Biology:Peptidoglycan recognition protein

From HandWiki
Short description: Protein family
Structure of human PGLYRP1 protein. Based on PyMOL rendering of PDB 1yck.

Peptidoglycan recognition proteins (PGRPs) are a group of highly conserved pattern recognition receptors with at least one peptidoglycan recognition domain capable of recognizing the peptidoglycan component of the cell wall of bacteria. They are present in insects, mollusks, echinoderms and chordates. The mechanism of action of PGRPs varies between taxa. In insects, PGRPs kill bacteria indirectly by activating one of four unique effector pathways: prophenoloxidase cascade, Toll pathway, IMD pathway, and induction of phagocytosis.[1][2][3][4] In mammals, PGRPs either kill bacteria directly by interacting with their cell wall or outer membrane, or hydrolyze peptidoglycan.[1][2][3][4] They also modulate inflammation and microbiome and interact with host receptors.[1][3]

Discovery

The first PGRP was discovered in 1996 by Masaaki Ashida and coworkers, who purified a 19 kDa protein present in the hemolymph and cuticle of a silkworm (Bombyx mori), and named it Peptidoglycan Recognition Protein, because it specifically bound peptidoglycan and activated the prophenoloxidase cascade.[5] In 1998 Håkan Steiner and coworkers, using a differential display screen, identified and cloned a PGRP ortholog in a moth (Trichoplusia ni) and then discovered and cloned mouse and human PGRP orthologs,[6] thus showing that PGRPs are highly conserved from insects to mammals. Also in 1998, Sergei Kiselev and coworkers independently discovered and cloned a protein from a mouse adenocarcinoma with the same sequence as PGRP, which they named Tag7.[7] In 1999 Masanori Ochiai and Masaaki Ashida cloned the silkworm (B. mori) PGRP.[8]

In 2000, based on the available sequence of the fruit fly (Drosophila melanogaster) genome, Dan Hultmark and coworkers discovered a family of 12 highly diversified PGRP genes in Drosophila,[9] which they classified into short (S) and long (L) forms based on the size of their transcripts. By homology searches of available sequences, they also predicted the presence of a long form of human and mouse PGRP (PGRP-L).[9]

In 2001, Roman Dziarski and coworkers discovered and cloned three human PGRPs, named PGRP-L, PGRP-Iα, and PGRP-Iβ (for long and intermediate size transcripts).[10] They established that human genome codes for a family of 4 PGRPs: PGRP-S (short PGRP)[6] and PGRP-L, PGRP-Iα, and PGRP-Iβ.[10] Subsequently, the Human Genome Organization Gene Nomenclature Committee changed the gene symbols of PGRP-S, PGRP-L, PGRP-Iα, and PGRP-Iβ to PGLYRP1, PGLYRP2, PGLYRP3, and PGLYRP4, respectively, and this nomenclature is currently also used for other mammalian PGRPs. Sergei Kiselev and coworkers also independently cloned mouse PGLYRP2 (TagL).[11][12] Thereafter, PGRPs have been identified throughout the animal kingdom, although lower metazoa (e.g., the nematode Caenorhabditis elegans) and plants do not have PGRPs.[2][3][4]

In 2003, Byung-Ha Oh and coworkers crystalized PGRP-LB from Drosophila and solved its structure.[13]

Types

Insects generate up to 19 alternatively spliced PGRPs, classified into long (L) and short (S) forms. For instance, the fruit fly (D. melanogaster) has 13 PGRP genes, whose transcripts are alternatively spliced into 19 proteins, while the mosquito (Anopheles gambiae) has 7 PGRP genes, with 9 splice variants.[1][2][9][14] File:Human PGLYRP1 gene, cDNA, and protein.tif File:Human PGLYRP2 gene, cDNA, and protein rev.tif File:Human PGLYRP3 gene and protein.tif File:Human PGLYRP4 gene, cDNA, and protein.tif Mammals have up to four PGRPs, all of which are secreted. These are peptidoglycan recognition protein 1 (PGLYRP1), peptidoglycan recognition protein 2 (PGLYRP2), peptidoglycan recognition protein 3 (PGLYRP3) and peptidoglycan recognition protein 4 (PGLYRP4).[1][2][3][4][10]

