From HandWiki
Short description: Clade of eukaryotes containing land plants and some algae

Sprague River (Klamath County, Oregon scenic images) (klaDA0073).jpg
Trees, grasses and algae in and around Sprague River, Oregon
Scientific classification e
Domain: Eukaryota
Clade: Diaphoretickes
(unranked): Archaeplastida
Adl et al., 2005[1]
  • Plantae Cavalier-Smith, 1981[4]
  • Primoplastobiota Reviers, 2002[citation needed]
  • Primoplantae Palmer et al. 2004[5]

The Archaeplastida (or kingdom Plantae sensu lato "in a broad sense"; pronounced /ɑːrkɪˈplæstɪdə/) are a major group of eukaryotes, comprising the photoautotrophic red algae (Rhodophyta), green algae, land plants, and the minor group glaucophytes.[6] It also includes the non-photosynthetic lineage Rhodelphidia, a predatorial (eukaryotrophic) flagellate that is sister to the Rhodophyta, and probably the microscopic picozoans.[7] The Archaeplastida have chloroplasts that are surrounded by two membranes, suggesting that they were acquired directly through a single endosymbiosis event by phagocytosis of a cyanobacterium.[8] All other groups which have chloroplasts, besides the amoeboid genus Paulinella, have chloroplasts surrounded by three or four membranes, suggesting they were acquired secondarily from red or green algae.[note 1] Unlike red and green algae, glaucophytes have never been involved in secondary endosymbiosis events.[10]

The cells of the Archaeplastida typically lack centrioles and have mitochondria with flat cristae. They usually have a cell wall that contains cellulose, and food is stored in the form of starch. However, these characteristics are also shared with other eukaryotes. The main evidence that the Archaeplastida form a monophyletic group comes from genetic studies, which indicate their plastids probably had a single origin. This evidence is disputed.[11][12] Based on the evidence to date, it is not possible to confirm or refute alternative evolutionary scenarios to a single primary endosymbiosis.[13] Photosynthetic organisms with plastids of different origin (such as brown algae) do not belong to the Archaeplastida.

The archaeplastidans fall into two main evolutionary lines. The red algae are pigmented with chlorophyll a and phycobiliproteins, like most cyanobacteria, and accumulate starch outside the chloroplasts. The green algae and land plants – together known as Viridiplantae (Latin for "green plants") or Chloroplastida – are pigmented with chlorophylls a and b, but lack phycobiliproteins, and starch is accumulated inside the chloroplasts.[14] The glaucophytes have typical cyanobacterial pigments, but their plastids (called cyanelles) differ in having a peptidoglycan outer layer.[1]

Archaeplastida should not be confused with the older and obsolete name Archiplastideae, which refers to cyanobacteria and other groups of bacteria.[15][16]


The consensus in 2005, when the group consisting of the glaucophytes and red and green algae and land plants was named 'Archaeplastida',[1] was that it was a clade, i.e. was monophyletic. Many studies published since then have provided evidence in agreement.[17][18][19][20] Other studies, though, have suggested that the group is paraphyletic.[21][22][23][12][24] To date, the situation appears unresolved, but a strong signal for Plantae (Archaeplastida) monophyly has been demonstrated in a recent study (with an enrichment of red algal genes).[25] The assumption made here is that Archaeplastida is a valid clade.

Various names have been given to the group. Some authors have simply referred to the group as plants or Plantae.[26][27] However, the name Plantae is ambiguous, since it has also been applied to less inclusive clades, such as Viridiplantae and embryophytes. To distinguish, the larger group is sometimes known as Plantae sensu lato ("plants in the broad sense").

To avoid ambiguity, other names have been proposed. Primoplantae, which appeared in 2004, seems to be the first new name suggested for this group.[5] Another name applied to this node is Plastida, defined as the clade sharing "plastids of primary (direct prokaryote) origin [as] in Magnolia virginiana Linnaeus 1753".[28]

Although many studies have suggested the Archaeplastida form a monophyletic group,[29] a 2009 paper argues that they are in fact paraphyletic.[23] The enrichment of novel red algal genes in a recent study demonstrates a strong signal for Plantae (Archaeplastida) monophyly and an equally strong signal of gene sharing history between the red/green algae and other lineages.[25] This study provides insight on how rich mesophilic red algal gene data are crucial for testing controversial issues in eukaryote evolution and for understanding the complex patterns of gene inheritance in protists.

