod dinosaurs and birds, looking for histological correlates indicative of the presence of bird-like air sacs, is published by Lambertz, Bertozzo & Sander (2018).[14]
  • A study on the Middle Jurassic flora from Yorkshire (United Kingdom ) as indicated by pollen and spores, and on the possible dinosaur-plant interactions in the area is published by Slater et al. (2018).[15]
  • Description and analysis of insect borings on hadrosaur bones from the late Campanian Cerro del Pueblo Formation (Mexico) is published by Serrano-Brañas, Espinosa-Chávez & Maccracken (2018).[16]
  • A study on the sedimentological and ichnological contexts of Early Jurassic dinosaur tracks and trackways from the Ha Nohana palaeosurface located within the upper Elliot Formation (Lesotho), and on the locomotor dynamics and behaviour of the trackmaker dinosaurs, is published by Rampersadh et al. (2018).[17]
  • New Middle Jurassic dinosaur tracksite, preserving sauropod and theropod tracks, is described from the Lealt Shale Formation (Skye, Scotland, United Kingdom ) by dePolo et al. (2018).[18]
  • Large theropod (possibly carcharodontosaurid) and ornithopod (basal hadrosauroid) tracks are described from the Lower Cretaceous Sanbukdong Formation (South Korea ) by Lee et al. (2018).[19]
  • A unique association of hadrosaur and therizinosaur tracks is reported from the Late Cretaceous lower Cantwell Formation (Alaska, United States ) by Fiorillo et al. (2018).[20]
  • Large theropod and small sauropod tracks are described from the Lower Cretaceous Jingchuan Formation (China ) by Lockley et al. (2018), who name a new ichnotaxon Ordexallopus zhanglifui.[21]
  • A study on the small to medium-sized tridactyl theropod tracks from the Upper Jurassic of the Jura Mountains (Switzerland ), focusing on the possible variations in footprint shape along trackways, is published by Castanera et al. (2018).[22]
  • Theropod tracks (probably produced by Acrocanthosaurus) are described from the Cretaceous (Albian) De Queen Formation (Arkansas, United States ) by Platt et al. (2018).[23]
  • First Cretaceous track morphotype attributable to the non-avian theropod ichnogenus Gigandipus is reported from the Lower Cretaceous Jiaguan Formation (Guizhou, China ) by Xing et al. (2018), who name a new ichnospecies Gigandipus chiappei.[24]
  • New dinosaur ootaxon Duovallumoolithus shangdanensis is described on the basis of fossil eggs from the Upper Cretaceous Lijiacun Formation (China ) by Zheng et al. (2018).[25]
  • A study on dendroolithid eggs from the Upper Cretaceous Tumiaoling Hill locality (Gaogou Formation; Yunxian, Hubei Province, China) is published by Zhang et al. (2018), who transfer the oospecies "Dendroolithus" tumiaolingensis Zhou, Ren, Xu & Guan (1998) to the genus Placoolithus.[26]
  • Evidence of cuticle preservation on theropod eggshells from the Nanxiong Group in China and the Two Medicine Formation in Montana, United States is presented by Yang et al. (2018).[27]
  • Description of a femur of a young diplodocoid sauropod from the Carnegie Quarry (Upper Jurassic Morrison Formation) at Dinosaur National Monument (United States ), showing extensive bite marks on the bone, and a study on the identity and feeding technique of the tracemaker is published by Hone & Chure (2018).[28]
  • A skull of a chasmosaurine ceratopsian, preserving bite traces made by a tyrannosaurid theropod, is described from the Campanian Kirtland Formation (New Mexico, United States ) by Dalman & Lucas (2018).[29]
  • A study on the function of denticle shape variation in the teeth of coelurosaurs of various body shapes and sizes is published by Torices et al. (2018).[30]
  • New data on feather anatomy in theropod dinosaurs Sinosauropteryx, Caudipteryx and Anchiornis is presented by Saitta, Gelernter & Vinther (2018).[31]
  • Theropod tracksite discovered in the Maastrichtian Nemegt Formation (Mongolia), preserving tracks of least four different trackmakers, and associated with a distorted foot skeleton of Gallimimus, is described by Lee et al. (2018).[32]
  • Didactyl theropod tracks with similarities to footprints attributed to small deinonychosaurian theropods are described from the Middle Jurassic (Aalenian-Bajocian) Dansirit Formation (Iran) by Xing, Abbassi & Lockley (2018).[33]
  • Parallel trackways indicating a group of small didactyl bipeds of inferred deinonychosaurian affinity are described from the Lower Cretaceous Dasheng Group (China ) by Xing et al. (2018).[34]
  • Didactyl tracks attributed to juvenile or diminutive dromaeosaurs are described from the Lower Cretaceous (Aptian) Jinju Formation (South Korea ) by Kim et al. (2018), who name a new ichnotaxon Dromaeosauriformipes rarus.[35]
  • Bishop et al. (2018) present predictive equations that may be used to model non-avian theropod locomotion, developed on the basis of a study of extant ground-running birds.[36]
  • A three-part series of papers investigating the architecture of cancellous bone in the main hindlimb bones of theropod dinosaurs, and evaluating its implications for inferring locomotor biomechanics in extinct non-avian theropods, is published by Bishop et al. (2018).[37][38][39]
  • A study on the resource partitioning among theropod dinosaurs known from the mid-Cretaceous assemblages from Niger (Gadoufaoua) and Morocco (Kem Kem Beds) as indicated by calcium isotope values from tooth enamel is published by Hassler et al. (2018).[40]
  • A study on the early evolution of the theropod hands and wrists, especially on the transition from five- to four-fingered hands, as indicated by the anatomy of the hands of Coelophysis bauri and Megapnosaurus rhodesiensis is published by Barta, Nesbitt & Norell (2018).[41]
  • A study on the morphological changes that occurred during ontogeny in the postcranial skeleton of Coelophysis bauri and Megapnosaurus rhodesiensis is published by Griffin (2018).[42]
  • A study on the anatomy, phylogenetic relationships, paleobiology and biogeography of members of Ceratosauria is published by Delcourt (2018), who names a new clade Etrigansauria.[43]
  • A study on the pneumatization of a noasaurid vertebra recovered from the Upper Cretaceous Adamantina Formation (Brazil ) is published by Brum et al. (2018).[44]
  • Two shed tooth crowns of an abelisaurid theropod are described from the Cenomanian Alcântara Formation by Sales, de Oliveira & Schultz (2018), representing the oldest abelisaurid occurrence from Brazil to date.[45]
  • Paulina-Carabajal & Filippi (2018) reconstruct the endocranial cavity enclosing the brain, cranial nerves, blood vessels and the labyrinth of the inner ear of the holotype specimen of Viavenator exxoni.[46]
  • Description of the osteology of Viavenator exxoni is published by Filippi et al. (2018).[47]
  • Fragmented theropod maxilla from the Upper Cretaceous Presidente Prudente Formation (Brazil ), initially thought to be a carcharodontosaurid fossil, is interpreted as more likely to be an abelisaurid fossil by Delcourt & Grillo (2018).[48]
  • A vertebra of a large megalosaurid theropod, as well as large theropod footprints representing two morphotypes, are described from the Upper Jurassic (Kimmeridgian) of Asturias (Spain ) by Rauhut et al. (2018).[49]
  • A study on the anatomy and histology of a partial spinosaurid tibia from the Lower Cretaceous Romualdo Formation (Brazil ), possessing traits previously only observed in Spinosaurus aegyptiacus and correlated with semi-aquatic habits in many limbed vertebrates, is published by Aureliano et al. (2018).[50]
  • Spinosaurid fossils assigned to a form distinct from Baryonyx, Suchomimus and Sigilmassasaurus are described from the upper Barremian Arcillas de Morella Formation (Spain ) by Malafaia et al. (2018).[51]
  • A nearly complete pedal ungual phalanx of an early juvenile specimen of Spinosaurus, representing the smallest known specimen assigned to this genus reported so far, is described from the Cretaceous Kem Kem Beds (Morocco) by Maganuco & Dal Sasso (2018).[52]
  • A study on the floating capabilities of Spinosaurus and other theropods is published by Henderson (2018), who argues that Spinosaurus was not highly specialized for a semi-aquatic mode of life.[53]
  • A study on the anatomy of the skull of Concavenator corcovatus is published by Cuesta et al. (2018).[54]
  • A study on the limb anatomy of Concavenator corcovatus is published by Cuesta, Ortega & Sanz (2018).[55]
  • A review of the fossil record of carcharodontosaurid theropods from the Cretaceous of North Africa, assessing its implications for understanding the distribution and ecological role of members of this group, is published by Candeiro et al. (2018).[56]
  • Description of theropod (including tyrannosauroid, ornithomimosaur and dromaeosaurid) specimens from the Ellisdale site of the Cretaceous Marshalltown Formation (New Jersey, United States ) is published by Brownstein (2018).[57]
  • A study on the dietary and habitat preferences of theropod dinosaurs from the Upper Cretaceous Mussentuchit Member of the Cedar Mountain Formation of Utah is published by Frederickson, Engel & Cifelli (2018).[58]
  • Theropod fossils from the Lower Cretaceous (Albian) Santana Formation (Brazil ), initially thought to be oviraptorosaur fossils, are reinterpreted as fossils of a member of Megaraptora by Aranciaga Rolando et al. (2018).[59]
  • A study on the phylogenetic relationships of Timimus hermani and Santanaraptor placidus is published by Delcourt & Grillo (2018), who interpret these taxa as tyrannosauroid theropods, and name new clades Pantyrannosauria and Eutyrannosauria.[60]
  • The first neurocranial and paleoneurological description of Dilong paradoxus, comparing it with large tyrannosaurids, is published online by Kundrát et al. (2018).[61]
  • A metatarsal bone of an indeterminate tyrannosauroid theropod, indicative of an animal in the size range of tyrannosauroids from the Santonian to Maastrichtian, is described from the Cenomanian Potomac Formation of New Jersey by Brownstein (2018), representing the only definite occurrence of a tyrannosauroid in Appalachia (eastern North America) before the Coniacian and Santonian.[62]
  • Three foot bones of large tyrannosauroid theropods, interpreted as fossils of non-tyrannosaurid tyrannosauroids, are described from the Maastrichtian Navesink Formation (New Jersey, United States ) by Brownstein (2018).[63]
  • Partial tibia of a tyrannosauroid theropod, possibly a relative of Bistahieversor sealeyi, is described from the Upper Cretaceous (Maastrichtian) Navesink Formation (New Jersey, United States ) by Brownstein (2018).[64]
  • A metatarsal bone of a young tyrannosaurid theropod, marked with several long grooves interpreted as tooth traces of a large tyrannosaurid, is described from the Upper Cretaceous (Maastrichtian) Lance Formation (Wyoming, United States ) by McLain et al. (2018).[65]
  • A study on the jaw musculature of Tyrannosaurus rex, and its importance for reconstructions of the bite force of this species, is published by Bates & Falkingham (2018).[66]
  • A study on the ornithomimosaur fossils from the Lower Cretaceous Arundel Clay (Maryland, United States ) published by Brownstein (2017), interpreting the fossils as indicative of the presence of two ornithomimosaur taxa in the Arundel,[67] is criticized by McFeeters, Ryan & Cullen (2018).[68][69][70]
  • A study on the diversity of ornithomimosaur dinosaurs from the Upper Cretaceous Nemegt Formation (Mongolia) as indicated by the morphology of their manus bones is published by Chinzorig et al. (2018).[71]
  • A study on the putative beta-keratin antibodies reported in a fossil specimen of Shuvuuia deserti by Schweitzer et al. (1999)[72] is published by Saitta et al. (2018), who interpret their findings as inconsistent with any protein or other original organic substance preservation in the Shuvuuia fiber.[73]
  • Probable therizinosauroid eggs are described from the Upper Cretaceous Hongtuya Formation (China ) by Ren et al. (2018).[74]
  • A study on the anatomy of the basicranium of Nothronychus mckinleyi, and its implications for reconstructing the soft tissues of this species, is published by Smith, Sanders & Wolfe (2018).[75]
  • A study on egg clutches produced by oviraptorosaur theropods representing a large body size range, evaluating their implications for inferring how oviraptorosaurs of different body size incubated their eggs, is published by Tanaka et al. (2018).[76]
  • A study evaluating the potential of the wings of Caudipteryx to produce small aerodynamic forces during terrestrial locomotion is published by Talori et al. (2018).[77]
  • A study on the morphology of the dentary of a member of the genus Caenagnathasia from the Upper Cretaceous (Turonian) Bissekty Formation (Uzbekistan) is published by Wang, Zhang & Yang (2018).[78]
  • A small caenagnathid tibia is described from the Upper Cretaceous (Maastrichtian) Horseshoe Canyon Formation (Alberta, Canada ) by Funston & Currie (2018).[79]
  • New specimen of Citipati osmolskae preserved in a brooding position atop a nest of eggs is described from Ukhaa Tolgod (Mongolia) by Norell et al. (2018).[80]
  • Description of endocasts of Citipati osmolskae and Khaan mckennai, and a study on their implications for inferring the course of oviraptorosaur brain evolution and how it relates to the origin of the modern bird brain, is published by Balanoff et al. (2018).[81]
  • Redescription of Hulsanpes perlei and a study on the phylogenetic relationships of this species is published by Cau & Madzia (2018).[82]
  • Description of the anatomy of the postcranial skeleton of a newly discovered specimen of Buitreraptor gonzalezorum is published by Novas et al. (2018).[83]
  • A study on the tail anatomy of Buitreraptor gonzalezorum is published by Motta, Brissón Egli & Novas (2018).[84]
  • Description of the anatomy of the postcranial skeleton of Buitreraptor gonzalezorum based on the holotype and referred specimens is published by Gianechini et al. (2018).[85]
  • A tooth of a large dromaeosaurid theropod, intermediate in size between those of smaller dromaeosaurids like Saurornitholestes and gigantic forms like Dakotaraptor, is described from the middle Campanian Tar Heel Formation (North Carolina, United States ) by Brownstein (2018).[86]
  • New specimen of Sinovenator changii, including a nearly complete skull and providing new information on the anatomy of the skull of this species, is described from the Lower Cretaceous Yixian Formation (China ) by Yin, Pei & Zhou (2018).[87]
  • A study on the incubation period and incubation strategy of Troodon formosus is published by Varricchio, Kundrát & Hogan (2018).[88]