Structure

PGRPs contain at least one C-terminal peptidoglycan recognition domain (PGRP domain), which is about 165 amino acids long. This peptidoglycan-binding type 2 amidase domain is homologous to bacteriophage and bacterial type 2 amidases.[4]

PGRP domain has three peripheral α-helices and several central β-strands that form a peptidoglycan-binding groove on the front face of the molecule, whereas the back of the molecule has a PGRP-specific segment, which is often hydrophobic, diverse among various PGRPs, and not present in bacteriophage amidases.[2][3][4][13][15][16]

Invertebrate PGRPs can be small secreted proteins (e.g., PGRP-SB, -SA, -SD, and -LB in Drosophila), larger transmembrane proteins (e.g., PGRP-LA, -LC, and -LF in Drosophila), or intracellular proteins (e.g., PGRP-LEfl in Drosophila).[1][2][3][4] They usually have one C-terminal PGRP domain, with few exceptions, such as Drosophila PGRP-LF, which has two PGRP domains.[1]  Mammalian PGRPs are secreted proteins that typically form dimers and contain either one PGRP domain (e.g., human PGLYRP1 and PGLYRP2) or two PGRP domains (e.g., human PGLYRP3 and PGLYRP4).[1][3][17][18][19]

Functions

Peptidoglycan binding

PGRPs bind peptidoglycan, the main component of bacterial cell wall.[1][2][3][4] Peptidoglycan is a polymer of β(1-4)-linked N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) cross-linked by short peptides composed of alternating L- and D-amino acids. MurNAc-tripeptide is the minimum fragment of peptidoglycan that binds to PGRPs and MurNAc-tetrtapeptides and MurNAc-pentapeptides bind with higher affinity.[15][16][20] Peptidoglycan binding usually induces a change in the structure of PGRP or interaction with another PGRP molecule that locks MurNAc-peptide in the binding grove.[16] Some PGRPs can discriminate between different amino acids present in the peptide part of peptidoglycan, especially between the amino acid in the third position of peptidoglycan peptide, which is usually L-lysine in Gram-positive cocci or meso-diaminopimelic acid (m-DAP) in Gram-negative bacteria and Gram-positive bacilli. Some PGRPs can also discriminate between MurNAc and its anhydro form.[2][15][16][20][21]

Functions in insects

PGRPs are the main sensors of bacteria in insects and the main components of their antimicrobial defenses. PGRPs activate signaling cascades that induce production of antimicrobial peptides and other immune effectors. Soluble PGRPs (e.g. PGRP-SA and PGRP-SD in Drosophila) detect L-lysine-containing peptidoglycan and activate a proteolytic cascade that generates an endogenous ligand Spätzle that activates cell-surface Toll-1 receptor. Toll-1 in turn triggers a signal transduction cascade that results in production of antimicrobial peptides primarily active against Gram-positive bacteria and fungi.[1][2][3][22][23][24][25]

Transmembrane PGRPs (e.g., Drosophila PGRP-LC) and intracellular PGRPs (e.g., Drosophila PGRP-LE) function as receptors – they detect m-DAP-containing peptidoglycan and activate IMD (immunodeficiency) signal transduction pathway that induces production of antimicrobial peptides active primarily against Gram-negative bacteria.[1][2][3][26][27][28] This activation of IMD pathway also induces production of dual oxidase, which generates antimicrobial reactive oxygen species.[1][29]

Some insect PGRPs (e.g., Drosophila PGRP-SA and -LE, and B. mori PGRP-S) activate the prophenoloxidase cascade, which results in the formation of melanin, reactive oxygen species, and other antimicrobial compounds.[3][5][30][31]