The name Archaeplastida was proposed in 2005 by a large international group of authors (Adl et al.), who aimed to produce a classification for the eukaryotes which took into account morphology, biochemistry, and phylogenetics, and which had "some stability in the near term." They rejected the use of formal taxonomic ranks in favour of a hierarchical arrangement where the clade names do not signify rank. Thus, the phylum name 'Glaucophyta' and the class name 'Rhodophyceae' appear at the same level in their classification. The divisions proposed for the Archaeplastida are shown below in both tabular and diagrammatic form.[1]


The glaucophyte Glaucocystis
  • Glaucophyta Skuja, 1954 (Glaucocystophyta Kies & Kremer, 1986) – glaucophytes
  • Glaucophytes are a small group of freshwater single-celled algae. Their chloroplasts, called cyanelles, have a peptidoglycan layer, making them more similar to cyanobacteria than those of the remaining Archaeplastida.
The rhodophyte Laurencia
  • Rhodophyceae Thuret, 1855, emend. Rabenhorst, 1863, emend. Adl et al., 2005 (Rhodophyta Wettstein 1901) – red algae
Red algae form one of the largest groups of algae. Most are seaweeds, being multicellular and marine. Their red colour comes from phycobiliproteins, used as accessory pigments in light capture for photosynthesis.
  • Chloroplastida Adl et al., 2005 (Viridiplantae Cavalier-Smith 1981; Chlorobionta Jeffrey 1982, emend. Bremer 1985, emend. Lewis and McCourt 2004; Chlorobiota Kendrick and Crane 1997)
Chloroplastida is the term chosen by Adl et al. for the group made up of the green algae and land plants (embryophytes). Except where lost secondarily, all have chloroplasts without a peptidoglycan layer and lack phycobiliproteins.
The chlorophyte Stigeoclonium
  • Chlorophyta Pascher, 1914, emend. Lewis & McCourt, 2004 – green algae (part)
Adl et al. employ a narrow definition of the Chlorophyta; other sources include the Chlorodendrales and Prasinophytae, which may themselves be combined.
  • Chlorodendrales Fritsch, 1917 – green algae (part)
  • Prasinophytae Cavalier-Smith, 1998, emend. Lewis & McCourt, 2004 – green algae (part)
  • Mesostigma Lauterborn, 1894, emend. McCourt in Adl et al., 2005 (Mesostigmata Turmel, Otis, and Lemieux 2002)
  • Charophyta Karol et al., 2001, emend. Lewis & McCourt, 2004 (Charophyceae Smith 1938, emend. Mattox and Stewart 1984) – green algae (part) and land plants
Charophyta sensu lato, as used by Adl et al., is a monophyletic group which is made up of some green algae, including the stoneworts (Charophyta sensu stricto), as well as the land plants (embryophytes).
  • Sub-divisions other than Streptophytina (below) were not given by Adl et al.
Other sources would include the green algal groups Chlorokybales, Klebsormidiales, Zygnematales and Coleochaetales.[30]
  • Streptophytina Lewis & McCourt, 2004 – stoneworts and land plants
  • Charales Lindley 1836 (Charophytae Engler, 1887) – stoneworts
  • Plantae Haeckel 1866 (Cormophyta Endlicher, 1836; Embryophyta Endlicher, 1836, emend. Lewis & McCourt, 2004) – land plants (embryophytes)

External phylogeny

Below is a consensus reconstruction of the relationships of Archaeplastida with its nearest neighbours, mainly based on molecular data.[31][32][33][34]


Hemimastigophora Hemimastix amphikineta.png


Haptista Coccolithus pelagicus.jpg




Rhizaria Ammonia tepida.jpg


Stramenopiles Cafeteria roenbergensis atcc50561 Protsville (cropped).jpg

Alveolata Ceratium furca.jpg


Cryptista Rhodomonas salina CCMP 322.jpg

Microheliella maris[2]

Archaeplastida Large Tree - panoramio.jpg

There has been disagreement near the Archaeplastida root, e.g. whether Cryptista emerged within the Archaeplastida. In 2014 a thorough review was published on these inconsistencies.[35] The position of Telonemia and Picozoa are not clear. Also Hacrobia (Haptista + Cryptista) may be completely associated with the SAR clade. The SAR are often seen as eukaryote-eukaryote hybrids, contributing to the confusion in the genetic analyses. A sister of Gloeomargarita lithophora has been engulfed by an ancestor of the Archaeplastida, leading to the plastids which are living in permanent endosymbiosis in most of the descendant lineages. Because both Gloeomargarita and related cyanobacteria, in addition to the most primitive archaeplastids, all live in freshwater, it seems the Archaeplastida originated in freshwater, and only colonized the oceans in the late Proterozoic.[36][37]