  • Description of two new specimens of Anchiornis huxleyi and a study on the phylogenetic relationships of the species is published by Guo, Xu & Jia (2018).[89]
  • Apparent gastric pellets of Anchiornis are described by Zheng et al. (2018).[90]
  • A study on the evolution of the anatomy of the braincase of sauropodomorph dinosaurs is published by Bronzati, Benson & Rauhut (2018).[91]
  • Otero (2018) presents the inferred shoulder and forelimb musculature of sauropodomorph dinosaurs, as inferred by comparisons with living crocodiles and birds.[92]
  • A study evaluating how hindlimb musculature of sauropodomorph dinosaurs was affected by the development of a quadrupedal stance from a bipedal one, and later in the transition from a narrow‐gauge to a wide‐gauge stance, is published by Klinkhamer et al. (2018).[93]
  • New specimen of Buriolestes schultzi, providing additional information on the anatomy of this species, is described from the Upper Triassic Santa Maria Formation (Brazil ) by Müller et al. (2018).[94]
  • Fossil of a basal sauropodomorph dinosaur (more similar to Norian forms such as Pantydraco caducus and Unaysaurus tolentinoi than to Carnian taxa such as Saturnalia tupiniquim and Pampadromaeus barberenai) found in the Triassic locality in Brazil which also yielded the fossils of Sacisaurus agudoensis are described by Marsola et al. (2018).[95]
  • Redescription of the anatomy of the braincase of Efraasia minor is published by Bronzati & Rauhut (2018).[96]
  • A study on the anatomy and phylogenetic relationships of Sarahsaurus aurifontanalis is published by Marsh & Rowe (2018).[97]
  • A study on the anatomy of the skull of Massospondylus carinatus is published by Chapelle & Choiniere (2018).[98]
  • Xing et al. (2018) describe a bone abnormality in a rib of a specimen of Lufengosaurus huenei from the Lower Jurassic Fengjiahe Formation (China ), possibly caused by a failed predator attack.[99]
  • A study on the osteology of the sauropodomorph Pulanesaura eocollum is published by Mcphee & Choiniere (2018).[100]
  • A study on the microstructure of the long bones of Antetonitrus ingenipes is published by Krupandan, Chinsamy-Turan & Pol (2018).[101]
  • A study on the geological age of the type locality of Vulcanodon karibaensis is published by Viglietti et al. (2018), who interpret Vulcanodon as likely to be Sinemurian–Pliensbachian in age, and potentially ∼10–15 million years older than previously thought. This makes it the oldest known sauropod.[102]
  • Two neck vertebrae of a eusauropod sauropod dinosaur are described from a new Early Jurassic locality in the Haute Moulouya Basin (Morocco) by Nicholl, Mannion & Barrett (2018), representing some of the earliest eusauropod fossils reported so far.[103]
  • A study on the phylogenetic relationships of basal members of Eusauropoda from the Early-Middle Jurassic of Patagonia, Argentina is published by Holwerda & Pol (2018).[104]
  • A study on the age of the Lower Shaximiao Formation of the Sichuan Basin, southwest China (preserving abundant sauropod fossils, including the Shunosaurus-Omeisaurus fauna) is published by Wang et al. (2018).[105]
  • Redescription of the complete series of the neck vertebrae of Xinjiangtitan shanshanesis is published online by Zhang et al. (2018).[106]
  • A study on the skull anatomy of Bellusaurus sui is published by Moore et al. (2018).[107]
  • Description of a skull of a juvenile sauropod belonging or related to the genus Diplodocus from the Upper Jurassic Morrison Formation (Montana, United States ), representing the smallest diplodocid skull reported so far, and a study on the implications of this finding for inferring the ontogeny of the skull of diplodocids, is published by Woodruff et al. (2018).[108]
  • Exquisitely preserved new skull of a diplodocid sauropod is described from the Upper Jurassic Morrison Formation (Wyoming, United States) by Tschopp, Mateus & Norell (2018), providing new information on the morphology of diplodocid skulls, and indicating presence of overlapping joints between the maxilla, jugal, quadratojugal and the lacrimal, permitting limited anterior sliding movement of the snout.[109]
  • Xenoposeidon proneneukos is assigned to the family Rebbachisauridae by Taylor (2018).[110]
  • Partial sauropod (probably brachiosaurid) pes is described from the Upper Jurassic Morrison Formation in the Black Hills in Wyoming (United States ) by Maltese et al. (2018), representing the largest sauropod pes described to date.[111]
  • A sauropod footprint assigned to the ichnogenus Brontopodus, produced by a trackmaker of the size exceeding that of any Mongolian dinosaur reported so far from skeletal material, is described from the Upper Cretaceous Nemegt Formation (Mongolia) by Stettner, Persons & Currie (2018).[112]
  • A study on sauropod tracks from the Cal Orck’o tracksite in the Maastrichtian El Molino Formation (Bolivia) is published by Meyer, Marty & Belvedere (2018), who name a new ichnotaxon Calorckosauripus lazari, interpreted by the authors as tracks produced by a basal titanosaur.[113]
  • A study on the bone histology of Rapetosaurus krausei is published by Curry Rogers & Kulik (2018).[114]
  • New titanosaur fossil material is described from the Upper Cretaceous Río Huaco Formation and Los Llanos Formation (La Rioja Province, Argentina) by Hechenleitner et al. (2018).[115]
  • A study on the mechanical strength of the unusually thick shells of the titanosaur eggs from the Sanagasta nesting site (La Rioja, Argentina ), evaluating the required force to break them from inside, is published by Hechenleitner et al. (2018), who interpret their findings as indicating that thinning of outer eggshells was necessary for successful hatchings.[116]
  • Description of new fossil material of Atsinganosaurus velauciensis from the Upper Cretaceous Argiles et Grès à Reptiles Formation (France ) and a study on the phylogenetic relationships of this species is published by Díez Díaz et al. (2018).[117]
  • Ibiricu, Martínez & Casal (2018) present the reconstruction of the pelvic and hindlimb musculature of Epachthosaurus sciuttoi.[118]
  • A redescription of Mendozasaurus neguyelap based on previously undocumented remains and a study on the phylogenetic relationships of the species is published by Gonzàlez Riga et al. (2018).[119]
  • Postcranial remains attributable to the holotype specimen of Nemegtosaurus mongoliensis are described from the Upper Cretaceous Nemegt Formation (Mongolia) by Currie et al. (2018), who consider Opisthocoelicaudia skarzynskii to be a probable junior synonym of N. mongoliensis.[120]
  • A study on the morphology of sauropod teeth from the Cenomanian of Morocco and Algeria, comparing them to contemporaneous Cretaceous sauropod tooth morphotypes (including sauropod teeth from Africa and southern Europe), is published by Holwerda et al. (2018).[121]
  • A study on the heterodontosaurid fossils from the Early Jurassic of Argentina described by Becerra et al. (2016),[122] aiming to estimate the body size of the animal, is published by Becerra & Ramírez (2018).[123]
  • A study on the teeth of Manidens condorensis, based on new material indicative of a strong heterodonty and a novel occlusion type previously unreported in herbivorous dinosaurs, is published by Becerra et al. (2018).[124]
  • Redescription of Gigantspinosaurus sichuanensis and a study on the phylogenetic relationships of the species is published by Hao et al. (2018).[125]
  • A study on pathological characteristics of left femur of a specimen of Gigantspinosaurus sichuanensis from the Late Jurassic of China is published online by Hao et al. (2018), who interpret this specimen as probably affected by bone tumor.[126]
  • New specimen of Hesperosaurus mjosi, providing new information on the anatomy of the species and indicating that H. mjosi might have been a smaller species than Stegosaurus stenops, is described from the Upper Jurassic Morrison Formation (Montana, United States ) by Maidment, Woodruff & Horner (2018).[127]
  • Redescription of the fossil material referred to Paranthodon africanus and a study on the phylogenetic relationships of this species is published by Raven & Maidment (2018).[128]
  • Probable ankylosaurian footprints are described from the Upper Jurassic Guará Formation (Brazil ) by Francischini et al. (2018).[129]
  • Probable ankylosaurian footprints assigned to the ichnogenus Tetrapodosaurus are described from the Middle Jurassic (Bajocian) Zorrillo-Taberna Indiferenciadas Formation (Mexico) by Rodríguez-de la Rosa et al. (2018), representing the oldest ankylosaurian ichnofossils reported so far.[130]
  • A study aiming to test the hypothesis that convoluted nasal passages of ankylosaurs were efficient heat exchangers is published by Bourke, Porter & Witmer (2018).[131]
  • A study on the neuroanatomy of ankylosaurid dinosaurs based on skull endocasts of Talarurus plicatospineus and Tarchia teresae is published by Paulina-Carabajal et al. (2018).[132]
  • A survey of ankylosaur occurrences in the Cretaceous deposits of Alberta (Canada ) and a study looking for explanation of numerous instances of ankylosaur specimens preserved overturned is published by Mallon et al. (2018).[133]
  • A study on the teeth histology and development in Changchunsaurus parvus is published by Chen et al. (2018).[134]
  • Parksosaurid tooth and vertebral centrum is described from the Campanian of the Cerro del Pueblo Formation by Rivera-Sylva et al. (2018), representing the first record of this family from Mexico.[135]
  • A study on the bone microstructure and ontogeny of basal ornithopod specimens from the Early Cretaceous of Australia is published by Woodward, Rich & Vickers-Rich (2018), who reinterpret the tracks as produced in non-marine environment.[136]
  • A toe bone of an ornithopod dinosaur is described from the Albian Hudspeth Formation (Oregon, United States ) by Retallack et al. (2018), representing the first diagnostic nonavian dinosaur fossil from Oregon.[137]
  • A study on the ontogenetic changes in the postcranial skeleton of Dysalotosaurus lettowvorbecki is published by Hübner (2018).[138]
  • A study on the holotype specimen of Riabininohadros weberae, revealing previously unknown elements of the femur, astragalus and calcaneus, is published by Lopatin, Averianov & Alifanov (2018), who also report the second dinosaur specimen from the Maastrichtian of Crimea, a fragmentary skeleton of an advanced iguanodontid or primitive hadrosauroid ornithopod.[139]
  • A redescription of Iguanodon galvensis and a study on the phylogenetic relationships of the species is published by Verdú et al. (2018).[140]
  • Microfossil remains of Early Cretaceous grasses extracted from a specimen of Equijubus normani are described by Wu, You & Li (2018).[141]
  • A study on the phylogenetic relationships of Nipponosaurus sachalinensis is published by Takasaki et al. (2018).[142]
  • A study on the osteology, histology and taxonomy of the Maastrichtian hadrosauroid specimens from the Basturs Poble bonebed (Spain ) is published by Fondevilla et al. (2018).[143]
  • A study on the anatomy of the perinatal specimens of Maiasaura peeblesorum from the Campanian Two Medicine Formation (Montana, United States ), and on their implications for understanding of the morphological changes in the skeletons of members of this species that took place in their early growth stages, is published by Prieto-Marquez & Guenther (2018).[144]
  • Description of the morphology of the braincase of Secernosaurus koerneri is published by Becerra et al. (2018).[145]
  • A hadrosaurid nestling belonging to the genus Edmontosaurus is described from the Upper Cretaceous (Maastrichtian) Hell Creek Formation (Montana), United States ) by Wosik, Goodwin & Evans (2018), who interpret its anatomy as indicating that it was capable of fully quadrupedal locomotion.[146]
  • Partial sacrum of a hadrosaurid dinosaur is described from the Campanian Cape Sebastian Sandstone (Oregon, United States ) by Taylor & Lucas (2018).[147]
  • A study on the differences in shape and structural performance of the lower jaws of ceratopsians is published by Maiorino et al. (2018).[148]
  • A study evaluating whether skull ornaments of ceratopsians might have helped members of closely related sympatric species differentiate themselves is published by Knapp et al. (2018).[149]
  • A description of the anatomy of the postcranial skeleton of Yinlong downsi and a study on the phylogenetic relationships of basal ornithischians is published by Han et al. (2018).[150]
  • A study on the morphology of the joint of the occipital skull region and the first two cervical vertebrae of Psittacosaurus sibiricus is published by Podlesnov (2018).[151]
  • A study on the dental morphology and tooth replacement in Liaoceratops yanzigouensis is published by He et al. (2018).[152]
  • A study on the ontogenetic changes of the bone microstructure in Protoceratops andrewsi and their implications for the biology of this species is published by Fostowicz-Frelik & Słowiak (2018).[153]
  • A study on the differences of shape of cervical vertebrae of different specimens of Protoceratops andrewsi is published by Tereschenko (2018).[154]
  • Two isolated ceratopsid horncores are described from the Upper Cretaceous (Campanian, ∼78.5 million years ago) Foremost Formation (Alberta, Canada ) by Brown (2018), representing some of the earliest ceratopsid fossils reported so far.[155]
  • Description of new fossil material of Medusaceratops lokii from the Upper Cretaceous Campanian Judith River Formation (Montana, United States ) and a study on the phylogenetic relationships of the species is published by Chiba et al. (2018).[156]
  • Small marks interpreted as feeding traces are described from a partial frill of a juvenile specimen of Centrosaurus apertus from the Dinosaur Park Formation (Alberta, Canada ) by Hone, Tanke & Brown (2018).[157]
  • Description of three partial chasmosaurine skulls collected from the Dinosaur Park Formation, and age-equivalent sediments of the uppermost Oldman Formation, of southern Alberta (Canada ) is published by Campbell et al. (2018).[158]
  • A study on the ecological diversity of Cretaceous herbivorous dinosaurs leading up to the Cretaceous–Paleogene extinction event, as indicated by jaw and teeth morphology, is published by Nordén et al. (2018).[159]
  • A comment on the study of Baron & Barrett[160] (which reassessed the phylogenetic relationships of Chilesaurus diegosuarezi) is published by Müller et al.(2018).[161]
  • A study on the taphonomical effects of sedimentary compression on the iliac morphology of early dinosaurs, using basal sauropodomorph specimens as a model is published by Müller, Garcia, Da-Rosa & Dias-da-Silva (2018).[162]