Several small insect PGRPs (e.g., Drosophila PGRP-SB, -SC, and -LB) are peptidoglycan hydrolases (N-acetylmuramoyl-L-alanine amidases) that hydrolyzes the amide bond between the MurNAc and L-Ala (the first amino acid in the stem peptide).[1][32] These amidases act as peptidoglycan scavengers because they render the resulting peptidoglycan fragments unable to bind to PGRP.[1][32] They abolish cell-activating capacity of peptidoglycan and limit systemic uptake of peptidoglycan from the bacteria-laden intestinal tract and down-regulate or prevent over-activation of host defense pathways.[1][33][34] Some of these amidases are also directly bactericidal, which further defends the host against infections and helps to control the numbers of commensal bacteria.[35][36]

Some other insect PGRPs (e.g., Drosophila PGRP-LF) do not bind peptidoglycan and lack intracellular signaling domain – they complex with PGRP-LC and function to down-regulate activation of the IMD pathway.[1][37][38]

Functions in other invertebrates

PGRPs are present and constitutively expressed or induced by bacteria in most invertebrates, including worms,[39] snails,[40] oysters,[41][42] scallops,[43][44] squid,[45] and starfish.[46] These PGRPs are confirmed or predicted amidases and some have antibacterial activity. They likely defend the hosts against infections or regulate colonization by certain commensal bacteria, such as Vibrio fischeri in the light organ of Hawaiian bobtail squid, Euprymna scolopes.[47][48]

Expression and functions in lower vertebrates

Early fish-like chordates, amphioxi (lancelets), have extensive innate immune system (but no adaptive immunity) and have multiple PGRP genes – e.g., 18 PGRP genes in the Florida lancelet (Branchiostoma floridae), all of which are predicted peptidoglycan-hydrolyzing amidases and at least one is bactericidal.[49]

Fish, such as zebrafish (Danio rerio), typically have 4 PGRP genes,[50] but they are not all orthologous to mammalian PGLYRPs and different species may have multiple PGRP splice variants.[51][52][53][54] They are constitutively expressed in many tissues of adult fish, such as liver, gills, intestine, pancreas, spleen, and skin, and bacteria can increase their expression. PGRPs are also highly expressed in developing oocytes and in eggs (e.g., zebrafish PGLYRP2 and PGLYRP5).[50] These PGRPs have both peptidoglycan-hydrolyzing amidase activity and are directly bactericidal to both Gram-positive and Gram-negative bacteria and protect eggs and developing embryos from bacterial infections.[50] They may also regulate several signaling pathways.[55][56]

Amphibian PGRPs are also proven or predicted amidases and likely have similar functions to fish PGRPs.[4]

Expression in mammals

All four mammalian PGRPs are secreted proteins.[18][19][57][58]

PGLYRP1 (peptidoglycan recognition protein 1) has the highest level of expression of all mammalian PGRPs. PGLYRP1 is highly constitutively expressed in the bone marrow and in the granules of neutrophils and eosinophils, and also in activated macrophages, lactating mammary gland, and intestinal Peyer's patches’ microfold (M) cells, and to a much lesser extent in epithelial cells in the eye, mouth, and respiratory and intestinal tracts.[6][10][59][60][61][62][63][64][65][66]

PGLYRP2 (peptidoglycan recognition protein 2) is constitutively expressed in the liver, from where it is secreted into the blood.[10][18][67][68] Liver PGLYRP2 and earlier identified serum N-acetylmuramoyl-L-alanine amidase are the same protein encoded by the PGLYRP2 gene.[17][18][58][69] Bacteria and cytokines induce low level of PGLYRP2 expression in the skin and gastrointestinal epithelial cells,[19][68][70][71] intestinal intraepithelial T lymphocytes, dendritic cells, NK (natural killer) cells, and inflammatory macrophages.[72][73] Some mammals, e.g. pigs, express multiple splice forms of PGLYRP2 with differential expression.[74]

