Biology:HDAC3

From HandWiki
Short description: Protein-coding gene in the species Homo sapiens


A representation of the 3D structure of the protein myoglobin showing turquoise α-helices.
Generic protein structure example

Histone deacetylase 3 is an enzyme encoded by the HDAC3 gene in both humans and mice.[1][2][3][4]

Function

Histones are highly alkaline proteins that package and order DNA into structural units called nucleosomes, which comprise the major protein component of chromatin. The posttranslational and enzymatically mediated lysine acetylation and deacetylation of histone tails change the local chromatin structure by altering the electrostatic attraction between the negatively charged DNA backbone and histones. HDAC3 is a Class I member of the histone deacetylase superfamily (comprising four classes based on function and DNA sequence homology) that is recruited to enhancers to modulate both the epigenome and nearby gene expression. HDAC3 is found exclusively in the cell nucleus, where it is the sole endogenous histone deacetylase biochemically purified in the nuclear-receptor corepressor complex containing NCOR and SMRT (NCOR2). Thus, HDAC3, unlike other HDACs, has a unique role in modulating the transcriptional activities of nuclear receptors.

Alternative functions

Histone deacetylases can be regulated by endogenous factors, dietary components, synthetic inhibitors and bacteria-derived signals. Studies in mice with a specific deletion of HDAC3 in intestinal epithelial cells (IECs) show a deregulated IEC's gene expression. In these deletion-mutant mice, loss of Paneth cells, impaired IEC function and alterations in intestinal composition of commensal bacteria were observed. These negative effects were not observed in germ-free mice, indicating that the effects of the deletion are only seen in the presence of intestinal microbial colonization. But the negative effects of HDAC3 deletion are not due to the presence of an altered microbiota because normal germ-free mice colonized with the altered microbiota did not show the negative effects seen in deletion mutants.

Although the precise mechanism and the specific signals are not known it is clear that HDAC3 interacts with derived signals of commensal bacteria of the gut microbiota. These interactions are responsible of calibrating epithelial cells responses necessary to establish a normal relationship between the host and the commensal as well as to maintain intestinal homeostasis.[5][6][7][8]

Interactions

HDAC3 has been shown to interact with:


See also

References

  1. "Characterization of a human RPD3 ortholog, HDAC3". Proc Natl Acad Sci U S A 95 (6): 2795–800. April 1998. doi:10.1073/pnas.95.6.2795. PMID 9501169. Bibcode1998PNAS...95.2795E. 
  2. "Differential display cloning of a novel human histone deacetylase (HDAC3) cDNA from PHA-activated immune cells". Biochem Biophys Res Commun 242 (3): 648–52. March 1998. doi:10.1006/bbrc.1997.8033. PMID 9464271. 
  3. Montgomery, Rusty L.; Potthoff, Matthew J.; Haberland, Michael; Qi, Xiaoxia; Matsuzaki, Satoshi; Humphries, Kenneth M.; Richardson, James A.; Bassel-Duby, Rhonda et al. (2008-11-03). "Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice" (in en). Journal of Clinical Investigation 118 (11): 3588–3597. doi:10.1172/jci35847. ISSN 0021-9738. PMID 18830415. 
  4. Bhaskara, Srividya; Chyla, Brenda J.; Amann, Joseph M.; Knutson, Sarah K.; Cortez, David; Sun, Zu-Wen; Hiebert, Scott W. (2008). "Deletion of Histone Deacetylase 3 Reveals Critical Roles in S Phase Progression and DNA Damage Control". Molecular Cell 30 (1): 61–72. doi:10.1016/j.molcel.2008.02.030. PMID 18406327. 
  5. "Metaboloepigenetics: interrelationships between energy metabolism and epigenetic control of gene expression". J. Cell. Physiol. 227 (9): 3169–77. 2012. doi:10.1002/jcp.24054. PMID 22261928. 
  6. "The many roles of histone deacetylases in development and physiology: implications for disease and therapy". Nat. Rev. Genet. 10 (1): 32–42. 2009. doi:10.1038/nrg2485. PMID 19065135. 
  7. "Dietary, metabolic, and potentially environmental modulation of the lysine acetylation machinery". Int J Cell Biol 2010: 1–14. 2010. doi:10.1155/2010/632739. PMID 20976254. 
  8. "Dietary histone deacetylase inhibitors: from cells to mice to man". Semin. Cancer Biol. 17 (5): 363–9. 2007. doi:10.1016/j.semcancer.2007.04.001. PMID 17555985. 
  9. "The transcriptional corepressor MTG16a contains a novel nucleolar targeting sequence deranged in t (16; 21)-positive myeloid malignancies". Oncogene 21 (43): 6703–12. September 2002. doi:10.1038/sj.onc.1205882. PMID 12242670. 
  10. "ETO, a target of t(8;21) in acute leukemia, makes distinct contacts with multiple histone deacetylases and binds mSin3A through its oligomerization domain". Mol. Cell. Biol. 21 (19): 6470–83. October 2001. doi:10.1128/MCB.21.19.6470-6483.2001. PMID 11533236. 
  11. "A central domain of cyclin D1 mediates nuclear receptor corepressor activity". Oncogene 24 (3): 431–44. January 2005. doi:10.1038/sj.onc.1208200. PMID 15558026. 
  12. "Cyclin D1 Is a Ligand-independent Co-repressor for Thyroid Hormone Receptors". J. Biol. Chem. 277 (32): 28733–41. August 2002. doi:10.1074/jbc.M203380200. PMID 12048199. 
  13. "Altered interaction of HDAC5 with GATA-1 during MEL cell differentiation". Oncogene 22 (57): 9176–84. December 2003. doi:10.1038/sj.onc.1206902. PMID 14668799. 
  14. "Histone deacetylase 3 associates with and represses the transcription factor GATA-2". Blood 98 (7): 2116–23. October 2001. doi:10.1182/blood.V98.7.2116. PMID 11567998. 
  15. 15.0 15.1 15.2 15.3 "The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2". Mol. Cell 9 (3): 611–23. March 2002. doi:10.1016/S1097-2765(02)00468-9. PMID 11931768. 
  16. "Histone deacetylase 3 binds to and regulates the multifunctional transcription factor TFII-I". J. Biol. Chem. 278 (3): 1841–7. January 2003. doi:10.1074/jbc.M206528200. PMID 12393887. 
  17. "Physical and functional interactions of histone deacetylase 3 with TFII-I family proteins and PIASxbeta". Proc. Natl. Acad. Sci. U.S.A. 99 (20): 12807–12. October 2002. doi:10.1073/pnas.192464499. PMID 12239342. Bibcode2002PNAS...9912807T. 
  18. 18.0 18.1 18.2 "Human HDAC7 histone deacetylase activity is associated with HDAC3 in vivo". J. Biol. Chem. 276 (38): 35826–35. September 2001. doi:10.1074/jbc.M104935200. PMID 11466315. 
  19. 19.0 19.1 "Three proteins define a class of human histone deacetylases related to yeast Hda1p". Proc. Natl. Acad. Sci. U.S.A. 96 (9): 4868–73. April 1999. doi:10.1073/pnas.96.9.4868. PMID 10220385. Bibcode1999PNAS...96.4868G. 
  20. 20.0 20.1 20.2 20.3 "Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR". Mol. Cell 9 (1): 45–57. January 2002. doi:10.1016/S1097-2765(01)00429-4. PMID 11804585. 
  21. 21.0 21.1 "Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization". Proc. Natl. Acad. Sci. U.S.A. 97 (14): 7835–40. July 2000. doi:10.1073/pnas.140199597. PMID 10869435. Bibcode2000PNAS...97.7835G. 
  22. "The histone deacetylase 9 gene encodes multiple protein isoforms". J. Biol. Chem. 278 (18): 16059–72. May 2003. doi:10.1074/jbc.M212935200. PMID 12590135. 
  23. "Identification of a transcriptional repressor related to the noncatalytic domain of histone deacetylases 4 and 5". Proc. Natl. Acad. Sci. U.S.A. 97 (3): 1056–61. February 2000. doi:10.1073/pnas.97.3.1056. PMID 10655483. Bibcode2000PNAS...97.1056Z. 