New taxa

Name Novelty Status Authors Age Unit Location Notes Images

Acantholipan[163]

Gen. et sp. nov

Valid

Rivera-Sylva et al.

Late Cretaceous (Santonian)

Pen Formation

 Mexico

A member of the family Nodosauridae. Genus includes new species A. gonzalezi.

Adynomosaurus[164]

Gen. et sp. nov

Valid

Prieto-Márquez et al.

Late Cretaceous

Tremp Formation

 Spain

A hadrosaurid ornithopod belonging to the subfamily Lambeosaurinae. Genus includes new species A. arcanus. Announced in 2018; the final version of the article naming it was published in 2019.

Akainacephalus[165]

Gen. et sp. nov

Valid

Wiersma & Irmis

Late Cretaceous (late Campanian)

Kaiparowits Formation

 United States
( Utah)

A member of the family Ankylosauridae. The type species is A. johnsoni.

Known material and skeletal reconstructions in dorsal and lateral views

Anhuilong[166]

Gen. et sp. nov

Valid

Ren, Huang & You

Middle Jurassic

Hongqin Formation

 China

A mamenchisaurid sauropod. Genus includes new species A. diboensis. Announced in 2018; the final version of the article naming it was published in 2020.

Anodontosaurus inceptus[167]

Sp. nov

Valid

Penkalski

Late Cretaceous

Dinosaur Park Formation

 Canada
( Alberta)

A member of the family Ankylosauridae.

File:Anodontosaurus lambei.tif

Anomalipes[168]

Gen. et sp. nov

Valid

Yu et al.

Late Cretaceous

Wangshi Group

 China

A caenagnathid theropod. The type species is A. zhaoi.

Arkansaurus[169]

Gen. et sp. nov

Valid

Hunt & Quinn

Early Cretaceous (AlbianAptian)

Trinity Group

 United States
( Arkansas)

An ornithomimosaur theropod. Genus includes new species A. fridayi.

Reconstruction of Arkansaurus fridayi

Avimimus nemegtensis[170]

Sp. nov

Valid

Funston et al.

Late Cretaceous

Nemegt Formation

 Mongolia

An oviraptorosaurian. Announced in 2017; the final version of the article naming it was published in 2018.

Baalsaurus[171]

Gen. et sp. nov

Valid

Calvo & Riga

Late Cretaceous (Turonian-Coniacian)

Portezuelo Formation

 Argentina

A titanosaur sauropod. The type species is B. mansillai.

Bagualosaurus[172]

Gen. et sp. nov

Valid

Pretto, Langer & Schultz

Late Triassic

Santa Maria Formation

 Brazil

An early member of Sauropodomorpha. Genus includes new species B. agudoensis.

Reconstruction of Bagualosaurus agudoensis

Bannykus[173]

Gen. et sp. nov

Valid

Xu et al.

Early Cretaceous (Aptian)

Bayin-Gobi Formation

 China

An alvarezsaurian theropod. The type species is B. wulatensis.

Reconstruction of Bannykus wulatensis

Bayannurosaurus[174]

Gen. et sp. nov

Valid

Xu et al.

Early Cretaceous

Bayin-Gobi Formation

 China

A non-hadrosauriform ankylopollexian ornithopod. Genus includes new species B. perfectus.

Caihong[175]

Gen. et sp. nov

Valid

Hu et al.

Late Jurassic (Oxfordian)

Tiaojishan Formation

 China

A paravian theropod. The type species is C. juji.

Reconstruction of Caihong juji

Choconsaurus[176]

Gen. et sp. nov

Valid

Simón, Salgado & Calvo

Late Cretaceous (Cenomanian)

Huincul Formation

 Argentina

A titanosaur sauropod. The type species is C. baileywillisi. Announced in 2017; the final version of the article naming it was published in 2018.

Choyrodon[177]

Gen. et sp. nov

Valid

Gates et al.

Early Cretaceous (Albian)

Khuren Dukh Formation

 Mongolia

An iguanodontian ornithopod. The type species is C. barsboldi.

Crittendenceratops[178]

Gen. et sp. nov

Valid

Dalman et al.

Late Cretaceous (Campanian)

Fort Crittenden Formation

 United States
( Arizona)

A centrosaurine ceratopsid dinosaur belonging to the tribe Nasutoceratopsini. The type species is C. krzyzanowskii.

Reconstruction of Crittendenceratops krzyzanowskii

Diluvicursor[179]

Gen. et sp. nov

Valid

Herne et al.

Early Cretaceous (Albian)

Eumeralla Formation

 Australia

A small-bodied ornithopod. The type species is D. pickeringi.

Reconstruction of Diluvicursor pickeringi

Dryosaurus elderae[180]

Sp. nov

Valid

Carpenter & Galton

Late Jurassic

Morrison Formation

 United States
( Utah)

Dynamoterror[181]

Gen. et sp. nov

Valid

McDonald, Wolfe & Dooley

Late Cretaceous (early Campanian)

Menefee Formation

 United States
( New Mexico)

A tyrannosaurid theropod. The type species D. dynastes.

Ingentia[182]

Gen. et sp. nov

Valid

Apaldetti et al.

Late Triassic (late Norian–Rhaetian)

Quebrada del Barro Formation

 Argentina

An early member of Sauropodomorpha related to Lessemsaurus. Genus includes new species I. prima.

Invictarx[183]

Gen. et sp. nov

Valid

McDonald & Wolfe

Late Cretaceous (early Campanian)

Menefee Formation

 United States
( New Mexico)

A member of the family Nodosauridae. The type species is I. zephyri.

Jinyunpelta[184]

Gen. et sp. nov

Zheng et al.

Cretaceous (AlbianCenomanian)

Liangtoutang Formation

 China

A member of the family Ankylosauridae belonging to the subfamily Ankylosaurinae. The type species is J. sinensis.

Reconstruction of Jinyunpelta sinensis

Lavocatisaurus[185]

Gen. et sp. nov

Valid

Canudo et al.

Early Cretaceous (Aptian–early Albian)

Rayoso Formation

 Argentina

A rebbachisaurid sauropod. The type species is L. agrioensis.

Reconstruction of Lavocatisaurus agrioensis

Ledumahadi[186]

Gen. et sp. nov

Valid

McPhee et al.

Early Jurassic (Hettangian-Sinemurian)

Elliot Formation

 South Africa

An early member of Sauropodiformes. The type species is L. mafube.

Reconstruction of Ledumahadi mafube

Liaoningotitan[187]

Gen. et sp. nov

Valid

Zhou et al.

Early Cretaceous

Yixian Formation

 China

A titanosauriform sauropod. The type species is L. sinensis.

Lingwulong[188]

Gen. et sp. nov

Valid

Xu et al.

Late Early to early Middle Jurassic (late Toarcian–Bajocian)

Yanan Formation

 China

A dicraeosaurid sauropod. The type species is L. shenqi.

Reconstruction of Lingwulong shenqi

Macrocollum[189]

Gen. et sp. nov

Valid

Müller, Langer & Dias-da-Silva

Late Triassic (early Norian)

Caturrita Formation

 Brazil

An early member of Sauropodomorpha related to Unaysaurus. Genus includes new species M. itaquii.

Reconstruction of Macrocollum itaquii

Mansourasaurus[190]

Gen. et sp. nov

Valid

Sallam et al.

Late Cretaceous (Campanian)

Quseir Formation

 Egypt

A titanosaur sauropod. The type species is M. shahinae.

Reconstruction of Mansourasaurus shahinae

Maraapunisaurus[191]

Gen. et comb. nov

Valid

Carpenter

Late Jurassic (Kimmeridgian—Tithonian)

Morrison Formation

 United States
 Colorado

A rebbachisaurid sauropod; a new genus for "Amphicoelias" fragillimus Cope (1878f).

Mongolostegus[192]

Gen. et sp. nov

Valid

Tumanova & Alifanov

Early Cretaceous (AptianAlbian)

Dzunbain Formation

 Mongolia

A member of Stegosauria. Genus includes new species M. exspectabilis.

Pilmatueia[193]

Gen. et sp. nov

Valid

Coria et al.

Early Cretaceous (Valanginian)

Mulichinco Formation

 Argentina

A dicraeosaurid sauropod. The type species is P. faundezi. Announced in 2018; the final version of the article naming it was published in 2019.

Platypelta[167]

Gen. et sp. nov

Valid

Penkalski

Late Cretaceous

Dinosaur Park Formation

 Canada
( Alberta)

A member of the family Ankylosauridae. Genus includes new species P. coombsi.

File:Platypelta AMNH 5337.tiff

Qiupanykus[194]

Gen. et sp. nov

Valid

et al.

Late Cretaceous (Maastrichtian)

Qiupa Formation

 China

An alvarezsaurid theropod. The type species is Q. zhangi.

Saltriovenator[195]

Gen. et sp. nov

Valid

Dal Sasso et al.

Early Jurassic (Sinemurian)

Saltrio Formation

 Italy

A ceratosaurian theropod. The type species is S. zanellai.

Reconstruction of Saltriovenator zanellai

Scolosaurus thronus[167]

Sp. nov

Valid

Penkalski

Late Cretaceous

Dinosaur Park Formation

 Canada
( Alberta)

A member of the family Ankylosauridae.

File:Euoplocephalus ROM1930.tif

Sibirotitan[196]

Gen. et sp. nov

Valid

Averianov et al.

Early Cretaceous (probably Barremian)

Ilek Formation

 Russia

A non-titanosaurian somphospondyl sauropod. Genus includes new species S. astrosacralis.

Thanos[197]

Gen. et sp. nov

Valid

Delcourt & Iori

Late Cretaceous (Santonian)

São José do Rio Preto Formation

 Brazil

An abelisaurid theropod. Genus includes new species T. simonattoi. Announced in 2018; the final version of the article naming it was published in 2020.

Thanos simonattoi.png

Tratayenia[198]

Gen. et sp. nov

Valid

Porfiri et al.

Late Cretaceous (Santonian)

Bajo de la Carpa Formation

 Argentina

A megaraptoran theropod. Genus includes new species T. rosalesi.

Volgatitan[199]

Gen. et sp. nov

Valid

Averianov & Efimov

Early Cretaceous (Hauterivian)

 Russia
(Template:Country data Ulyanovsk Oblast)

A titanosaur sauropod related to members of the group Lognkosauria. The type species is V. simbirskiensis.

Weewarrasaurus[200]

Gen. et sp. nov

Valid

Bell et al.

Late Cretaceous (Cenomanian)

Griman Creek Formation

 Australia

A small-bodied non-iguanodontian ornithopod. The type species is W. pobeni.

Xiyunykus[173]

Gen. et sp. nov

Valid

Xu et al.

Early Cretaceous (Barremian-Aptian?)

Tugulu Group

 China

An alvarezsaurian theropod. The type species is X. pengi.

Reconstruction of Xiyunykus pengi

Yizhousaurus[201]

Gen. et sp. nov

Zhang et al.

Early Jurassic

Lufeng Formation

 China

An early member of Sauropodiformes. The type species is Y. sunae.