Internal phylogeny

In 2019, a phylogeny of the Archaeplastida based on genomes and transcriptomes from 1,153 plant species was proposed.[38] The placing of algal groups is supported by phylogenies based on genomes from the Mesostigmatophyceae and Chlorokybophyceae that have since been sequenced. Both the "chlorophyte algae" and the "streptophyte algae" are treated as paraphyletic (vertical bars beside phylogenetic tree diagram) in this analysis.[39][40] The classification of Bryophyta is supported both by Puttick et al. 2018,[41] and by phylogenies involving the hornwort genomes that have also since been sequenced.[42][43]


Rhodophyta Chondrus crispus - Köhler–s Medizinal-Pflanzen-034 (single).jpg

Glaucophyta Glaucocystis nostochinearum.jpg


Chlorophyta Volvox sp.png






Spirotaenia Spirotaenia condensata.jpg

Klebsormidiales Klebsormidium bilatum Belgium (14759117646).jpg

Chara CharaGlobularis.jpg


Zygnematophyceae The freshwater alga Spirogyra.jpg


Hornworts Phaeoceros laevis 48205337 (white background).jpg

Liverworts Conocephalum conicum (e, 144739-474742) 1022.jpg

Mosses WWB-0265-127-Polytrichum formosum.png

Lycophytes Lycopodium clavatum - Köhler–s Medizinal-Pflanzen-219.jpg


Ferns California Arena Point fern.jpg


Gymnosperms PIH 1830 Scots Pine (Pinus sylvestris) graft clone collection in Röykkä Finland.jpg

Angiosperms 160 Ranunculus repens.jpg

(seed plants)
(land plants)
(green plants)
Script error: No such module "Clade/labels".

Recent work on non-photosynthetic algae places Rhodelphidia as sister to Rhodophyta;[44] and Picozoa sister to that pair of groups.[45]


All archaeplastidans have plastids (chloroplasts) that carry out photosynthesis and are believed to be derived from endosymbiotic cyanobacteria. In glaucophytes, perhaps the most primitive members of the group, the chloroplast is called a cyanelle and shares several features with cyanobacteria, including a peptidoglycan cell wall, that are not retained in other members of the group. The resemblance of cyanelles to cyanobacteria supports the endosymbiotic theory.

The cells of most archaeplastidans have walls, commonly but not always made of cellulose.

The Archaeplastida vary widely in the degree of their cell organization, from isolated cells to filaments to colonies to multi-celled organisms. The earliest were unicellular, and many groups remain so today. Multicellularity evolved separately in several groups, including red algae, ulvophyte green algae, and in the green algae that gave rise to stoneworts and land plants.


Because the ancestral archaeplastidan is hypothesized to have acquired its chloroplasts directly by engulfing cyanobacteria, the event is known as a primary endosymbiosis (as reflected in the name chosen for the group 'Archaeplastida' i.e. 'ancient plastid'). In 2013 it was discovered that one species of green algae, Cymbomonas tetramitiformis in the order Pyramimonadales, is a mixotroph and able to support itself through both phagotrophy and phototrophy. It is not yet known if this is a primitive trait and therefore defines the last common ancestor of Archaeplastida, which could explain how it obtained its chloroplasts, or if it is a trait regained by horizontal gene transfer.[46] Since then more species of mixotrophic green algae, such as Pyramimonas tychotreta and Mantoniella antarctica, has been found.[47]

Evidence for primary endosymbiosis includes the presence of a double membrane around the chloroplasts; one membrane belonged to the bacterium, and the other to the eukaryote that captured it. Over time, many genes from the chloroplast have been transferred to the nucleus of the host cell through endosymbiotic gene transfer (EGT). It is estimated that 6–20% of the archaeplastidan genome consist of genes transferred from the endosymbiont.[48] The presence of such genes in the nuclei of eukaryotes without chloroplasts suggests this transfer happened early in the evolution of the group.[49]

Other eukaryotes with chloroplasts appear to have gained them by engulfing a single-celled archaeplastidan with its own bacterially-derived chloroplasts. Because these events involve endosymbiosis of cells that have their own endosymbionts, the process is called secondary endosymbiosis. The chloroplasts of such eukaryotes are typically surrounded by more than two membranes, reflecting a history of multiple engulfment. The chloroplasts of euglenids, chlorarachniophytes and a small group of dinoflagellates appear to be captured green algae,[50] whereas those of the remaining photosynthetic eukaryotes, such as heterokont algae, cryptophytes, haptophytes, and dinoflagellates, appear to be captured red algae.