PGLYRP3 (peptidoglycan recognition protein 3) and PGLYRP4 (peptidoglycan recognition protein 4) are constitutively expressed in the skin, in the eye, and in mucous membranes in the tongue, throat, and esophagus, and at a much lower level in the remaining parts of the intestinal tract.[10][19][75][76] PGLYRP4 is also expressed in the salivary glands and mucus-secreting glands in the throat.[19] Bacteria and their products increase expression of PGLYRP3 and PGLYRP4 in keratinocytes and oral epithelial cells.[19][71] When expressed in the same cells, PGLYRP3 and PGLYRP4 form disulfide-linked heterodimers.[19]

Mouse PGLYRP1, PGLYRP2, PGLYRP3, and PGLYRP4 are also differentially expressed in the developing brain and this expression is influenced by the intestinal microbiome.[77] Expression of PGLYRP1 is also induced in rat brain by sleep deprivation[78] and in mouse brain by ischemia.[79]

Functions in mammals

Human PGLYRP1, PGLYRP3, and PGLYRP4 are directly bactericidal for both Gram-positive and Gram-negative bacteria[19][63][80][81][82][83][84][85][86] and a spirochete Borrelia burgdorferi.[87] Mouse[88][60] and bovine[59][89] PGLYRP1 also have antibacterial activity, and bovine PGLYRP1 has also antifungal activity.[59] These human PGRPs kill bacteria by simultaneously inducing three synergistic stress responses: oxidative stress, thiol stress, and metal stress.[81][83][84][85][86][90] Bacterial killing by these PGRPs does not involve cell membrane permeabilization, cell wall hydrolysis, or osmotic shock,[19][80][81] but is synergistic with lysozyme[63] and antibacterial peptides.[80]

Human,[18][58] mouse,[57] and porcine[74] PGLYRP2 are enzymes, N-acetylmuramoyl-L-alanine amidases, that hydrolyze the amide bond between the MurNAc and L-alanine, the first amino acid in the stem peptide in bacterial cell wall peptidoglycan. The minimal peptidoglycan fragment hydrolyzed by PGLYRP2 is MurNAc-tripeptide.[58] Hydrolysis of peptidoglycan by PGLYRP2 diminishes its pro-inflammatory activity.[72][91]

Unlike invertebrate and lower vertebrate PGRPs, mammalian PGRPs have only limited role in defense against infections. Intranasal application of PGLYRP3 or PGLYRP4 in mice protects from intranasal lung infection with Staphylococcus aureus and Escherichia coli,[19][92] and intravenous administration of PGLYRP1 protects mice from systemic Listeria monocytogenes infection.[93] Also, PGLYRP1-deficient mice are more sensitive to systemic infections with non-pathogenic bacteria (Micrococcus luteus and Bacillus subtilis)[60] and to Pseudomonas aeruginosa-induced keratitis,[64] but not to systemic infections with several pathogenic bacteria (S. aureus and E. coli).[60] However, PGLYRP1 protects mice against B. burgdorferi infection, as mice lacking PGLYRP1 have increased spirochete burden in the heart and joints, but not in the skin, indicating the role for PGLYRP1 in controlling dissemination of B. burgdorferi during the systemic phase of infection.[87] PGLYRP2-deficient mice are more sensitive to P. aeruginosa-induced keratitis[94] and Streptococcus pneumoniae-induced pneumonia and sepsis,[95] and PGLYRP4-deficient mice are more sensitive to S. pneumoniae-induced pneumonia.[96]

Mouse PGRPs play a role in maintaining healthy microbiome, as PGLYRP1-, PGLYRP2-, PGLYRP3-, and PGLYRP4-deficient mice have significant changes in the composition of their intestinal microbiomes[76][96][97][98] and PGLYRP1-deficient mice also have changes in their lung microbiome.[98]

Mouse PGRPs also play a role in maintaining anti- and pro-inflammatory homeostasis in the intestine, skin, lungs, joints, and brain.[1][99] All four PGLYRPs protect mice from dextran sodium sulfate (DSS)-induced colitis and the effect of PGLYRP2 and PGLYRP3 on the intestinal microbiome is responsible for this protection.[76][97][100] PGLYRP3 is anti-inflammatory in intestinal epithelial cells.[101] PGLYRP4 has anti-inflammatory effect in a mouse model of S. pneumoniae pneumonia and sepsis, which also depends on the PGLYRP4-controlled microbiome.[96]