References

  1. Roger B. J. Benson; Gene Hunt; Matthew T. Carrano; Nicolás Campione (2018). "Cope's rule and the adaptive landscape of dinosaur body size evolution". Palaeontology 61 (1): 13–48. doi:10.1111/pala.12329. 
  2. Ciara O’Donovan; Andrew Meade; Chris Venditti (2018). "Dinosaurs reveal the geographical signature of an evolutionary radiation". Nature Ecology & Evolution 2 (3): 452–458. doi:10.1038/s41559-017-0454-6. PMID 29403079. http://centaur.reading.ac.uk/75344/1/75344%20%20Combined.pdf. 
  3. Jonathan P. Tennant; Alfio Alessandro Chiarenza; Matthew Baron (2018). "How has our knowledge of dinosaur diversity through geologic time changed through research history?". PeerJ 6: e4417. doi:10.7717/peerj.4417. PMID 29479504. 
  4. Loredana Macaluso; Emanuel Tschopp (2018). "Evolutionary changes in pubic orientation in dinosaurs are more strongly correlated with the ventilation system than with herbivory". Palaeontology 61 (5): 703–719. doi:10.1111/pala.12362. 
  5. Shiro Egawa; Daisuke Saito; Gembu Abe; Koji Tamura (2018). "Morphogenetic mechanism of the acquisition of the dinosaur-type acetabulum". Royal Society Open Science 5 (10): 180604. doi:10.1098/rsos.180604. PMID 30473817. Bibcode2018RSOS....580604E. 
  6. Kohei Tanaka; Darla K. Zelenitsky; François Therrien; Yoshitsugu Kobayashi (2018). "Nest substrate reflects incubation style in extant archosaurs with implications for dinosaur nesting habits". Scientific Reports 8 (1): Article number 3170. doi:10.1038/s41598-018-21386-x. PMID 29545620. Bibcode2018NatSR...8.3170T. 
  7. Jasmina Wiemann; Tzu-Ruei Yang; Mark A. Norell (2018). "Dinosaur egg colour had a single evolutionary origin". Nature 563 (7732): 555–558. doi:10.1038/s41586-018-0646-5. PMID 30464264. Bibcode2018Natur.563..555W. 
  8. Matthew D. Shawkey; Liliana D’Alba (2019). "Egg pigmentation probably has an early archosaurian origin". Nature 570 (7761): E43–E45. doi:10.1038/s41586-019-1282-4. PMID 31217602. Bibcode2019Natur.570E..43S. 
  9. Jasmina Wiemann; Tzu-Ruei Yang; Mark A. Norell (2019). "Reply to: Egg pigmentation probably has an archosaurian origin". Nature 570 (7761): E46–E50. doi:10.1038/s41586-019-1283-3. PMID 31217604. Bibcode2019Natur.570E..46W. 
  10. Fiona L. Gill; Jürgen Hummel; A. Reza Sharifi; Alexandra P. Lee; Barry H. Lomax (2018). "Diets of giants: the nutritional value of sauropod diet during the Mesozoic". Palaeontology 61 (5): 647–658. doi:10.1111/pala.12385. PMID 30147151. 
  11. Massimo Bernardi; Piero Gianolla; Fabio Massimo Petti; Paolo Mietto; Michael J. Benton (2018). "Dinosaur diversification linked with the Carnian Pluvial Episode". Nature Communications 9 (1): Article number 1499. doi:10.1038/s41467-018-03996-1. PMID 29662063. Bibcode2018NatCo...9.1499B. 
  12. Michael J. Benton; Massimo Bernardi; Cormac Kinsella (2018). "The Carnian Pluvial Episode and the origin of dinosaurs". Journal of the Geological Society 175 (6): 1019–1026. doi:10.1144/jgs2018-049. Bibcode2018JGSoc.175.1019B. 
  13. Chase D. Brownstein (2018). "The biogeography and ecology of the Cretaceous non-avian dinosaurs of Appalachia". Palaeontologia Electronica 21 (1): 1–56. doi:10.26879/801. 
  14. Markus Lambertz; Filippo Bertozzo; P. Martin Sander (2018). "Bone histological correlates for air sacs and their implications for understanding the origin of the dinosaurian respiratory system". Biology Letters 14 (1): 20170514. doi:10.1098/rsbl.2017.0514. PMID 29298825. 
  15. Sam M. Slater; Charles H. Wellman; Michael Romano; Vivi Vajda (2018). "Dinosaur-plant interactions within a Middle Jurassic ecosystem—palynology of the Burniston Bay dinosaur footprint locality, Yorkshire, UK". Palaeobiodiversity and Palaeoenvironments 98 (1): 139–151. doi:10.1007/s12549-017-0309-9. 
  16. Claudia Inés Serrano-Brañas; Belinda Espinosa-Chávez; Augusta Maccracken (2018). "Insect damage in dinosaur bones from the Cerro del Pueblo Formation (Late Cretaceous, Campanian) Coahuila, Mexico". Journal of South American Earth Sciences 86: 353–365. doi:10.1016/j.jsames.2018.07.002. Bibcode2018JSAES..86..353S. 
  17. Akhil Rampersadh; Emese M. Bordy; Lara Sciscio; Miengah Abrahams (2018). "Dinosaur behaviour in an Early Jurassic palaeoecosystem – uppermost Elliot Formation, Ha Nohana, Lesotho". Annales Societatis Geologorum Poloniae 88 (2): 163–179. doi:10.14241/asgp.2018.010. https://geojournals.pgi.gov.pl/asgp/article/view/26089. 
  18. Paige E. dePolo; Stephen L. Brusatte; Thomas J. Challands; Davide Foffa; Dugald A. Ross; Mark Wilkinson; Hong-yu Yi (2018). "A sauropod-dominated tracksite from Rubha nam Brathairean (Brothers' Point), Isle of Skye, Scotland". Scottish Journal of Geology 54 (1): 1–12. doi:10.1144/sjg2017-016. 
  19. Yuong-Nam Lee; Hang-Jae Lee; Sang-Young Han; Euijun Park; Chan Hee Lee (2018). "A new dinosaur tracksite from the Lower Cretaceous Sanbukdong Formation of Gunsan City, South Korea". Cretaceous Research 91: 208–216. doi:10.1016/j.cretres.2018.06.003. 
  20. Anthony R. Fiorillo; Paul J. McCarthy; Yoshitsugu Kobayashi; Carla S. Tomsich; Ronald S. Tykoski; Yuong-Nam Lee; Tomonori Tanaka; Christopher R. Noto (2018). "An unusual association of hadrosaur and therizinosaur tracks within Late Cretaceous rocks of Denali National Park, Alaska". Scientific Reports 8 (1): Article number 11706. doi:10.1038/s41598-018-30110-8. PMID 30076347. Bibcode2018NatSR...811706F. 
  21. Martin G. Lockley; Jianjun Li; Lida Xing; Bin Guo; Masaki Matsukawa (2018). "Large theropod and small sauropod trackmakers from the Lower Cretaceous Jingchuan Formation, Inner Mongolia, China". Cretaceous Research 92: 150–167. doi:10.1016/j.cretres.2018.07.007. 
  22. Diego Castanera; Matteo Belvedere; Daniel Marty; Géraldine Paratte; Marielle Lapaire-Cattin; Christel Lovis; Christian A. Meyer (2018). "A walk in the maze: variation in Late Jurassic tridactyl dinosaur tracks from the Swiss Jura Mountains (NW Switzerland)". PeerJ 6: e4579. doi:10.7717/peerj.4579. PMID 29629243. 
  23. Brian F. Platt; Celina A. Suarez; Stephen K. Boss; Malcolm Williamson; Jackson Cothren; Jo Ann C. Kvamme (2018). "LIDAR-based characterization and conservation of the first theropod dinosaur trackways from Arkansas, USA". PLOS ONE 13 (1): e0190527. doi:10.1371/journal.pone.0190527. PMID 29293618. Bibcode2018PLoSO..1390527P. 
  24. Lida Xing; Martin G. Lockley; Hendrik Klein; Rong Zeng; Sifu Cai; Xiuchun Luo; Chen Li (2018). "Theropod assemblages and a new ichnotaxon Gigandipus chiappei ichnosp. nov. from the Jiaguan Formation, Lower Cretaceous of Guizhou Province, China". Geoscience Frontiers 9 (6): 1745–1754. doi:10.1016/j.gsf.2017.12.012. 
  25. Tingting Zheng; Yi Bai; Qiang Wang; Xufeng Zhu; Kaiyong Fang; Yuan Yao; Yongqiang Zhao; Xiaolin Wang (2018). "A new ootype of dinosaur egg (Faveoloolithidae: Duovallumoolithus shangdanensis oogen. et oosp. nov.) from the Late Cretaceous in the Shangdan Basin, Shaanxi Province, China". Acta Geologica Sinica (English Edition) 92 (3): 897–903. doi:10.1111/1755-6724.13581. http://www.geojournals.cn/dzxben/ch/reader/view_abstract.aspx?file_no=2018endzxb03002&flag=1. 
  26. Shukang Zhang; Tzu-Ruei Yang; Zhengqi Li; Yongguo Hu (2018). "New dinosaur egg material from Yunxian, Hubei Province, China resolves the classification of dendroolithid eggs". Acta Palaeontologica Polonica 63 (4): 671–678. doi:10.4202/app.00523.2018. 
  27. Tzu-Ruei Yang; Ying-Hsuan Chen; Jasmina Wiemann; Beate Spiering; P. Martin Sander (2018). "Fossil eggshell cuticle elucidates dinosaur nesting ecology". PeerJ 6: e5144. doi:10.7717/peerj.5144. PMID 30002976. 
  28. David W.E. Hone; Daniel J. Chure (2018). "Difficulties in assigning trace makers from theropodan bite marks: an example from a young diplodocoid sauropod". Lethaia 51 (3): 456–466. doi:10.1111/let.12267. http://qmro.qmul.ac.uk/xmlui/handle/123456789/36557. 
  29. Sebastian G. Dalman; Spencer G. Lucas (2018). "New evidence for predatory behavior in tyrannosaurid dinosaurs from the Kirtland Formation (Late Cretaceous, Campanian), northwestern New Mexico". New Mexico Museum of Natural History and Science Bulletin 79: 113–124. https://www.researchgate.net/publication/328676803. 
  30. Angelica Torices; Ryan Wilkinson; Victoria M. Arbour; Jose Ignacio Ruiz-Omeñaca; Philip J. Currie (2018). "Puncture-and-pull biomechanics in the teeth of predatory coelurosaurian dinosaurs". Current Biology 28 (9): 1467–1474.e2. doi:10.1016/j.cub.2018.03.042. PMID 29706515. 
  31. Evan T. Saitta; Rebecca Gelernte; Jakob Vinther (2018). "Additional information on the primitive contour and wing feathering of paravian dinosaurs". Palaeontology 61 (2): 273–288. doi:10.1111/pala.12342. https://research-information.bris.ac.uk/en/publications/additional-information-on-the-primitive-contour-and-wing-feathering-of-paravian-dinosaurs(61351c6d-1517-4101-bac8-50cbb733761d).html. 
  32. Hang-Jae Lee; Yuong-Nam Lee; Thomas L. Adams; Philip J. Currie; Yoshitsugu Kobayashi; Louis L. Jacobs; Eva B. Koppelhus (2018). "Theropod trackways associated with a Gallimimus foot skeleton from the Nemegt Formation, Mongolia". Palaeogeography, Palaeoclimatology, Palaeoecology 494: 160–167. doi:10.1016/j.palaeo.2017.10.020. Bibcode2018PPP...494..160L. 
  33. Lida Xing; Nasrollah Abbassi; Martin G. Lockley (2018). "Enigmatic didactyl tracks from the Jurassic of Iran". Historical Biology: An International Journal of Paleobiology 30 (8): 1132–1138. doi:10.1080/08912963.2017.1339700. 
  34. Lida Xing; Martin G. Lockley; Ying Guo; Hendrik Klein; Junqiang Zhang; Li Zhang; W. Scott Persons IV; Anthony Romilio et al. (2018). "Multiple parallel deinonychosaurian trackways from a diverse dinosaur track assemblage of the Lower Cretaceous Dasheng Group of Shandong Province, China". Cretaceous Research 90: 40–55. doi:10.1016/j.cretres.2018.04.005. https://espace.library.uq.edu.au/view/UQ:4bac9a1/UQ4bac9a1_OA.pdf. 
  35. Kyung Soo Kim; Jong Deock Lim; Martin G. Lockley; Lida Xing; Dong Hee Kim; Laura Piñuela; Anthony Romilio; Jae Sang Yoo et al. (2018). "Smallest known raptor tracks suggest microraptorine activity in lakeshore setting". Scientific Reports 8 (1): Article number 16908. doi:10.1038/s41598-018-35289-4. PMID 30442900. Bibcode2018NatSR...816908K. 
  36. P. J. Bishop; D. F. Graham; L. P. Lamas; J. R. Hutchinson; J. Rubenson; J. A. Hancock; R. S. Wilson; S. A. Hocknull et al. (2018). "The influence of speed and size on avian terrestrial locomotor biomechanics: Predicting locomotion in extinct theropod dinosaurs". PLOS ONE 13 (2): e0192172. doi:10.1371/journal.pone.0192172. PMID 29466362. Bibcode2018PLoSO..1392172B. 
  37. Peter J. Bishop; Scott A. Hocknull; Christofer J. Clemente; John R. Hutchinson; Andrew A. Farke; Belinda R. Beck; Rod S. Barrett; David G. Lloyd (2018). "Cancellous bone and theropod dinosaur locomotion. Part I—an examination of cancellous bone architecture in the hindlimb bones of theropods". PeerJ 6: e5778. doi:10.7717/peerj.5778. PMID 30402347. 
  38. Peter J. Bishop; Scott A. Hocknull; Christofer J. Clemente; John R. Hutchinson; Rod S. Barrett; David G. Lloyd (2018). "Cancellous bone and theropod dinosaur locomotion. Part II—a new approach to inferring posture and locomotor biomechanics in extinct tetrapod vertebrates". PeerJ 6: e5779. doi:10.7717/peerj.5779. PMID 30402348. 
  39. Peter J. Bishop; Scott A. Hocknull; Christofer J. Clemente; John R. Hutchinson; Andrew A. Farke; Rod S. Barrett; David G. Lloyd (2018). "Cancellous bone and theropod dinosaur locomotion. Part III—Inferring posture and locomotor biomechanics in extinct theropods, and its evolution on the line to birds". PeerJ 6: e5777. doi:10.7717/peerj.5777. PMID 30402346. 
  40. A. Hassler; J. E. Martin; R. Amiot; T. Tacail; F. Arnaud Godet; R. Allain; V. Balter (2018). "Calcium isotopes offer clues on resource partitioning among Cretaceous predatory dinosaurs". Proceedings of the Royal Society B: Biological Sciences 285 (1876): 20180197. doi:10.1098/rspb.2018.0197. PMID 29643213. 