Fossil record

Perhaps the most ancient remains of Archaeplastida are putative red algae (Rafatazmia) within stromatolites in 1600 Ma (million years ago) rocks in India,[51] as well as possible alga fossils (Tuanshanzia) from China's Gaoyuzhuang Biota of a similar age.[52] Somewhat more recent are microfossils from the Roper group in northern Australia. The structure of these single-celled fossils resembles that of modern green algae. They date to the Mesoproterozoic Era, about 1500 to 1300 Ma.[53] These fossils are consistent with a molecular clock study that calculated that this clade diverged about 1500 Ma.[54] The oldest fossil that can be assigned to a specific modern group is the red alga Bangiomorpha, from 1200 Ma.[55]

In the late Neoproterozoic Era, algal fossils became more numerous and diverse. Eventually, in the Paleozoic Era, plants emerged onto land, and have continued to flourish up to the present.


  1. The exceptional two plastid membranes of the stramenopile alga Chrysoparadoxa are probably the result of secondary reduction.[9]


  1. 1.0 1.1 1.2 1.3 Adl, S.M. (2005). "The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists". Journal of Eukaryotic Microbiology 52 (5): 399–451. doi:10.1111/j.1550-7408.2005.00053.x. PMID 16248873. 
  2. 2.0 2.1 Yazaki, Euki; Yabuki, Akinori; Imaizumi, Ayaka; Kume, Keitaro; Hashimoto, Tetsuo; Inagaki, Yuji (31 August 2021). Phylogenomics invokes the clade housing Cryptista, Archaeplastida, and Microheliella maris. doi:10.1101/2021.08.29.458128. Retrieved 25 November 2021. 
  3. Schön, M.E.Expression error: Unrecognized word "et". (17 November 2021). "Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae". Nature Communications 12: 6651 (1): 6651. doi:10.1038/s41467-021-26918-0. ISSN 2041-1723. PMID 34789758. Bibcode2021NatCo..12.6651S. 
  4. Cavalier-Smith, T. (1981). "Eukaryote Kingdoms: Seven or Nine?".". BioSystems 14 (3–4): 461–481. doi:10.1016/0303-2647(81)90050-2. PMID 7337818. 
  5. 5.0 5.1 Palmer, Jeffrey D.; Soltis, Douglas E.; Chase, Mark W. (2004). "The plant tree of life: an overview and some points of view". American Journal of Botany 91 (10): 1437–1445. doi:10.3732/ajb.91.10.1437. PMID 21652302. 
  6. Ball, S.; Colleoni, C. (January 2011). Cenci, U.; Raj, J.N.; Tirtiaux, C.. "The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis". Journal of Experimental Botany 62 (6): 1775–1801. doi:10.1093/jxb/erq411. PMID 21220783. 
  7. Picozoans Are Algae After All: Study | The Scientist Magazine®
  8. Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences; Tikhonenkov, Denis V. (2020). "Predatory flagellates – the new recently discovered deep branches of the eukaryotic tree and their evolutionary and ecological significance". Protistology 14 (1). doi:10.21685/1680-0826-2020-14-1-2. 
  9. Wetherbee, Richard; Jackson, Christopher J.; Repetti, Sonja I.; Clementson, Lesley A.; Costa, Joana F.; van de Meene, Allison; Crawford, Simon; Verbruggen, Heroen (9 December 2018). "The golden paradox – a new heterokont lineage with chloroplasts surrounded by two membranes". Journal of Phycology 22 (2): 257–278. doi:10.1111/jpy.12822. PMID 30536815. 
  10. Handbook of Marine Microalgae: Biotechnology Advances
  11. Parfrey. L. W. et al. (December 2006). "Evaluating support for the current classification of eukaryotic diversity". PLOS Genetics 2 (12): e220. doi:10.1371/journal.pgen.0020220. PMID 17194223. 