PGLYRP3 and PGLYRP4 are anti-inflammatory and protect mice from atopic dermatitis[102] and PGLYRP4 also protects mice from Bordetella pertussis-induced airway inflammation.[103] PGLYRP2 is anti-inflammatory and protects mice from experimentally-induced psoriasis-like inflammation[104] and Salmonella enterica-induced intestinal inflammation.[73] But PGLYRP2 has also pro-inflammatory effects, as it promotes the development of experimental arthritis,[105] bacterially-induced keratitis,[94] and inflammation in S. pneumoniae lung infection[95] in mice. PGLYRP2 also regulates motor activity and anxiety-dependent behavior in mice.[77][106]

PGLYRP1 is pro-inflammatory and promotes experimentally-induced asthma,[65][66] skin inflammation,[102][104] and experimental autoimmune encephalomyelitis (EAE)[107] in mice. The pro-inflammatory effect in asthma depends on the PGLYRP1-regulated intestinal microbiome,[98] whereas in EAE, it depends on the expression of PGLYRP1 in monocytes, macrophages, and neutrophils.[107] PGLYRP1 also has anti-inflammatory effects, as it inhibits the activation of cytotoxic anti-tumor CD8+ T cells and its deletion leads to decreased tumor growth in mice.[107] Mice lacking PGLYRP1 infected with B. burgdorferi show signs of immune dysregulation, which results in Th1 cytokine response and impairment of antibody response to B. burgdorferi.[87] PGLYRP1 also promotes wound healing in experimentally-induced keratitis in mice.[64]

Some mammalian PGRPs can also function as host receptor agonists or antagonists. Human PGLYRP1 complexed with peptidoglycan or multimerized binds to and stimulates TREM-1 (triggering receptor expressed on myeloid cells-1), a receptor present on neutrophils, monocytes and macrophages that induces production of pro-inflammatory cytokines.[108]

Human and mouse PGLYRP1 (Tag7) bind heat shock protein 70 (Hsp70) in solution and PGLYRP1-Hsp70 complexes are also secreted by cytotoxic lymphocytes, and these complexes are cytotoxic for tumor cells.[109][110] This cytotoxicity is antagonized by metastasin (S100A4)[111] and heat shock-binding protein HspBP1.[112] PGLYRP1-Hsp70 complexes bind to the TNFR1 (tumor necrosis factor receptor-1, which is a death receptor) and induce a cytotoxic effect via apoptosis and necroptosis.[113] This cytotoxicity is associated with permeabilization of lysosomes and mitochondria.[114] By contrast, free PGLYRP1 acts as a TNFR1 antagonist by binding to TNFR1 and inhibiting its activation by PGLYRP1-Hsp70 complexes.[113] Peptides from human PGLYRP1 also inhibit the cytotoxic effects of TNF-α and PGLYRP1-Hsp70 complexes[115] and cytokine production in human peripheral blood mononuclear cells.[116] They also decrease inflammatory responses in a mouse model of acute lung injury[116] and in the complete Freund's adjuvant-induced arthritis in mice.[117]

Medical relevance

Genetic PGLYRP variants or changed expression of PGRPs are associated with several diseases. Patients with inflammatory bowel disease (IBD), which includes Crohn’s disease and ulcerative colitis, have significantly more frequent missense variants in all four PGLYRP genes than healthy controls.[118] These results suggest that PGRPs protect humans from these inflammatory diseases, and that mutations in PGLYRP genes are among the genetic factors predisposing to these diseases. PGLYRP1 variants are also associated with increased fetal hemoglobin in sickle cell disease,[119] PGLYRP2 variants are associated with esophageal squamous cell carcinoma,[120] PGLYRP2, PGLYRP3, and PGLYRP4 variants are associated with Parkinson’s disease,[121][122][123] PGLYRP3 and PGLYRP4 variants are associated with psoriasis[124][125] and composition of airway microbiome,[126] and PGLYRP4 variants are associated with ovarian cancer.[127]