  41. Daniel E. Barta; Sterling J. Nesbitt; Mark A. Norell (2018). "The evolution of the manus of early theropod dinosaurs is characterized by high inter- and intraspecific variation". Journal of Anatomy 232 (1): 80–104. doi:10.1111/joa.12719. PMID 29114853. 
  42. C. T. Griffin (2018). "Developmental patterns and variation among early theropods". Journal of Anatomy 232 (4): 604–640. doi:10.1111/joa.12775. PMID 29363129. 
  43. Rafael Delcourt (2018). "Ceratosaur palaeobiology: new insights on evolution and ecology of the southern rulers". Scientific Reports 8 (1): Article number 9730. doi:10.1038/s41598-018-28154-x. PMID 29950661. Bibcode2018NatSR...8.9730D. 
  44. Arthur Souza Brum; Elaine Batista Machado; Diogenes de Almeida Campos; Alexander Wilhelm Armin Kellner (2018). "Description of uncommon pneumatic structures of a noasaurid (Theropoda, Dinosauria) cervical vertebra to the Bauru Group (Upper Cretaceous), Brazil". Cretaceous Research 85: 193–206. doi:10.1016/j.cretres.2017.10.012. 
  45. Marcos A.F. Sales; Isabel A.P. de Oliveira; Cesar L. Schultz (2018). "The oldest abelisaurid record from Brazil and the palaeobiogeographic significance of mid-Cretaceous dinosaur assemblages from northern South America". Palaeogeography, Palaeoclimatology, Palaeoecology 508: 107–115. doi:10.1016/j.palaeo.2018.07.024. Bibcode2018PPP...508..107S. 
  46. Ariana Paulina-Carabajal; Leonardo Filippi (2018). "Neuroanatomy of the abelisaurid theropod Viavenator: The most complete reconstruction of a cranial endocast and inner ear for a South American representative of the clade". Cretaceous Research 83: 84–94. doi:10.1016/j.cretres.2017.06.013. 
  47. Leonardo S. Filippi; Ariel H. Méndez; Federico A. Gianechini; Rubén D. Juárez Valieri; Alberto C. Garrido (2018). "Osteology of Viavenator exxoni (Abelisauridae; Furileusauria) from the Bajo de la Carpa Formation, NW Patagonia, Argentina". Cretaceous Research 83: 95–119. doi:10.1016/j.cretres.2017.07.019. 
  48. Rafael Delcourt; Orlando Nelson Grillo (2018). "Reassessment of a fragmentary maxilla attributed to Carcharodontosauridae from Presidente Prudente Formation, Brazil". Cretaceous Research 84: 515–524. doi:10.1016/j.cretres.2017.09.008. 
  49. Oliver W.M. Rauhut; Laura Piñuela; Diego Castanera; José-Carlos García-Ramos; Irene Sánchez Cela (2018). "The largest European theropod dinosaurs: remains of a gigantic megalosaurid and giant theropod tracks from the Kimmeridgian of Asturias, Spain". PeerJ 6: e4963. doi:10.7717/peerj.4963. PMID 30002951. 
  50. Tito Aureliano; Aline M. Ghilardi; Pedro V. Buck; Matteo Fabbri; Adun Samathi; Rafael Delcourt; Marcelo A. Fernandes; Martin Sander (2018). "Semi-aquatic adaptations in a spinosaur from the Lower Cretaceous of Brazil". Cretaceous Research 90: 283–295. doi:10.1016/j.cretres.2018.04.024. http://osf.io/mjt95/. 
  51. Elisabete Malafaia; José Miguel Gasulla; Fernando Escaso; Iván Narváez; José Luis Sanz; Francisco Ortega (2018). "New spinosaurid (Theropoda, Megalosauroidea) remains from the Arcillas de Morella Formation (upper Barremian) of Morella, Spain". Cretaceous Research 92: 174–183. doi:10.1016/j.cretres.2018.08.006. 
  52. Simone Maganuco; Cristiano Dal Sasso (2018). "The smallest biggest theropod dinosaur: a tiny pedal ungual of a juvenile Spinosaurus from the Cretaceous of Morocco". PeerJ 6: e4785. doi:10.7717/peerj.4785. PMID 29868253. 
  53. Donald M. Henderson (2018). "A buoyancy, balance and stability challenge to the hypothesis of a semi-aquatic Spinosaurus Stromer, 1915 (Dinosauria: Theropoda)". PeerJ 6: e5409. doi:10.7717/peerj.5409. PMID 30128195. 
  54. Elena Cuesta; Daniel Vidal; Francisco Ortega; José L. Sanz (2018). "The cranial osteology of Concavenator corcovatus (Theropoda; Carcharodontosauria) from the Lower Cretaceous of Spain". Cretaceous Research 91: 176–194. doi:10.1016/j.cretres.2018.06.007. 
  55. Elena Cuesta; Francisco Ortega; José Luis Sanz (2018). "Appendicular osteology of Concavenator corcovatus (Theropoda; Carcharodontosauridae; Early Cretaceous; Spain)". Journal of Vertebrate Paleontology 38 (4): (1)–(24). doi:10.1080/02724634.2018.1485153. 
  56. Carlos Roberto dos Anjos Candeiro; Stephen Louis Brusatte; Luciano Vidal; Paulo Victor Luiz Gomes da Costa Pereira (2018). "Paleobiogeographic evolution and distribution of Carcharodontosauridae (Dinosauria, Theropoda) during the middle Cretaceous of North Africa". Papéis Avulsos de Zoologia 58: e20185829. doi:10.11606/1807-0205/2018.58.29. 
  57. Chase D. Brownstein (2018). "The distinctive theropod assemblage of the Ellisdale site of New Jersey and its implications for North American dinosaur ecology and evolution during the Cretaceous". Journal of Paleontology 92 (6): 1115–1129. doi:10.1017/jpa.2018.42. 
  58. J. A. Frederickson; M. H. Engel; R. L. Cifelli (2018). "Niche partitioning in theropod dinosaurs: diet and habitat preference in predators from the uppermost Cedar Mountain Formation (Utah, U.S.A.)". Scientific Reports 8 (1): Article number 17872. doi:10.1038/s41598-018-35689-6. PMID 30552378. Bibcode2018NatSR...817872F. 
  59. Alexis M. Aranciaga Rolando; Federico Brissón Egli; Marcos A.F. Sales; Agustín G. Martinelli; Juan I. Canale; Martín D. Ezcurra (2018). "A supposed Gondwanan oviraptorosaur from the Albian of Brazil represents the oldest South American megaraptoran". Cretaceous Research 84: 107–119. doi:10.1016/j.cretres.2017.10.019. 
  60. Rafael Delcourt; Orlando Nelson Grillo (2018). "Tyrannosauroids from the Southern Hemisphere: Implications for biogeography, evolution, and taxonomy". Palaeogeography, Palaeoclimatology, Palaeoecology 511: 379–387. doi:10.1016/j.palaeo.2018.09.003. Bibcode2018PPP...511..379D. 
  61. Martin Kundrát; Xing Xu; Martina Hančová; Andrej Gajdoš; Yu Guo; Defeng Chen (2018). "Evolutionary disparity in the endoneurocranial configuration between small and gigantic tyrannosauroids". Historical Biology: An International Journal of Paleobiology 32 (5): 620–634. doi:10.1080/08912963.2018.1518442. 
  62. Chase Doran Brownstein (2018). "A tyrannosauroid from the lower Cenomanian of New Jersey and its evolutionary and biogeographic implications". Bulletin of the Peabody Museum of Natural History 59 (1): 95–105. doi:10.3374/014.058.0210. 
  63. Chase Brownstein (2018). "Large basal tyrannosauroids from the Maastrichtian and terrestrial vertebrate diversity in the shadow of the K-Pg extinction". The Mosasaur. The Journal of the Delaware Valley Paleontological Society X: 105–115. https://www.researchgate.net/publication/329687124. 
  64. Chase D. Brownstein (2018). "A tyrannosauroid tibia from the Navesink Formation of New Jersey and its biogeographic and evolutionary implications for North American tyrannosauroids". Cretaceous Research 85: 309–318. doi:10.1016/j.cretres.2018.01.005. 
  65. Matthew A. McLain; David Nelsen; Keith Snyder; Christopher T. Griffin; Bethania Siviero; Leonard R. Brand; Arthur V. Chadwick (2018). "Tyrannosaur cannibalism: a case of a tooth-traced tyrannosaurid bone in the Lance Formation (Maastrichtian), Wyoming". PALAIOS 33 (4): 164–173. doi:10.2110/palo.2017.076. Bibcode2018Palai..33..164M. 
  66. Karl T. Bates; Peter L. Falkingham (2018). "The importance of muscle architecture in biomechanical reconstructions of extinct animals: a case study using Tyrannosaurus rex". Journal of Anatomy 233 (5): 625–635. doi:10.1111/joa.12874. PMID 30129185. PMC 6183000. http://researchonline.ljmu.ac.uk/id/eprint/9364/3/The%20importance%20of%20muscle%20architecture%20in%20biomechanical%20reconstructions%20of%20extinct%20animals%20a%20case%20study%20using%20Tyrannosaurus%20rex.pdf. 
  67. Chase Doran Brownstein (2017). "Description of Arundel Clay ornithomimosaur material and a reinterpretation of Nedcolbertia justinhofmanni as an "Ostrich Dinosaur": biogeographic implications". PeerJ 5: e3110. doi:10.7717/peerj.3110. PMID 28286718. 
  68. Bradley McFeeters; Michael J. Ryan; Thomas M. Cullen (2018). "Positional variation in pedal unguals of North American ornithomimids (Dinosauria, Theropoda): a response to Brownstein (2017)". Vertebrate Anatomy Morphology Palaeontology 6: 60–67. doi:10.18435/vamp29283. 
  69. Chase Doran Brownstein (2018). "Rebuttal of McFeeters, Ryan and Cullen, 2018, 'Positional variation in pedal unguals of North American ornithomimids (Dinosauria, Theropoda): A Response to Brownstein (2017)'". Vertebrate Anatomy Morphology Palaeontology 6: 68–72. doi:10.18435/vamp29340. 
  70. Bradley McFeeters; Michael J. Ryan; Thomas M. Cullen (2018). "Response to Brownstein (2018) 'Rebuttal of McFeeters, Ryan and Cullen, 2018'". Vertebrate Anatomy Morphology Palaeontology 6: 73–74. doi:10.18435/vamp29343. 
  71. Tsogtbaatar Chinzorig; Yoshitsugu Kobayashi; Khishigjav Tsogtbaatar; Philip J. Currie; Ryuji Takasaki; Tomonori Tanaka; Masaya Iijima; Rinchen Barsbold (2018). "Ornithomimosaurs from the Nemegt Formation of Mongolia: manus morphological variation and diversity". Palaeogeography, Palaeoclimatology, Palaeoecology 494: 91–100. doi:10.1016/j.palaeo.2017.10.031. Bibcode2018PPP...494...91C. 
  72. M.H. Schweitzer; J.A. Watt; R. Avci; L. Knapp; L. Chiappe; M. Norell; M. Marshall (1999). "Beta‐keratin specific immunological reactivity in feather‐like structures of the Cretaceous alvarezsaurid, Shuvuuia deserti". Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 285 (2): 146–157. doi:10.1002/(SICI)1097-010X(19990815)285:2<146::AID-JEZ7>3.0.CO;2-A. PMID 10440726. 
  73. Evan T. Saitta; Ian Fletcher; Peter Martin; Michael Pittman; Thomas G. Kaye; Lawrence D. True; Mark A. Norell; Geoffrey D. Abbott et al. (2018). "Preservation of feather fibers from the Late Cretaceous dinosaur Shuvuuia deserti raises concern about immunohistochemical analyses on fossils". Organic Geochemistry 125: 142–151. doi:10.1016/j.orggeochem.2018.09.008. http://eprints.whiterose.ac.uk/137093/1/Saitta_et_al_feather_fibres_OG_AAM.docx. 
  74. Tian-long Ren; Yu-ye Wang; Zhen-guo Ning; Cai-zhi Shen; Xuan-yu Zhou; Kohei Tanaka; Yong-bo Huang; Cheng-jun Zhang et al. (2018). "The first discovery of dinosaur eggs in Laixi area of Qingdao, Shandong Province, and sedimentary environmental analysis". Acta Geoscientica Sinica 39 (2): 241–249. doi:10.3975/cagsb.2018.020501. 
  75. David K. Smith; R. Kent Sanders; Douglas G. Wolfe (2018). "A re-evaluation of the basicranial soft tissues and pneumaticity of the therizinosaurian Nothronychus mckinleyi (Theropoda; Maniraptora)". PLOS ONE 13 (7): e0198155. doi:10.1371/journal.pone.0198155. PMID 30063717. Bibcode2018PLoSO..1398155S. 
  76. Kohei Tanaka; Darla K. Zelenitsky; Junchang Lü; Christopher L. DeBuhr; Laiping Yi; Songhai Jia; Fang Ding; Mengli Xia et al. (2018). "Incubation behaviours of oviraptorosaur dinosaurs in relation to body size". Biology Letters 14 (5): 20180135. doi:10.1098/rsbl.2018.0135. PMID 29769301. 
  77. Yaser Saffar Talori; Yun-Fei Liu; Jing-Shan Zhao; Corwin Sullivan; Jingmai K. O’Connor; Zhi-Heng Li (2018). "Winged forelimbs of the small theropod dinosaur Caudipteryx could have generated small aerodynamic forces during rapid terrestrial locomotion". Scientific Reports 8 (1): Article number 17854. doi:10.1038/s41598-018-35966-4. PMID 30552395. Bibcode2018NatSR...817854T. 
  78. Shuo Wang; Qiyue Zhang; Rui Yang (2018). "Reevaluation of the dentary structures of caenagnathid oviraptorosaurs (Dinosauria, Theropoda)". Scientific Reports 8 (1): Article number 391. doi:10.1038/s41598-017-18703-1. PMID 29321606. Bibcode2018NatSR...8..391W. 
  79. Gregory F. Funston; Philip J. Currie (2018). "A small caenagnathid tibia from the Horseshoe Canyon Formation (Maastrichtian): Implications for growth and lifestyle in oviraptorosaurs". Cretaceous Research 92: 220–230. doi:10.1016/j.cretres.2018.08.020. 
  80. Mark A. Norell; Amy M. Balanoff; Daniel E. Barta; Gregory M. Erickson (2018). "A second specimen of Citipati osmolskae associated with a nest of eggs from Ukhaa Tolgod, Omnogov Aimag, Mongolia". American Museum Novitates (3899): 1–44. doi:10.1206/3899.1. https://www.biodiversitylibrary.org/bibliography/156722. 