  12. 12.0 12.1 Kim, E; Graham, L. E. (July 2008). Redfield, Rosemary Jeanne. ed. "EEF2 analysis challenges the monophyly of Archaeplastida and Chromalveolata". PLOS ONE 3 (7): e2621. doi:10.1371/journal.pone.0002621. PMID 18612431. Bibcode2008PLoSO...3.2621K. 
  13. Mackiewicz, P.; Gagat, P. (2014). "Monophyly of Archaeplastida supergroup and relationships among its lineages in the light of phylogenetic and phylogenomic studies. Are we close to a consensus?.". Acta Societatis Botanicorum Poloniae 83 (4): 263–280. doi:10.5586/asbp.2014.044. 
  14. Viola, R.; Nyvall, P.; Pedersén, M. (2001). "The unique features of starch metabolism in red algae". Proceedings of the Royal Society B: Biological Sciences 268 (1474): 1417–1422. doi:10.1098/rspb.2001.1644. PMID 11429143. 
  15. Copeland, H. F. (1956). The Classification of Lower Organisms. Palo Alto: Pacific Books, p. 29, [1].
  16. Bessey, C. E. (1907). "A Synopsis of Plant Phyla". Univ. Nebraska Studies 7: 275–358. 
  17. Burki, Fabien; Kamran Shalchian-Tabrizi; Marianne Minge; Åsmund Skjæveland; Sergey I. Nikolaev; Kjetill S. Jakobsen; Jan Pawlowski (2007). Butler, Geraldine. ed. "Phylogenomics Reshuffles the Eukaryotic Supergroups". PLOS ONE 2 (8): e790. doi:10.1371/journal.pone.0000790. PMID 17726520. Bibcode2007PLoSO...2..790B. 
  18. Burki, F. et al. (2009). "Large-Scale Phylogenomic Analyses Reveal That Two Enigmatic Protist Lineages, Telonemia and Centroheliozoa, Are Related to Photosynthetic Chromalveolates". Genome Biology and Evolution 1: 231–238. doi:10.1093/gbe/evp022. PMID 20333193. 
  19. Cavalier-Smith, Thomas (2009). "Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree". Biology Letters 6 (3): 342–345. doi:10.1098/rsbl.2009.0948. PMID 20031978. 
  20. Rogozin, I. B.; Basu, M. K.; Csürös, M.; Koonin, E. V. (2009). "Analysis of Rare Genomic Changes Does Not Support the Unikont–Bikont Phylogeny and Suggests Cyanobacterial Symbiosis as the Point of Primary Radiation of Eukaryotes". Genome Biology and Evolution 1: 99–113. doi:10.1093/gbe/evp011. PMID 20333181. 
  21. Baldauf, S.L., Roger, A.J., Wenk-Siefert, I., Doolittle, W.F. 2000. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290: 972-977 (
  22. Lipscomb, Diana. 1991. Broad classification: the kingdoms and the protozoa. In: Parasitic Protozoa, Vol. 1, 2nd ed., J.P. Kreier, J.R. Baker (eds.), pp. 81-136. Academic Press, San Diego.
  23. 23.0 23.1 Nozaki, H.; Maruyama, S.; Matsuzaki, M.; Nakada, T.; Kato, S.; Misawa, K. (December 2009). "Phylogenetic positions of Glaucophyta, green plants (Archaeplastida) and Haptophyta (Chromalveolata) as deduced from slowly evolving nuclear genes". Molecular Phylogenetics and Evolution 53 (3): 872–80. doi:10.1016/j.ympev.2009.08.015. PMID 19698794. 
  24. Palmgren M, Sørensen DM, Hallström BM, Säll T, Broberg K (August 2019). "Evolution of P2A and P5A ATPases: ancient gene duplications and the red algal connection to green plants revisited". Physiol. Plant. 168 (3): 630–647. doi:10.1111/ppl.13008. PMID 31268560. 
  25. 25.0 25.1 Chan, C. X.; Yang, E. C.; Banerjee, T.; Yoon, H. S.; Martone, P. T.; Estevez, J. M.; Bhattacharya, D. (2011). "Red and green algal monophyly and extensive gene sharing found in a rich repertoire of red algal genes". Current Biology 21 (4): 328–333. doi:10.1016/j.cub.2011.01.037. PMID 21315598. 
  26. T. Cavalier-Smith (1981). "Eukaryote Kingdoms: Seven or Nine?". BioSystems 14 (3–4): 461–481. doi:10.1016/0303-2647(81)90050-2. PMID 7337818. 