Several diseases are associated with increased expression of PGLYRP1, including: atherosclerosis,[128][129] myocardial infarction,[130][131] heart failure,[130][132] coronary artery disease,[132][133] sepsis,[134] pulmonary fibrosis,[135] asthma,[136] chronic kidney disease,[137] rheumatoid arthritis,[138] gingival inflammation,[139][140][141][142][143][144] caries and muscle and joint diseases,[145] osteoarthritis,[146] cardiovascular events and death in kidney transplant patients,[147] ulcerative colitis and Crohn's disease,[148] alopecia,[149] type I diabetes,[150] infectious complications in hemodialysis,[151] and thrombosis,[152] consistent with pro-inflammatory effects of PGLYRP1. Lower expression of PGLYRP1 was found in endometriosis.[153] Umbilical cord blood serum concentration of PGLYRP1 is inversely associated with pediatric asthma and pulmonary function in adolescence.[154]

Increased serum PGLYRP2 levels are present in patients with systemic lupus erythematosus and correlate with disease activity index, renal damage, and abnormal lipid profile.[155] Autoantibodies to PGLYRP2 are significantly increased in patients with rheumatoid arthritis.[156] Decreased expression of PGLYRP2 is found in HIV-associated[157] and drug-sensitive[158] tuberculosis, Lyme disease,[159] hepatocellular carcinoma,[160] and myocardial infarction.[161]

Applications

A silkworm larvae plasma (SLP) test to detect peptidoglycan, based on activation of the prophenoloxidase cascade by PGRP in the hemolymph of the silkworm, Bombyx mori, is available.[162][163]