  81. Amy M. Balanoff; Mark A. Norell; Aneila V. C. Hogan; Gabriel S. Bever (2018). "The endocranial cavity of oviraptorosaur dinosaurs and the increasingly complex, deep history of the avian brain". Brain, Behavior and Evolution 91 (3): 125–135. doi:10.1159/000488890. PMID 30099460. 
  82. Andrea Cau; Daniel Madzia (2018). "Redescription and affinities of Hulsanpes perlei (Dinosauria, Theropoda) from the Upper Cretaceous of Mongolia". PeerJ 6: e4868. doi:10.7717/peerj.4868. PMID 29868277. 
  83. Fernando E. Novas; Federico Brissón Egli; Federico L. Agnolin; Federico A. Gianechini; Ignacio Cerda (2018). "Postcranial osteology of a new specimen of Buitreraptor gonzalezorum (Theropoda, Coelurosauria)". Cretaceous Research 83: 127–167. doi:10.1016/j.cretres.2017.06.003. 
  84. Matías J. Motta; Federico Brissón Egli; Fernando E. Novas (2018). "Tail anatomy of Buitreraptor gonzalezorum (Theropoda, Unenlagiidae) and comparisons with other basal paravians". Cretaceous Research 83: 168–181. doi:10.1016/j.cretres.2017.09.004. 
  85. Federico A. Gianechini; Peter J. Makovicky; Sebastián Apesteguía; Ignacio Cerda (2018). "Postcranial skeletal anatomy of the holotype and referred specimens of Buitreraptor gonzalezorum Makovicky, Apesteguía and Agnolín 2005 (Theropoda, Dromaeosauridae), from the Late Cretaceous of Patagonia". PeerJ 6: e4558. doi:10.7717/peerj.4558. PMID 29607264. 
  86. Chase Brownstein (2018). "A giant dromaeosaurid from North Carolina". Cretaceous Research 92: 1–7. doi:10.1016/j.cretres.2018.07.006. 
  87. Ya-Lei Yin; Rui Pei; Chang-Fu Zhou (2018). "Cranial morphology of Sinovenator changii (Theropoda: Troodontidae) on the new material from the Yixian Formation of western Liaoning, China". PeerJ 6: e4977. doi:10.7717/peerj.4977. PMID 29942679. 
  88. David J. Varricchio; Martin Kundrát; Jason Hogan (2018). "An intermediate incubation period and primitive brooding in a theropod dinosaur". Scientific Reports 8 (1): Article number 12454. doi:10.1038/s41598-018-30085-6. PMID 30127534. Bibcode2018NatSR...812454V. 
  89. Xiangqi Guo; Li Xu; Songhai Jia (2018). "Morphological and phylogenetic study based on new materials of Anchiornis huxleyi (Dinosauria, Theropoda) from Jianchang, western Liaoning, China". Acta Geologica Sinica (English Edition) 92 (1): 1–15. doi:10.1111/1755-6724.13491. http://www.geojournals.cn/dzxben/ch/reader/view_abstract.aspx?file_no=2018endzxb01001&flag=1. 
  90. Xiaoting Zheng; Xiaoli Wang; Corwin Sullivan; Xiaomei Zhang; Fucheng Zhang; Yan Wang; Feng Li; Xing Xu (2018). "Exceptional dinosaur fossils reveal early origin of avian-style digestion". Scientific Reports 8 (1): Article number 14217. doi:10.1038/s41598-018-32202-x. PMID 30242170. Bibcode2018NatSR...814217Z. 
  91. Mario Bronzati; Roger B. J. Benson; Oliver W. M. Rauhut (2018). "Rapid transformation in the braincase of sauropod dinosaurs: integrated evolution of the braincase and neck in early sauropods?". Palaeontology 61 (2): 289–302. doi:10.1111/pala.12344. https://ora.ox.ac.uk/objects/uuid:4505c60b-6154-4901-be4d-fdf3d56c8a95. 
  92. Alejandro Otero (2018). "Forelimb musculature and osteological correlates in Sauropodomorpha (Dinosauria, Saurischia)". PLOS ONE 13 (7): e0198988. doi:10.1371/journal.pone.0198988. PMID 29975691. Bibcode2018PLoSO..1398988O. 
  93. Ada J. Klinkhamer; Heinrich Mallison; Stephen F. Poropat; George H.K. Sinapius; Stephen Wroe (2018). "Three‐dimensional musculoskeletal modelling of the sauropodomorph hind limb: the effect of postural change on muscle leverage". The Anatomical Record 301 (12): 2145–2163. doi:10.1002/ar.23950. PMID 30299598. 
  94. Rodrigo T. Müller; Max C. Langer; Mario Bronzati; Cristian P. Pacheco; Sérgio F. Cabreira; Sérgio Dias-Da-Silva (2018). "Early evolution of sauropodomorphs: anatomy and phylogenetic relationships of a remarkably well-preserved dinosaur from the Upper Triassic of southern Brazil". Zoological Journal of the Linnean Society 184 (4): 1187–1248. doi:10.1093/zoolinnean/zly009. 
  95. Júlio C.A. Marsola; Jonathas S. Bittencourt; Átila A.S. Da Rosa; Agustín G. Martinelli; Ana Maria Ribeiro; Jorge Ferigolo; Max C. Langer (2018). "New sauropodomorph and cynodont remains from the Late Triassic Sacisaurus site in southern Brazil and its stratigraphic position in the Norian Caturrita Formation". Acta Palaeontologica Polonica 63 (4): 653–669. doi:10.4202/app.00492.2018. 
  96. Mario Bronzati; Oliver W. M. Rauhut (2018). "Braincase redescription of Efraasia minor Huene, 1908 (Dinosauria: Sauropodomorpha) from the Late Triassic of Germany, with comments on the evolution of the sauropodomorph braincase". Zoological Journal of the Linnean Society 182 (1): 173–224. doi:10.1093/zoolinnean/zlx029. http://osf.io/7vmwd/. 
  97. Adam D. Marsh; Timothy B. Rowe (2018). "Anatomy and systematics of the sauropodomorph Sarahsaurus aurifontanalis from the Early Jurassic Kayenta Formation". PLOS ONE 13 (10): e0204007. doi:10.1371/journal.pone.0204007. PMID 30304035. Bibcode2018PLoSO..1304007M. 
  98. Kimberley E.J. Chapelle; Jonah N. Choiniere (2018). "A revised cranial description of Massospondylus carinatus Owen (Dinosauria: Sauropodomorpha) based on computed tomographic scans and a review of cranial characters for basal Sauropodomorpha". PeerJ 6: e4224. doi:10.7717/peerj.4224. PMID 29340238. 
  99. Lida Xing; Bruce M. Rothschild; Patrick S. Randolph-Quinney; Yi Wang; Alexander H. Parkinson; Hao Ran (2018). "Possible bite-induced abscess and osteomyelitis in Lufengosaurus (Dinosauria: sauropodomorph) from the Lower Jurassic of the Yimen Basin, China". Scientific Reports 8 (1): Article number 5045. doi:10.1038/s41598-018-23451-x. PMID 29568005. Bibcode2018NatSR...8.5045X. 
  100. Blair W. Mcphee; Jonah N. Choiniere (2018). "The osteology of Pulanesaura eocollum: implications for the inclusivity of Sauropoda (Dinosauria)". Zoological Journal of the Linnean Society 182 (4): 830–861. doi:10.1093/zoolinnean/zlx074. 
  101. Emil Krupandan; Anusuya Chinsamy‐Turan; Diego Pol (2018). "The long bone histology of the sauropodomorph, Antetonitrus ingenipes". The Anatomical Record 301 (9): 1506–1518. doi:10.1002/ar.23898. PMID 30312030. 
  102. Pia A. Viglietti; Paul M. Barrett; Tim J. Broderick; Darlington Munyikwa; Rowan MacNiven; Lucy Broderick; Kimberley Chapelle; Dave Glynn et al. (2018). "Stratigraphy of the Vulcanodon type locality and its implications for regional correlations within the Karoo Supergroup". Journal of African Earth Sciences 137: 149–156. doi:10.1016/j.jafrearsci.2017.10.015. Bibcode2018JAfES.137..149V. 
  103. Cecily S.C. Nicholl; Philip D. Mannion; Paul M. Barrett (2018). "Sauropod dinosaur remains from a new Early Jurassic locality in the Central High Atlas of Morocco". Acta Palaeontologica Polonica 63 (1): 147–157. doi:10.4202/app.00425.2017. 
  104. Femke M. Holwerda; Diego Pol (2018). "Phylogenetic analysis of Gondwanan basal eusauropods from the Early-Middle Jurasic of Patagonia, Argentina". Spanish Journal of Palaeontology 33 (2): 289–298. doi:10.7203/sjp.33.2.13604. https://ojs.uv.es/index.php/sjpalaeontology/article/view/13604. 
  105. Jun Wang; Yong Ye; Rui Pei; Yamin Tian; Chongqin Feng; Daran Zheng; Su-Chin Chang (2018). "Age of Jurassic basal sauropods in Sichuan, China: A reappraisal of basal sauropod evolution". GSA Bulletin 130 (9–10): 1493–1500. doi:10.1130/B31910.1. Bibcode2018GSAB..130.1493W. 
  106. Xiao-Qin Zhang; Da-Qing Li; Yan Xie; Hai-Lu You (2018). "Redescription of the cervical vertebrae of the mamenchisaurid sauropod Xinjiangtitan shanshanesis Wu et al. 2013". Historical Biology: An International Journal of Paleobiology 32 (6): 803–822. doi:10.1080/08912963.2018.1539970. 
  107. Andrew J. Moore; Jinyou Mo; James M. Clark; Xing Xu (2018). "Cranial anatomy of Bellusaurus sui (Dinosauria: Eusauropoda) from the Middle-Late Jurassic Shishugou Formation of northwest China and a review of sauropod cranial ontogeny". PeerJ 6: e4881. doi:10.7717/peerj.4881. PMID 29868283. 
  108. D. Cary Woodruff; Thomas D. Carr; Glenn W. Storrs; Katja Waskow; John B. Scannella; Klara K. Nordén; John P. Wilson (2018). "The smallest diplodocid skull reveals cranial ontogeny and growth-related dietary changes in the largest dinosaurs". Scientific Reports 8 (1): Article number 14341. doi:10.1038/s41598-018-32620-x. PMID 30310088. Bibcode2018NatSR...814341W. 
  109. Emanuel Tschopp; Octávio Mateus; Mark Norell (2018). "Complex overlapping joints between facial bones allowing limited anterior sliding movements of the snout in diplodocid sauropods". American Museum Novitates (3911): 1–16. doi:10.1206/3911.1. https://www.biodiversitylibrary.org/item/262749. 
  110. Michael P. Taylor (2018). "Xenoposeidon is the earliest known rebbachisaurid sauropod dinosaur". PeerJ 6: e5212. doi:10.7717/peerj.5212. PMID 30002991. 
  111. Anthony Maltese; Emanuel Tschopp; Femke Holwerda; David Burnham (2018). "The real Bigfoot: a pes from Wyoming, USA is the largest sauropod pes ever reported and the northern-most occurrence of brachiosaurids in the Upper Jurassic Morrison Formation". PeerJ 6: e5250. doi:10.7717/peerj.5250. PMID 30065867. 
  112. Brennan Stettner; W. Scott Persons IV; Philip J. Currie (2018). "A giant sauropod footprint from the Nemegt Formation (Upper Cretaceous) of Mongolia". Palaeogeography, Palaeoclimatology, Palaeoecology 494: 168–172. doi:10.1016/j.palaeo.2017.10.027. Bibcode2018PPP...494..168S. 
  113. Christian A. Meyer; Daniel Marty; Matteo Belvedere (2018). "Titanosaur trackways from the Late Cretaceous El Molino Formation of Bolivia (Cal Orck'o, Sucre)". Annales Societatis Geologorum Poloniae 88 (2): 223–241. doi:10.14241/asgp.2018.018. 
  114. Kristina Curry Rogers; Zoe Kulik (2018). "Osteohistology of Rapetosaurus krausei (Sauropoda: Titanosauria) from the Upper Cretaceous of Madagascar". Journal of Vertebrate Paleontology 38 (4): (1)–(24). doi:10.1080/02724634.2018.1493689. 
  115. E. Martín Hechenleitner; Lucas E. Fiorelli; Agustín G. Martinelli; Gerald Grellet-Tinner (2018). "Titanosaur dinosaurs from the Upper Cretaceous of La Rioja province, NW Argentina". Cretaceous Research 85: 42–59. doi:10.1016/j.cretres.2018.01.006. 
  116. E. Martín Hechenleitner; Jeremías R. A. Taborda; Lucas E. Fiorelli; Gerald Grellet-Tinner; Segundo R. Nuñez-Campero (2018). "Biomechanical evidence suggests extensive eggshell thinning during incubation in the Sanagasta titanosaur dinosaurs". PeerJ 6: e4971. doi:10.7717/peerj.4971. PMID 29910984. 
  117. Verónica Díez Díaz; Géraldine Garcia; Xabier Pereda Suberbiola; Benjamin Jentgen-Ceschino; Koen Stein; Pascal Godefroit; Xavier Valentin (2018). "The titanosaurian dinosaur Atsinganosaurus velauciensis (Sauropoda) from the Upper Cretaceous of southern France: New material, phylogenetic affinities, and palaeobiogeographical implications". Cretaceous Research 91: 429–456. doi:10.1016/j.cretres.2018.06.015. 
  118. Lucio M. Ibiricu; Rubén D. Martínez; Gabriel A. Casal (2018). "The pelvic and hindlimb myology of the basal titanosaur Epachthosaurus sciuttoi (Sauropoda: Titanosauria)". Historical Biology: An International Journal of Paleobiology 32 (6): 773–788. doi:10.1080/08912963.2018.1535598. 
  119. Bernardo J. Gonzàlez Riga; Philip D. Mannion; Stephen F. Poropat; Leonardo D. Ortiz David; Juan Pedro Coria (2018). "Osteology of the Late Cretaceous Argentinean sauropod dinosaur Mendozasaurus neguyelap: implications for basal titanosaur relationships". Zoological Journal of the Linnean Society 184 (1): 136–181. doi:10.1093/zoolinnean/zlx103. 
  120. Philip J. Currie; Jeffrey A. Wilson; Federico Fanti; Buuvei Mainbayar; Khishigjav Tsogtbaatar (2018). "Rediscovery of the type localities of the Late Cretaceous Mongolian sauropods Nemegtosaurus mongoliensis and Opisthocoelicaudia skarzynskii: Stratigraphic and taxonomic implications". Palaeogeography, Palaeoclimatology, Palaeoecology 494: 5–13. doi:10.1016/j.palaeo.2017.10.035. Bibcode2018PPP...494....5C. 
  121. Femke M. Holwerda; Verónica Díez Díaz; Alejandro Blanco; Roel Montie; Jelle W.F. Reumer (2018). "Late Cretaceous sauropod tooth morphotypes may provide supporting evidence for faunal connections between North Africa and Southern Europe". PeerJ 6: e5925. doi:10.7717/peerj.5925. PMID 30473934. 