  27. Bhattacharya, Debashish; Yoon, Hwan Su; Hackett, Jeremiah (2003). "Photosynthetic eukaryotes unite: endosymbiosis connects the dots". BioEssays 26 (1): 50–60. doi:10.1002/bies.10376. PMID 14696040. 
  28. Simpson, A. G. B. (2004). "Highest-level taxa within Eukaryotes". First International Phylogenetic Nomenclature Meeting. Paris, July 6–9. 
  29. Vinogradov S. N.; Fernández, I.; Hoogewijs, D.; Arredondo-Peter, R. (October 2010). "Phylogenetic Relationships of 3/3 and 2/2 Hemoglobins in Archaeplastida Genomes to Bacterial and Other Eukaryote Hemoglobins". Molecular Plant 4 (1): 42–58. doi:10.1093/mp/ssq040. PMID 20952597. 
  30. Turmel, M.; Otis, C.; Lemieux, C. (2005). "The complete chloroplast DNA sequences of the charophycean green algae Staurastrum and Zygnema reveal that the chloroplast genome underwent extensive changes during the evolution of the Zygnematales". BMC Biology 3: 22. doi:10.1186/1741-7007-3-22. PMID 16236178. 
  31. Leliaert, Frederik; Smith, David R.; Moreau, Hervé; Herron, Matthew D.; Verbruggen, Heroen; Delwiche, Charles F.; De Clerck, Olivier (2012). "Phylogeny and Molecular Evolution of the Green Algae". Critical Reviews in Plant Sciences 31: 1–46. doi:10.1080/07352689.2011.615705. Retrieved 2017-10-15. 
  32. Cook, Martha E.; Graham, Linda E. (2017). "Chlorokybophyceae, Klebsormidiophyceae, Coleochaetophyceae". in Archibald, John M.. Handbook of the Protists. Springer International Publishing. pp. 185–204. doi:10.1007/978-3-319-28149-0_36. ISBN 9783319281476. 
  33. Lewis, Louise A.; McCourt, Richard M. (2004). "Green algae and the origin of land plants". American Journal of Botany 91 (10): 1535–1556. doi:10.3732/ajb.91.10.1535. PMID 21652308. 
  34. Adl, Sina M.; Simpson, Alastair G. B.; Lane, Christopher E.; Lukeš, Julius; Bass, David; Bowser, Samuel S.; Brown, Matthew W.; Burki, Fabien et al. (2012-09-01). "The Revised Classification of Eukaryotes". Journal of Eukaryotic Microbiology 59 (5): 429–514. doi:10.1111/j.1550-7408.2012.00644.x. PMID 23020233. 
  35. Mackiewicz, Paweł; Gagat, Przemysław (2014-12-31). "Monophyly of Archaeplastida supergroup and relationships among its lineages in the light of phylogenetic and phylogenomic studies. Are we close to a consensus?". Acta Societatis Botanicorum Poloniae 83 (4): 263–280. doi:10.5586/asbp.2014.044. 
  36. de Vries, Jan; Archibald, John M. (2017). "Endosymbiosis: Did Plastids Evolve from a Freshwater Cyanobacterium?". Current Biology 27 (3): R103–R105. doi:10.1016/j.cub.2016.12.006. PMID 28171752. 
  37. Lewis, L. A. (2017). "Hold the salt: Freshwater origin of primary plastids". PNAS 114 (37): 9759–9760. doi:10.1073/pnas.1712956114. PMID 28860199. Bibcode2017PNAS..114.9759L. 
  38. Leebens-Mack, M.; Barker, M.; Carpenter, E. et al. (2019). "One thousand plant transcriptomes and the phylogenomics of green plants". Nature 574 (7780): 679–685. doi:10.1038/s41586-019-1693-2. PMID 31645766. 
  39. Liang, Zhe (2019). "Mesostigma viride Genome and Transcriptome Provide Insights into the Origin and Evolution of Streptophyta". Advanced Science 7 (1): 1901850. doi:10.1002/advs.201901850. PMID 31921561. 
  40. Wang, Sibo (2020). "Genomes of early-diverging streptophyte algae shed light on plant terrestrialization". Nature Plants 6 (2): 95–106. doi:10.1038/s41477-019-0560-3. PMID 31844283. 