See also

References

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 Royet, Julien; Gupta, Dipika; Dziarski, Roman (11 November 2011). "Peptidoglycan recognition proteins: modulators of the microbiome and inflammation". Nature Reviews Immunology 11 (12): 837–51. doi:10.1038/nri3089. PMID 22076558. 
  2. 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 Royet, Julien; Dziarski, Roman (April 2007). "Peptidoglycan recognition proteins: pleiotropic sensors and effectors of antimicrobial defences" (in en). Nature Reviews Microbiology 5 (4): 264–277. doi:10.1038/nrmicro1620. ISSN 1740-1526. PMID 17363965. http://www.nature.com/articles/nrmicro1620. 
  3. 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.11 Dziarski, Roman; Royet, Julien; Gupta, Dipika (2016), Peptidoglycan Recognition Proteins and Lysozyme, Elsevier, pp. 389–403, doi:10.1016/b978-0-12-374279-7.02022-1, ISBN 978-0-08-092152-5, http://dx.doi.org/10.1016/B978-0-12-374279-7.02022-1, retrieved 2020-10-22 
  4. 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 Dziarski, Roman; Gupta, Dipika (2006). "The peptidoglycan recognition proteins (PGRPs)". Genome Biology 7 (8): 232. doi:10.1186/gb-2006-7-8-232. PMID 16930467. 
  5. 5.0 5.1 Yoshida, Hideya; Kinoshita, Kuninori; Ashida, Masaaki (1996-06-07). "Purification of a Peptidoglycan Recognition Protein from Hemolymph of the Silkworm, Bombyx mori" (in en). Journal of Biological Chemistry 271 (23): 13854–13860. doi:10.1074/jbc.271.23.13854. ISSN 0021-9258. PMID 8662762. 
  6. 6.0 6.1 6.2 Kang, D.; Liu, G.; Lundstrom, A.; Gelius, E.; Steiner, H. (1998-08-18). "A peptidoglycan recognition protein in innate immunity conserved from insects to humans" (in en). Proceedings of the National Academy of Sciences 95 (17): 10078–10082. doi:10.1073/pnas.95.17.10078. ISSN 0027-8424. PMID 9707603. Bibcode1998PNAS...9510078K. 
  7. Kiselev, Sergei L.; Kustikova, Olga S.; Korobko, Elena V.; Prokhortchouk, Egor B.; Kabishev, Andrei A.; Lukanidin, Evgenii M.; Georgiev, Georgii P. (1998-07-17). "Molecular Cloning and Characterization of the Mouse tag7 Gene Encoding a Novel Cytokine" (in en). Journal of Biological Chemistry 273 (29): 18633–18639. doi:10.1074/jbc.273.29.18633. ISSN 0021-9258. PMID 9660837. 
  8. Ochiai, Masanori; Ashida, Masaaki (1999-04-23). "A Pattern Recognition Protein for Peptidoglycan: CLONING THE cDNA AND THE GENE OF THE SILKWORM, BOMBYX MORI" (in en). Journal of Biological Chemistry 274 (17): 11854–11858. doi:10.1074/jbc.274.17.11854. ISSN 0021-9258. PMID 10207004. 
  9. 9.0 9.1 9.2 Werner, T.; Liu, G.; Kang, D.; Ekengren, S.; Steiner, H.; Hultmark, D. (2000-12-05). "A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster" (in en). Proceedings of the National Academy of Sciences 97 (25): 13772–13777. doi:10.1073/pnas.97.25.13772. ISSN 0027-8424. PMID 11106397. Bibcode2000PNAS...9713772W. 
  10. 10.0 10.1 10.2 10.3 10.4 10.5 Liu, Chao; Xu, Zhaojun; Gupta, Dipika; Dziarski, Roman (2001-09-14). "Peptidoglycan Recognition Proteins: A NOVEL FAMILY OF FOUR HUMAN INNATE IMMUNITY PATTERN RECOGNITION MOLECULES" (in en). Journal of Biological Chemistry 276 (37): 34686–34694. doi:10.1074/jbc.M105566200. ISSN 0021-9258. PMID 11461926. 
  11. Kibardin, A. V.; Mirkina, I. I.; Korneeva, E. A.; Gnuchev, N. V.; Georgiev, G. P.; Kiselev, S. L. (May 2000). "Molecular cloning of a new mouse gene tagL containing a lysozyme-like domain". Doklady Biochemistry: Proceedings of the Academy of Sciences of the USSR, Biochemistry Section 372 (1–6): 103–105. ISSN 0012-4958. PMID 10935177. https://pubmed.ncbi.nlm.nih.gov/10935177. 
  12. Kibardin, A. V.; Mirkina, I. I.; Baranova, E. V.; Zakeyeva, I. R.; Georgiev, G. P.; Kiselev, S. L. (2003-02-14). "The differentially spliced mouse tagL gene, homolog of tag7/PGRP gene family in mammals and Drosophila, can recognize Gram-positive and Gram-negative bacterial cell wall independently of T phage lysozyme homology domain". Journal of Molecular Biology 326 (2): 467–474. doi:10.1016/s0022-2836(02)01401-8. ISSN 0022-2836. PMID 12559914. https://pubmed.ncbi.nlm.nih.gov/12559914. 