  122. Marcos G. Becerra; Diego Pol; Oliver W.M. Rauhut; Ignacio A. Cerda (2016). "New heterodontosaurid remains from the Cañadón Asfalto Formation: cursoriality and the functional importance of the pes in small heterodontosaurids". Journal of Paleontology 90 (3): 555–577. doi:10.1017/jpa.2016.24. http://nbn-resolving.de/urn:nbn:de:bvb:19-epub-48897-7. 
  123. Marcos Gabriel Becerra; Mariano Andres Ramírez (2018). "Locomotor morphotypes, allometry, linear regressions and the smallest sizes in Ornithischia: estimating body length using hind limb variables". Ameghiniana 55 (5): 491–516. doi:10.5710/AMGH.27.06.2018.3189. 
  124. Marcos G. Becerra; Diego Pol; Gertrud E. Rössner; Oliver W. M. Rauhut (2018). "Heterodonty and double occlusion in Manidens condorensis: a unique adaptation in an Early Jurassic ornithischian improving masticatory efficiency". The Science of Nature 105 (7–8): Article number 41. doi:10.1007/s00114-018-1569-6. PMID 29904792. Bibcode2018SciNa.105...41B. 
  125. Baoqiao Hao; Qiannan Zhang; Guangzhao Peng; Yong Ye; Hailu You (2018). "Redescription of Gigantspinosaurus sichuanensis (Dinosauria, Stegosauria) from the Late Jurassic of Sichuan, Southwestern China". Acta Geologica Sinica (English Edition) 92 (2): 431–441. doi:10.1111/1755-6724.13535. http://www.geojournals.cn/dzxben/ch/reader/view_abstract.aspx?file_no=2018endzxb02001&flag=1. 
  126. Bao-Qiao Hao; Yong Ye; Susannah C R. Maidment; Sergio Bertazzo; Guang-Zhao Peng; Hai-Lu You (2018). "Femoral osteopathy in Gigantspinosaurus sichuanensis (Dinosauria: Stegosauria) from the Late Jurassic of Sichuan Basin, Southwestern China". Historical Biology: An International Journal of Paleobiology 32 (8): 1028–1035. doi:10.1080/08912963.2018.1561673. 
  127. Susannah C. R. Maidment; D. Cary Woodruff; John R. Horner (2018). "A new specimen of the ornithischian dinosaur Hesperosaurus mjosi from the Upper Jurassic Morrison Formation of Montana, U.S.A., and implications for growth and size in Morrison stegosaurs". Journal of Vertebrate Paleontology 38 (1): e1406366. doi:10.1080/02724634.2017.1406366. http://eprints.brighton.ac.uk/17671/1/Maidmentetal_MS_accepted.pdf. 
  128. Thomas J. Raven; Susannah C.R. Maidment (2018). "The systematic position of the enigmatic thyreophoran dinosaur Paranthodon africanus, and the use of basal exemplifiers in phylogenetic analysis". PeerJ 6: e4529. doi:10.7717/peerj.4529. PMID 29576986. 
  129. Heitor Francischini; Marcos A. F. Sales; Paula Dentzien–Dias; Cesar L. Schultz (2018). "The presence of ankylosaur tracks in the Guará Formation (Brazil) and remarks on the spatial and temporal distribution of Late Jurassic dinosaurs". Ichnos: An International Journal for Plant and Animal Traces 25 (2–3): 177–191. doi:10.1080/10420940.2017.1337573. 
  130. Rubén A. Rodríguez-de la Rosa; María Patricia Velasco-de León; Javier Arellano-Gil; Diego Enrique Lozano-Carmona (2018). "Middle Jurassic ankylosaur tracks from Mexico". Boletín de la Sociedad Geológica Mexicana 70 (2): 379–395. doi:10.18268/BSGM2018v70n2a8. 
  131. Jason M. Bourke; Wm. Ruger Porter; Lawrence M. Witmer (2018). "Convoluted nasal passages function as efficient heat exchangers in ankylosaurs (Dinosauria: Ornithischia: Thyreophora)". PLOS ONE 13 (12): e0207381. doi:10.1371/journal.pone.0207381. PMID 30566469. Bibcode2018PLoSO..1307381B. 
  132. Ariana Paulina-Carabajal; Yuong-Nam Lee; Yoshitsugu Kobayashi; Hang-Jae Lee; Philip J. Currie (2018). "Neuroanatomy of the ankylosaurid dinosaurs Tarchia teresae and Talarurus plicatospineus from the Upper Cretaceous of Mongolia, with comments on endocranial variability among ankylosaurs". Palaeogeography, Palaeoclimatology, Palaeoecology 494: 135–146. doi:10.1016/j.palaeo.2017.11.030. Bibcode2018PPP...494..135P. 
  133. Jordan C. Mallon; Donald M. Henderson; Colleen M. McDonough; W.J. Loughry (2018). "A 'bloat-and-float' taphonomic model best explains the upside-down preservation of ankylosaurs". Palaeogeography, Palaeoclimatology, Palaeoecology 497: 117–127. doi:10.1016/j.palaeo.2018.02.010. Bibcode2018PPP...497..117M. 
  134. Jun Chen; Aaron R. H. LeBlanc; Liyong Jin; Timothy Huang; Robert R. Reisz (2018). "Tooth development, histology, and enamel microstructure in Changchunsaurus parvus: Implications for dental evolution in ornithopod dinosaurs". PLOS ONE 13 (11): e0205206. doi:10.1371/journal.pone.0205206. PMID 30403689. Bibcode2018PLoSO..1305206C. 
  135. Héctor E. Rivera-Sylva; Eberhard Frey; Wolfgang Stinnesbeck; Natalia Amezcua; Diana Flores Huerta (2018). "First occurrence of Parksosauridae in Mexico from the Cerro del Pueblo Formation (Late Cretaceous; Late Campanian) at Las Águilas, Coahuila". Boletín de la Sociedad Geológica Mexicana 70 (3): 779–785. doi:10.18268/BSGM2018v70n3a10. 
  136. Holly N. Woodward; Thomas H. Rich; Patricia Vickers-Rich (2018). "The bone microstructure of polar "hypsilophodontid" dinosaurs from Victoria, Australia". Scientific Reports 8 (1): Article number 1162. doi:10.1038/s41598-018-19362-6. PMID 29348463. Bibcode2018NatSR...8.1162W. 
  137. Gregory J. Retallack; Jessica M. Theodor; Edward B. Davis; Samantha S. B. Hopkins; Paul Z. Barrett (2018). "First dinosaur (Ornithopoda) from Early Cretaceous (Albian) of Oregon, U.S.A.". Journal of Vertebrate Paleontology 38 (4): (1)–(5). doi:10.1080/02724634.2018.1486847. 
  138. Tom Hübner (2018). "The postcranial ontogeny of Dysalotosaurus lettowvorbecki (Ornithischia: Iguanodontia) and implications for the evolution of ornithopod dinosaurs". Palaeontographica Abteilung A 310 (3–6): 43–120. doi:10.1127/pala/2018/0072. 
  139. A. V. Lopatin; A. O. Averianov; V. R. Alifanov (2018). "New data on dinosaurs of the Crimean Peninsula". Doklady Biological Sciences 482 (1): 206–209. doi:10.1134/S0012496618050150. PMID 30402761. 
  140. Francisco Javier Verdú; Rafael Royo-Torres; Alberto Cobos; Luis Alcalá (2018). "New systematic and phylogenetic data about the early Barremian Iguanodon galvensis (Ornithopoda: Iguanodontoidea) from Spain". Historical Biology: An International Journal of Paleobiology 30 (4): 437–474. doi:10.1080/08912963.2017.1287179. 
  141. Yan Wu; Hai-Lu You; Xiao-Qiang Li (2018). "Dinosaur-associated Poaceae epidermis and phytoliths from the Early Cretaceous of China". National Science Review 5 (5): 721–727. doi:10.1093/nsr/nwx145. 
  142. Ryuji Takasaki; Kentaro Chiba; Yoshitsugu Kobayashi; Philip J. Currie; Anthony R. Fiorillo (2018). "Reanalysis of the phylogenetic status of Nipponosaurus sachalinensis (Ornithopoda: Dinosauria) from the Late Cretaceous of Southern Sakhalin". Historical Biology: An International Journal of Paleobiology 30 (5): 694–711. doi:10.1080/08912963.2017.1317766. 
  143. Víctor Fondevilla; Fabio Marco Dalla Vecchia; Rodrigo Gaete; Àngel Galobart; Blanca Moncunill-Solé; Meike Köhler (2018). "Ontogeny and taxonomy of the hadrosaur (Dinosauria, Ornithopoda) remains from Basturs Poble bonebed (late early Maastrichtian, Tremp Syncline, Spain)". PLOS ONE 13 (10): e0206287. doi:10.1371/journal.pone.0206287. PMID 30379888. Bibcode2018PLoSO..1306287F. 
  144. Albert Prieto-Marquez; Merrilee F. Guenther (2018). "Perinatal specimens of Maiasaura from the Upper Cretaceous of Montana (USA): insights into the early ontogeny of saurolophine hadrosaurid dinosaurs". PeerJ 6: e4734. doi:10.7717/peerj.4734. PMID 29785343. 
  145. Marcos G. Becerra; Ariana Paulina-Carabajal; Penélope Cruzado-Caballero; Jeremías R.A. Taborda (2018). "First endocranial description of a South American hadrosaurid: The neuroanatomy of Secernosaurus koerneri from the Late Cretaceous of Argentina". Acta Palaeontologica Polonica 63 (4): 693–702. doi:10.4202/app.00526.2018. 
  146. Mateusz Wosik; Mark B. Goodwin; David C. Evans (2018). "A nestling-sized skeleton of Edmontosaurus (Ornithischia, Hadrosauridae) from the Hell Creek Formation of northeastern Montana, U.S.A., with an analysis of ontogenetic limb allometry". Journal of Vertebrate Paleontology 37 (6): e1398168. doi:10.1080/02724634.2017.1398168. 
  147. David G. Taylor; Spencer G. Lucas (2018). "A Late Cretaceous (Campanian) hadrosaur sacrum from the Cape Sebastian Sandstone, Curry County, Oregon". New Mexico Museum of Natural History and Science Bulletin 79: 695–702. https://www.researchgate.net/publication/328677045. 
  148. Leonardo Maiorino; Andrew A. Farke; Tassos Kotsakis; Pasquale Raia; Paolo Piras (2018). "Who is the most stressed? Morphological disparity and mechanical behavior of the feeding apparatus of ceratopsian dinosaurs (Ornithischia, Marginocephalia)". Cretaceous Research 84: 483–500. doi:10.1016/j.cretres.2017.11.012. 
  149. Andrew Knapp; Robert J. Knell; Andrew A. Farke; Mark A. Loewen; David W. E. Hone (2018). "Patterns of divergence in the morphology of ceratopsian dinosaurs: sympatry is not a driver of ornament evolution". Proceedings of the Royal Society B: Biological Sciences 285 (1875): 20180312. doi:10.1098/rspb.2018.0312. PMID 29563271. 
  150. Fenglu Han; Catherine A. Forster; Xing Xu; James M. Clark (2018). "Postcranial anatomy of Yinlong downsi (Dinosauria: Ceratopsia) from the Upper Jurassic Shishugou Formation of China and the phylogeny of basal ornithischians". Journal of Systematic Palaeontology 16 (14): 1159–1187. doi:10.1080/14772019.2017.1369185. 
  151. A. V. Podlesnov (2018). "Morphology of the craniovertebral joint in Psittacosaurus sibiricus (Ornithischia: Ceratopsia)". Paleontological Journal 52 (6): 664–676. doi:10.1134/S0031030118060096. 
  152. Yiming He; Peter J. Makovicky; Xing Xu; Hailu You (2018). "High-resolution computed tomographic analysis of tooth replacement pattern of the basal neoceratopsian Liaoceratops yanzigouensis informs ceratopsian dental evolution". Scientific Reports 8 (1): Article number 5870. doi:10.1038/s41598-018-24283-5. PMID 29651146. Bibcode2018NatSR...8.5870H. 
  153. Łucja Fostowicz-Frelik; Justyna Słowiak (2018). "Bone histology of Protoceratops andrewsi from the Late Cretaceous of Mongolia and its biological implications". Acta Palaeontologica Polonica 63 (3): 503–517. doi:10.4202/app.00463.2018. 
  154. V. S. Tereschenko (2018). "On polymorphism of Protoceratops andrewsi Granger et Gregory, 1923 (Protoceratopidae, Neoceratopsia)". Paleontological Journal 52 (4): 429–444. doi:10.1134/S0031030118040135. 
  155. Caleb M. Brown (2018). "Long-horned Ceratopsidae from the Foremost Formation (Campanian) of southern Alberta". PeerJ 6: e4265. doi:10.7717/peerj.4265. PMID 29362697. 
  156. Kentaro Chiba; Michael J. Ryan; Federico Fanti; Mark A. Loewen; David C. Evans (2018). "New material and systematic re-evaluation of Medusaceratops lokii (Dinosauria, Ceratopsidae) from the Judith River Formation (Campanian, Montana)". Journal of Paleontology 92 (2): 272–288. doi:10.1017/jpa.2017.62. 
  157. David W.E. Hone; Darren H. Tanke; Caleb M. Brown (2018). "Bite marks on the frill of a juvenile Centrosaurus from the Late Cretaceous Dinosaur Provincial Park Formation, Alberta, Canada". PeerJ 6: e5748. doi:10.7717/peerj.5748. PMID 30345174. 
  158. James A. Campbell; Michael J. Ryan; Claudia J. Schröder-Adams; David C. Evans; Robert B. Holmes (2018). "New insights into chasmosaurine (Dinosauria: Ceratopsidae) skulls from the Upper Cretaceous (Campanian) of Alberta, and an update on the distribution of accessory frill fenestrae in Chasmosaurinae". PeerJ 6: e5194. doi:10.7717/peerj.5194. PMID 30002987. 
  159. Klara K. Nordén; Thomas L. Stubbs; Albert Prieto-Márquez; Michael J. Benton (2018). "Multifaceted disparity approach reveals dinosaur herbivory flourished before the end-Cretaceous mass extinction". Paleobiology 44 (4): 620–637. doi:10.1017/pab.2018.26. 
  160. Baron, Matthew G.; Barrett, Paul M. (August 2017). "A dinosaur missing-link? Chilesaurus and the early evolution of ornithischian dinosaurs". Biology Letters 13 (8): 20170220. doi:10.1098/rsbl.2017.0220. ISSN 1744-9561. PMID 28814574. 