  41. Puttick, Mark (2018). "The Interrelationships of Land Plants and the Nature of the Ancestral Embryophyte". Current Biology 28 (5): 733–745. doi:10.1016/j.cub.2018.01.063. PMID 29456145. 
  42. Zhang, Jian (2020). "The hornwort genome and early land plant evolution". Nature Plants 6 (2): 107–118. doi:10.1038/s41477-019-0588-4. PMID 32042158. 
  43. Li, Fay Wei (2020). "Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts". Nature Plants 6 (3): 259–272. doi:10.1038/s41477-020-0618-2. PMID 32170292. 
  44. Gawryluk, Ryan M. R.; Tikhonenkov, Denis V.; Hehenberger, Elisabeth; Husnik, Filip; Mylnikov, Alexander P.; Keeling, Patrick J. (17 July 2019). "Non-photosynthetic predators are sister to red algae". Nature 572 (7768): 240–243. doi:10.1038/s41586-019-1398-6. PMID 31316212. 
  45. Schön, Max E.; Zlatogursky, Vasily V.; Singh, Rohan P.; Poirier, Camille; Wilken, Susanne; Mathur, Varsha; Strassert, Jürgen F. H.; Pinhassi, Jarone et al. (17 November 2021). "Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae". Nature Communications 12 (1): 6651. doi:10.1038/s41467-021-26918-0. PMID 34789758. Bibcode2021NatCo..12.6651S. 
  46. Raven, John A. (2013). "Cells inside Cells: Symbiosis and Continuing Phagotrophy". Current Biology 23 (12): R530–R531. doi:10.1016/j.cub.2013.05.006. PMID 23787050. 
  47. Bock, Nicholas A.; Charvet, Sophie; Burns, John; Gyaltshen, Yangtsho; Rozenberg, Andrey; Duhamel, Solange; Kim, Eunsoo (2021). "Experimental identification and in silico prediction of bacterivory in green algae". The ISME Journal 15 (7): 1987–2000. doi:10.1038/s41396-021-00899-w. PMID 33649548. 
  48. Qiu, Huan; Yoon, Hwan Su; Bhattacharya, Debashish (2013). "Algal endosymbionts as vectors of horizontal gene transfer in photosynthetic eukaryotes". Frontiers in Plant Science 4: 366. doi:10.3389/fpls.2013.00366. PMID 24065973. 
  49. Andersson, Jan O.; Roger, Andrew J. (2002). "A cyanobacterial gene in non-photosynthetic protists – an early chloroplast acquisition in eukaryotes?". Current Biology 12 (2): 115–119. doi:10.1016/S0960-9822(01)00649-2. PMID 11818061. 
  50. Keeling, Patrick J. (2010). "The endosymbiotic origin, diversification and fate of plastids". Philosophical Transactions of the Royal Society B: Biological Sciences 365 (1541): 729–748. doi:10.1098/rstb.2009.0103. PMID 20124341. 
  51. Bengtson, Stefan; Sallstedt, Therese; Belivanova, Veneta; Whitehouse, Martin (2017). "Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae". PLOS Biology 15 (3): e2000735. doi:10.1371/journal.pbio.2000735. PMID 28291791. 
  52. Chen, K.; Miao, L.; Zhao, F.; Zhu, M. (2023). "Carbonaceous macrofossils from the early Mesoproterozoic Gaoyuzhuang Formation in the Yanshan Range, North China". Precambrian Research 392: 107074. doi:10.1016/j.precamres.2023.107074. 
  53. Javaux, Emmanuelle J.; Knoll, Andrew H.; Walter, Malcolm R. (2004). "TEM evidence for eukaryotic diversity in mid-Proterozoic oceans". Geobiology 2 (3): 121–132. doi:10.1111/j.1472-4677.2004.00027.x. Bibcode2004Gbio....2..121J. 
  54. Yoon, Hwan Su; Hackett, Jeremiah D.; Ciniglia, Claudia; Pinto, Gabriele; Bhattacharya, Debashish (2004). "A molecular timeline for the origin of photosynthetic eukaryotes". Molecular Biology and Evolution 21 (5): 809–818. doi:10.1093/molbev/msh075. PMID 14963099. 
  55. Butterfield, Nicholas J. (2000). "Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes". Paleobiology 26 (3): 386–404. doi:10.1666/0094-8373(2000)026<0386:BPNGNS>2.0.CO;2. 

External links

Wikidata ☰ Q879246 entry