Biology:Histone deacetylase 5

From HandWiki
Short description: Protein-coding gene in the species Homo sapiens


A representation of the 3D structure of the protein myoglobin showing turquoise α-helices.
Generic protein structure example

Histone deacetylase 5 is an enzyme that in humans is encoded by the HDAC5 gene.[1][2][3]

Function

Histones play a critical role in transcriptional regulation, cell cycle progression, and developmental events. Histone acetylation/deacetylation alters chromosome structure and affects transcription factor access to DNA. The protein encoded by this gene belongs to the class II histone deacetylase/acuc/apha family. It possesses histone deacetylase activity and represses transcription when tethered to a promoter. It coimmunoprecipitates only with HDAC3 family member and might form multicomplex proteins. It also interacts with myocyte enhancer factor-2 (MEF2) proteins, resulting in repression of MEF2-dependent genes. This gene is thought to be associated with colon cancer. Two transcript variants encoding different isoforms have been found for this gene.[3]

AMP-activated protein kinase regulation of the glucose transporter GLUT4 occurs by phosphorylation of HDAC5.[4]

HDAC5 is involved in memory consolidation and suggests that development of more selective HDAC inhibitors for the treatment of Alzheimer's disease should avoid targeting HDAC5.[5] Its function can be effectively examined by siRNA knockdown based on an independent validation.[6]

HDAC5 overexpression in urothelial carcinoma cell lines inhibits long-term proliferation but can promote epithelial-to-mesenchymal transition (EMT)[7]

Interactions

Histone deacetylase 5 has been shown to interact with:


See also

References

  1. 1.0 1.1 "Three proteins define a class of human histone deacetylases related to yeast Hda1p". Proceedings of the National Academy of Sciences of the United States of America 96 (9): 4868–73. April 1999. doi:10.1073/pnas.96.9.4868. PMID 10220385. Bibcode1999PNAS...96.4868G. 
  2. "Characterization of human colon cancer antigens recognized by autologous antibodies". International Journal of Cancer 76 (5): 652–8. May 1998. doi:10.1002/(SICI)1097-0215(19980529)76:5<652::AID-IJC7>3.0.CO;2-P. PMID 9610721. 
  3. 3.0 3.1 "Entrez Gene: HDAC5 histone deacetylase 5". https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=10014. 
  4. "AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5". Diabetes 57 (4): 860–7. April 2008. doi:10.2337/db07-0843. PMID 18184930. http://diabetes.diabetesjournals.org/content/57/4/860.long. 
  5. "Loss of HDAC5 impairs memory function: implications for Alzheimer's disease". Journal of Alzheimer's Disease 33 (1): 35–44. January 2013. doi:10.3233/JAD-2012-121009. PMID 22914591. 
  6. "Validation of RNAi Silencing Efficiency Using Gene Array Data shows 18.5% Failure Rate across 429 Independent Experiments" (in en). Molecular Therapy: Nucleic Acids 5 (9): e366. September 2016. doi:10.1038/mtna.2016.66. PMID 27673562. 
  7. "HDAC5 Expression in Urothelial Carcinoma Cell Lines Inhibits Long-Term Proliferation but Can Promote Epithelial-to-Mesenchymal Transition". International Journal of Molecular Sciences 20 (9): 2135. April 2019. doi:10.3390/ijms20092135. PMID 31052182. 
  8. 8.0 8.1 "Class II histone deacetylases are directly recruited by BCL6 transcriptional repressor". The Journal of Biological Chemistry 277 (24): 22045–52. June 2002. doi:10.1074/jbc.M201736200. PMID 11929873. 
  9. "Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation". Molecular and Cellular Biology 22 (20): 7302–12. October 2002. doi:10.1128/MCB.22.20.7302-7312.2002. PMID 12242305. 
  10. "Altered interaction of HDAC5 with GATA-1 during MEL cell differentiation". Oncogene 22 (57): 9176–84. December 2003. doi:10.1038/sj.onc.1206902. PMID 14668799. 
  11. 11.0 11.1 "The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2". Molecular Cell 9 (3): 611–23. March 2002. doi:10.1016/S1097-2765(02)00468-9. PMID 11931768. 
  12. "Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR". Molecular Cell 9 (1): 45–57. January 2002. doi:10.1016/S1097-2765(01)00429-4. PMID 11804585. 
  13. "Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization". Proceedings of the National Academy of Sciences of the United States of America 97 (14): 7835–40. July 2000. doi:10.1073/pnas.140199597. PMID 10869435. Bibcode2000PNAS...97.7835G. 
  14. "A molecular dissection of the repression circuitry of Ikaros". The Journal of Biological Chemistry 277 (31): 27697–705. August 2002. doi:10.1074/jbc.M201694200. PMID 12015313. 
  15. "mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity". The Journal of Biological Chemistry 275 (20): 15594–9. May 2000. doi:10.1074/jbc.M908437199. PMID 10748098. 
  16. "Multiple domains of the Receptor-Interacting Protein 140 contribute to transcription inhibition". Nucleic Acids Research 32 (6): 1957–66. 2004. doi:10.1093/nar/gkh524. PMID 15060175. 
  17. 17.0 17.1 "Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway". Genes & Development 14 (1): 45–54. January 2000. doi:10.1101/gad.14.1.45. PMID 10640275. 
  18. "Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5". Molecular and Cellular Biology 24 (19): 8374–85. October 2004. doi:10.1128/MCB.24.19.8374-8385.2004. PMID 15367659. 
  19. "HDAC4 mediates transcriptional repression by the acute promyelocytic leukaemia-associated protein PLZF". Oncogene 23 (54): 8777–84. November 2004. doi:10.1038/sj.onc.1208128. PMID 15467736. 

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.