  161. Temp Müller, Rodrigo; Augusto Pretto, Flávio; Kerber, Leonardo; Silva-Neves, Eduardo; Dias-da-Silva, Sérgio (March 2018). "Comment on 'A dinosaur missing-link? Chilesaurus and the early evolution of ornithischian dinosaurs'". Biology Letters 14 (3): 20170581. doi:10.1098/rsbl.2017.0581. ISSN 1744-9561. PMID 29593074. 
  162. Müller, Rodrigo Temp; Garcia, Maurício Silva; Da-Rosa, Átila Augusto Stock; Dias-da-Silva, Sérgio (December 2018). "Under pressure: Effect of sedimentary compression on the iliac morphology of early sauropodomorphs". Journal of South American Earth Sciences 88: 345–351. doi:10.1016/j.jsames.2018.09.005. Bibcode2018JSAES..88..345M. 
  163. Héctor E. Rivera-Sylva; Eberhard Frey; Wolfgang Stinnesbeck; Gerardo Carbot-Chanona; Iván E. Sanchez-Uribe; José Rubén Guzmán-Gutiérrez (2018). "Paleodiversity of Late Cretaceous Ankylosauria from Mexico and their phylogenetic significance". Swiss Journal of Palaeontology 137 (1): 83–93. doi:10.1007/s13358-018-0153-1. 
  164. Prieto-Márquez, Albert; Fondevilla, Víctor; Sellés, Albert G.; Wagner, Jonathan R.; Galobart; Àngel (2019). "Adynomosaurus arcanus, a new lambeosaurine dinosaur from the Late Cretaceous Ibero-Armorican Island of the European Archipelago". Cretaceous Research 96: 19–37. doi:10.1016/j.cretres.2018.12.002. 
  165. Jelle P. Wiersma; Randall B. Irmis (2018). "A new southern Laramidian ankylosaurid, Akainacephalus johnsoni gen. et sp. nov., from the upper Campanian Kaiparowits Formation of southern Utah, USA". PeerJ 6: e5016. doi:10.7717/peerj.5016. PMID 30065856. 
  166. Xin-Xin Ren; Jian-Dong Huang; Hai-Lu You (2020). "The second mamenchisaurid dinosaur from the Middle Jurassic of Eastern China". Historical Biology: An International Journal of Paleobiology 32 (5): 602–610. doi:10.1080/08912963.2018.1515935. 
  167. 167.0 167.1 167.2 167.3 167.4 167.5 Paul Penkalski (2018). "Revised systematics of the armoured dinosaur Euoplocephalus and its allies". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen 287 (3): 261–306. doi:10.1127/njgpa/2018/0717. 
  168. Yilun Yu; Kebai Wang; Shuqing Chen; Corwin Sullivan; Shuo Wang; Peiye Wang; Xing Xu (2018). "A new caenagnathid dinosaur from the Upper Cretaceous Wangshi Group of Shandong, China, with comments on size variation among oviraptorosaurs". Scientific Reports 8 (1): Article number 5030. doi:10.1038/s41598-018-23252-2. PMID 29567954. Bibcode2018NatSR...8.5030Y. 
  169. ReBecca K. Hunt; James H. Quinn (2018). "A new ornithomimosaur from the Lower Cretaceous Trinity Group of Arkansas". Journal of Vertebrate Paleontology 38 (1): e1421209. doi:10.1080/02724634.2017.1421209. 
  170. G.F. Funston; S.E. Mendonca; P.J. Currie; R. Barsbold (2018). "Oviraptorosaur anatomy, diversity and ecology in the Nemegt Basin". Palaeogeography, Palaeoclimatology, Palaeoecology 494: 101–120. doi:10.1016/j.palaeo.2017.10.023. Bibcode2018PPP...494..101F. 
  171. Jorge O. Calvo; Bernardo Gonzalez Riga (2018). "Baalsaurus mansillai gen. et sp. nov. a new titanosaurian sauropod (Late Cretaceous) from Neuquén, Patagonia, Argentina". Anais da Academia Brasileira de Ciências 91 (Suppl. 2): e20180661. doi:10.1590/0001-3765201820180661. PMID 30569970. 
  172. Flávio A. Pretto; Max C. Langer; Cesar L. Schultz (2018). "A new dinosaur (Saurischia: Sauropodomorpha) from the Late Triassic of Brazil provides insights on the evolution of sauropodomorph body plan". Zoological Journal of the Linnean Society 185 (2): 388–416. doi:10.1093/zoolinnean/zly028. 
  173. 173.0 173.1 Xing Xu; Jonah Choiniere; Qingwei Tan; Roger B.J. Benson; James Clark; Corwin Sullivan; Qi Zhao; Fenglu Han et al. (2018). "Two Early Cretaceous fossils document transitional stages in alvarezsaurian dinosaur evolution". Current Biology 28 (17): 2853–2860.e3. doi:10.1016/j.cub.2018.07.057. PMID 30146153. 
  174. Xing Xu; Qingwei Tan; Yilong Gao; Zhiqiang Bao; Zhigang Yin; Bin Guo; Junyou Wang; Lin Tan et al. (2018). "A large-sized basal ankylopollexian from East Asia, shedding light on early biogeographic history of Iguanodontia". Science Bulletin 63 (9): 556–563. doi:10.1016/j.scib.2018.03.016. Bibcode2018SciBu..63..556X. 
  175. Dongyu Hu; Julia A. Clarke; Chad M. Eliason; Rui Qiu; Quanguo Li; Matthew D. Shawkey; Cuilin Zhao; Liliana D’Alba et al. (2018). "A bony-crested Jurassic dinosaur with evidence of iridescent plumage highlights complexity in early paravian evolution". Nature Communications 9 (1): Article number 217. doi:10.1038/s41467-017-02515-y. PMID 29335537. Bibcode2018NatCo...9..217H. 
  176. Edith Simón; Leonardo Salgado; Jorge O. Calvo (2018). "A new titanosaur sauropod from the Upper Cretaceous of Patagonia, Neuquén Province, Argentina". Ameghiniana 55 (1): 1–29. doi:10.5710/AMGH.01.08.2017.3051. 
  177. Terry A. Gates; Khishigjav Tsogtbaatar; Lindsay E. Zanno; Tsogtbaatar Chinzorig; Mahito Watabe (2018). "A new iguanodontian (Dinosauria: Ornithopoda) from the Early Cretaceous of Mongolia". PeerJ 6: e5300. doi:10.7717/peerj.5300. PMID 30083450. 
  178. Sebastian G. Dalman; John-Paul M. Hodnett; Asher J. Lichtig; Spencer G. Lucas (2018). "A new ceratopsid dinosaur (Centrosaurinae: Nasutoceratopsini) from the Fort Crittenden Formation, Upper Cretaceous (Campanian) of Arizona". New Mexico Museum of Natural History and Science Bulletin 79: 141–164. https://www.researchgate.net/publication/328637301. 
  179. Matthew C. Herne; Alan M. Tait; Vera Weisbecker; Michael Hall; Jay P. Nair; Michael Cleeland; Steven W. Salisbury (2018). "A new small-bodied ornithopod (Dinosauria, Ornithischia) from a deep, high-energy Early Cretaceous river of the Australian–Antarctic rift system". PeerJ 6: e4113. doi:10.7717/peerj.4113. PMID 29340228. 
  180. Kenneth Carpenter; Peter M. Galton (2018). "A photo documentation of bipedal ornithischian dinosaurs from the Upper Jurassic Morrison Formation, USA". Geology of the Intermountain West 5: 167–207. doi:10.31711/giw.v5.pp167-207. 
  181. Andrew T. McDonald; Douglas G. Wolfe; Alton C. Dooley Jr (2018). "A new tyrannosaurid (Dinosauria: Theropoda) from the Upper Cretaceous Menefee Formation of New Mexico". PeerJ 6: e5749. doi:10.7717/peerj.5749. PMID 30324024. 
  182. Cecilia Apaldetti; Ricardo N. Martínez; Ignacio A. Cerda; Diego Pol; Oscar Alcober (2018). "An early trend towards gigantism in Triassic sauropodomorph dinosaurs". Nature Ecology & Evolution 2 (8): 1227–1232. doi:10.1038/s41559-018-0599-y. PMID 29988169. https://www.researchgate.net/publication/326272978. 
  183. Andrew T. McDonald; Douglas G. Wolfe (2018). "A new nodosaurid ankylosaur (Dinosauria: Thyreophora) from the Upper Cretaceous Menefee Formation of New Mexico". PeerJ 6: e5435. doi:10.7717/peerj.5435. PMID 30155354. 
  184. Wenjie Zheng; Xingsheng Jin; Yoichi Azuma; Qiongying Wang; Kazunori Miyata; Xing Xu (2018). "The most basal ankylosaurine dinosaur from the Albian–Cenomanian of China, with implications for the evolution of the tail club". Scientific Reports 8 (1): Article number 3711. doi:10.1038/s41598-018-21924-7. PMID 29487376. Bibcode2018NatSR...8.3711Z. 
  185. José I. Canudo; José L. Carballido; Alberto Garrido; Leonardo Salgado (2018). "A new rebbachisaurid sauropod from the Aptian–Albian, Lower Cretaceous Rayoso Formation, Neuquén, Argentina". Acta Palaeontologica Polonica 63 (4): 679–691. doi:10.4202/app.00524.2018. 
  186. Blair W. McPhee; Roger B.J. Benson; Jennifer Botha-Brink; Emese M. Bordy; Jonah N. Choiniere (2018). "A giant dinosaur from the earliest Jurassic of South Africa and the transition to quadrupedality in early sauropodomorphs". Current Biology 28 (19): 3143–3151.e7. doi:10.1016/j.cub.2018.07.063. PMID 30270189. 
  187. Chang-fu Zhou; Wen-hao Wu; Toru Sekiya; Zhi-ming Dong (2018). "A new Titanosauriformes dinosaur from Jehol Biota of western Liaoning, China". Global Geology 37 (2): 327–333. doi:10.3969/j.issn.1004-5589.2018.02.001. http://sjdz.jlu.edu.cn/EN/abstract/abstract9375.shtml. 
  188. Xing Xu; Paul Upchurch; Philip D. Mannion; Paul M. Barrett; Omar R. Regalado-Fernandez; Jinyou Mo; Jinfu Ma; Hongan Liu (2018). "A new Middle Jurassic diplodocoid suggests an earlier dispersal and diversification of sauropod dinosaurs". Nature Communications 9 (1): Article number 2700. doi:10.1038/s41467-018-05128-1. PMID 30042444. Bibcode2018NatCo...9.2700X. 
  189. Rodrigo Temp Müller; Max Cardoso Langer; Sérgio Dias-da-Silva (2018). "An exceptionally preserved association of complete dinosaur skeletons reveals the oldest long-necked sauropodomorphs". Biology Letters 14 (11): 20180633. doi:10.1098/rsbl.2018.0633. PMID 30463923. 
  190. Hesham M. Sallam; Eric Gorscak; Patrick M. O’Connor; Iman A. El-Dawoudi; Sanaa El-Sayed; Sara Saber; Mahmoud A. Kora; Joseph J. W. Sertich et al. (2018). "New Egyptian sauropod reveals Late Cretaceous dinosaur dispersal between Europe and Africa". Nature Ecology & Evolution 2 (3): 445–451. doi:10.1038/s41559-017-0455-5. PMID 29379183. 
  191. Carpenter, K. (2018). "Maraapunisaurus fragillimus, n.g. (formerly Amphicoelias fragillimus), a basal Rebbachisaurid from the Morrison Formation (Upper Jurassic) of Colorado". Geology of the Intermountain West 5 (9): 227–244. doi:10.31711/giw.v5i0.28. ISSN 2380-7601. https://www.utahgeology.org/publication/maraapunisaurus-fragillimus-n-g-formerly-amphicoelias-fragillimus-a-basal-rebbachisaurid-from-the-morrison-formation-upper-jurassic-of-colorado/. Retrieved 2018-10-21. 
  192. T. A. Tumanova; V. R. Alifanov (2018). "First record of stegosaur (Ornithischia, Dinosauria) from the Aptian–Albian of Mongolia". Paleontological Journal 52 (14): 1771–1779. doi:10.1134/S0031030118140186. 
  193. Rodolfo A. Coria; Guillermo J. Windholz; Francisco Ortega; Philip J. Currie (2019). "A new dicraeosaurid sauropod from the Lower Cretaceous (Mulichinco Formation, Valanginian, Neuquén Basin) of Argentina". Cretaceous Research 93: 33–48. doi:10.1016/j.cretres.2018.08.019. 
  194. Lü, Jun-chang; Xu, Li; Chang, Hua-li; Jia, Song-hai; Zhang, Ji-ming; Gao, Dian-song; Zhang, Yi-yang; Zhang, Cheng-jun et al. (2018). "A new alvarezsaurid dinosaur from the Late Cretaceous Qiupa Formation of Luanchuan, Henan Province, central China". China Geology 1 (1): 28–35. doi:10.31035/cg2018005. ISSN 2096-5192. 
  195. Cristiano Dal Sasso; Simone Maganuco; Andrea Cau (2018). "The oldest ceratosaurian (Dinosauria: Theropoda), from the Lower Jurassic of Italy, sheds light on the evolution of the three-fingered hand of birds". PeerJ 6: e5976. doi:10.7717/peerj.5976. PMID 30588396. 
  196. Alexander Averianov; Stepan Ivantsov; Pavel Skutschas; Alexey Faingertz; Sergey Leshchinskiy (2018). "A new sauropod dinosaur from the Lower Cretaceous Ilek Formation, Western Siberia, Russia". Geobios 51 (1): 1–14. doi:10.1016/j.geobios.2017.12.004. 
  197. Rafael Delcourt; Fabiano Vidoi Iori (2020). "A new Abelisauridae (Dinosauria: Theropoda) from São José do Rio Preto Formation, Upper Cretaceous of Brazil and comments on the Bauru Group fauna". Historical Biology: An International Journal of Paleobiology 32 (7): 917–924. doi:10.1080/08912963.2018.1546700. 
  198. Juan D. Porfiri; Rubén D. Juárez Valieri; Domenica D.D. Santos; Matthew C. Lamanna (2018). "A new megaraptoran theropod dinosaur from the Upper Cretaceous Bajo de la Carpa Formation of northwestern Patagonia". Cretaceous Research 89: 302–319. doi:10.1016/j.cretres.2018.03.014. 
  199. Alexander Averianov; Vladimir Efimov (2018). "The oldest titanosaurian sauropod of the Northern Hemisphere". Biological Communications 63 (3): 145–162. doi:10.21638/spbu03.2018.301. 
  200. Phil R. Bell; Matthew C. Herne; Tom Brougham; Elizabeth T. Smith (2018). "Ornithopod diversity in the Griman Creek Formation (Cenomanian), New South Wales, Australia". PeerJ 6: e6008. doi:10.7717/peerj.6008. PMID 30533306. 
  201. Qian-Nan Zhang; Hai-Lu You; Tao Wang; Sankar Chatterjee (2018). "A new sauropodiform dinosaur with a 'sauropodan' skull from the Lower Jurassic Lufeng Formation of Yunnan Province, China". Scientific Reports 8 (1): Article number 13464. doi:10.1038/s41598-018-31874-9. PMID 30194381. Bibcode2018NatSR...813464Z.