  24. "Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-kappaB and beta-amyloid precursor protein". Cell 110 (1): 55–67. July 2002. doi:10.1016/S0092-8674(02)00809-7. PMID 12150997. 
  25. "Histone deacetylase 3, a class I histone deacetylase, suppresses MAPK11-mediated activating transcription factor-2 activation and represses TNF gene expression". J. Immunol. 173 (6): 3979–90. September 2004. doi:10.4049/jimmunol.173.6.3979. PMID 15356147. 
  26. 26.0 26.1 26.2 "N-CoR mediates DNA methylation-dependent repression through a methyl CpG binding protein Kaiso". Mol. Cell 12 (3): 723–34. September 2003. doi:10.1016/j.molcel.2003.08.008. PMID 14527417. 
  27. 27.0 27.1 "Purification and functional characterization of the human N-CoR complex: the roles of HDAC3, TBL1 and TBLR1". EMBO J. 22 (6): 1336–46. March 2003. doi:10.1093/emboj/cdg120. PMID 12628926. 
  28. 28.0 28.1 "Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3". EMBO J. 19 (16): 4342–50. August 2000. doi:10.1093/emboj/19.16.4342. PMID 10944117. 
  29. 29.0 29.1 "A novel nuclear receptor corepressor complex, N-CoR, contains components of the mammalian SWI/SNF complex and the corepressor KAP-1". J. Biol. Chem. 275 (51): 40463–70. December 2000. doi:10.1074/jbc.M007864200. PMID 11013263. 
  30. 30.0 30.1 "A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness". Genes Dev. 14 (9): 1048–57. May 2000. doi:10.1101/gad.14.9.1048. PMID 10809664. 
  31. 31.0 31.1 "Assembly of the SMRT-histone deacetylase 3 repression complex requires the TCP-1 ring complex". Genes Dev. 16 (24): 3130–5. December 2002. doi:10.1101/gad.1037502. PMID 12502735. 
  32. 32.0 32.1 32.2 "Interaction of nuclear receptor zinc finger DNA binding domains with histone deacetylase". Mol. Cell. Endocrinol. 206 (1–2): 1–12. August 2003. doi:10.1016/S0303-7207(03)00254-5. PMID 12943985. 
  33. "The peroxisome proliferator-activated receptor delta, an integrator of transcriptional repression and nuclear receptor signaling". Proc. Natl. Acad. Sci. U.S.A. 99 (5): 2613–8. March 2002. doi:10.1073/pnas.052707099. PMID 11867749. Bibcode2002PNAS...99.2613S. 
  34. 34.0 34.1 "The retinoblastoma-histone deacetylase 3 complex inhibits PPARgamma and adipocyte differentiation". Dev. Cell 3 (6): 903–10. December 2002. doi:10.1016/S1534-5807(02)00360-X. PMID 12479814. 
  35. "The growth suppressor PML represses transcription by functionally and physically interacting with histone deacetylases". Mol. Cell. Biol. 21 (7): 2259–68. April 2001. doi:10.1128/MCB.21.7.2259-2268.2001. PMID 11259576. 
  36. "The histone deacetylase HDAC3 targets RbAp48 to the retinoblastoma protein". Nucleic Acids Res. 29 (15): 3131–6. August 2001. doi:10.1093/nar/29.15.3131. PMID 11470869. 
  37. "Duration of nuclear NF-kappaB action regulated by reversible acetylation". Science 293 (5535): 1653–7. August 2001. doi:10.1126/science.1062374. PMID 11533489. Bibcode2001Sci...293.1653C. 
  38. "RBP1 recruits both histone deacetylase-dependent and -independent repression activities to retinoblastoma family proteins". Mol. Cell. Biol. 19 (10): 6632–41. October 1999. doi:10.1128/mcb.19.10.6632. PMID 10490602. 
  39. "Histone deacetylase 3 interacts with runx2 to repress the osteocalcin promoter and regulate osteoblast differentiation". J. Biol. Chem. 279 (40): 41998–2007. October 2004. doi:10.1074/jbc.M403702200. PMID 15292260. 
  40. "Functional and physical interaction between the histone methyl transferase Suv39H1 and histone deacetylases". Nucleic Acids Res. 30 (2): 475–81. January 2002. doi:10.1093/nar/30.2.475. PMID 11788710. 
  41. "Identification of histone deacetylase-3 domains that interact with the orphan nuclear receptor TR2". Biochem. Biophys. Res. Commun. 310 (2): 384–90. October 2003. doi:10.1016/j.bbrc.2003.08.145. PMID 14521922. 
  42. "The orphan nuclear receptor TR2 interacts directly with both class I and class II histone deacetylases". Mol. Endocrinol. 15 (8): 1318–28. August 2001. doi:10.1210/mend.15.8.0682. PMID 11463856. 
  43. "Proteomic analysis of ubiquitinated proteins in normal hepatocyte cell line Chang liver cells". Proteomics 8 (14): 2885–96. July 2008. doi:10.1002/pmic.200700887. PMID 18655026. 
  44. "Isolation and characterization of cDNAs corresponding to an additional member of the human histone deacetylase gene family". J. Biol. Chem. 272 (44): 28001–7. October 1997. doi:10.1074/jbc.272.44.28001. PMID 9346952. 
  45. "Regulation of transcription factor YY1 by acetylation and deacetylation". Mol. Cell. Biol. 21 (17): 5979–91. September 2001. doi:10.1128/MCB.21.17.5979-5991.2001. PMID 11486036. 

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.