  13. 13.0 13.1 Kim, Min-Sung; Byun, Minji; Oh, Byung-Ha (August 2003). "Crystal structure of peptidoglycan recognition protein LB from Drosophila melanogaster". Nature Immunology 4 (8): 787–793. doi:10.1038/ni952. ISSN 1529-2908. PMID 12845326. https://pubmed.ncbi.nlm.nih.gov/12845326. 
  14. Christophides, George K.; Zdobnov, Evgeny; Barillas-Mury, Carolina; Birney, Ewan; Blandin, Stephanie; Blass, Claudia; Brey, Paul T.; Collins, Frank H. et al. (2002-10-04). "Immunity-related genes and gene families in Anopheles gambiae". Science 298 (5591): 159–165. doi:10.1126/science.1077136. ISSN 1095-9203. PMID 12364793. Bibcode2002Sci...298..159C. https://pubmed.ncbi.nlm.nih.gov/12364793. 
  15. 15.0 15.1 15.2 Guan, Rongjin; Roychowdhury, Abhijit; Ember, Brian; Kumar, Sanjay; Boons, Geert-Jan; Mariuzza, Roy A. (2004-12-07). "Structural basis for peptidoglycan binding by peptidoglycan recognition proteins". Proceedings of the National Academy of Sciences of the United States of America 101 (49): 17168–17173. doi:10.1073/pnas.0407856101. ISSN 0027-8424. PMID 15572450. Bibcode2004PNAS..10117168G. 
  16. 16.0 16.1 16.2 16.3 Guan, Rongjin; Brown, Patrick H.; Swaminathan, Chittoor P.; Roychowdhury, Abhijit; Boons, Geert-Jan; Mariuzza, Roy A. (May 2006). "Crystal structure of human peptidoglycan recognition protein I alpha bound to a muramyl pentapeptide from Gram-positive bacteria". Protein Science 15 (5): 1199–1206. doi:10.1110/ps.062077606. ISSN 0961-8368. PMID 16641493. 
  17. 17.0 17.1 De Pauw, P.; Neyt, C.; Vanderwinkel, E.; Wattiez, R.; Falmagne, P. (June 1995). "Characterization of human serum N-acetylmuramyl-L-alanine amidase purified by affinity chromatography". Protein Expression and Purification 6 (3): 371–378. doi:10.1006/prep.1995.1049. ISSN 1046-5928. PMID 7663175. https://pubmed.ncbi.nlm.nih.gov/7663175. 
  18. 18.0 18.1 18.2 18.3 18.4 Zhang, Yinong; van der Fits, Leslie; Voerman, Jane S.; Melief, Marie-Jose; Laman, Jon D.; Wang, Mu; Wang, Haitao; Wang, Minhui et al. (2005-08-31). "Identification of serum N-acetylmuramoyl-l-alanine amidase as liver peptidoglycan recognition protein 2". Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1752 (1): 34–46. doi:10.1016/j.bbapap.2005.07.001. ISSN 0006-3002. PMID 16054449. https://pubmed.ncbi.nlm.nih.gov/16054449. 
  19. 19.0 19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9 Lu, Xiaofeng; Wang, Minhui; Qi, Jin; Wang, Haitao; Li, Xinna; Gupta, Dipika; Dziarski, Roman (2006-03-03). "Peptidoglycan recognition proteins are a new class of human bactericidal proteins". The Journal of Biological Chemistry 281 (9): 5895–5907. doi:10.1074/jbc.M511631200. ISSN 0021-9258. PMID 16354652. 
  20. 20.0 20.1 Lim, Jae-Hong; Kim, Min-Sung; Kim, Han-Eol; Yano, Tamaki; Oshima, Yoshiteru; Aggarwal, Kamna; Goldman, William E.; Silverman, Neal et al. (2006-03-24). "Structural basis for preferential recognition of diaminopimelic acid-type peptidoglycan by a subset of peptidoglycan recognition proteins". The Journal of Biological Chemistry 281 (12): 8286–8295. doi:10.1074/jbc.M513030200. ISSN 0021-9258. PMID 16428381. 
  21. Kumar, Sanjay; Roychowdhury, Abhijit; Ember, Brian; Wang, Qian; Guan, Rongjin; Mariuzza, Roy A.; Boons, Geert-Jan (2005-11-04). "Selective recognition of synthetic lysine and meso-diaminopimelic acid-type peptidoglycan fragments by human peptidoglycan recognition proteins I{alpha} and S". The Journal of Biological Chemistry 280 (44): 37005–37012. doi:10.1074/jbc.M506385200. ISSN 0021-9258. PMID 16129677. 
  22. Rutschmann, S.; Jung, A. C.; Hetru, C.; Reichhart, J. M.; Hoffmann, J. A.; Ferrandon, D. (May 2000). "The Rel protein DIF mediates the antifungal but not the antibacterial host defense in Drosophila". Immunity 12 (5): 569–580. doi:10.1016/s1074-7613(00)80208-3. ISSN 1074-7613. PMID 10843389. 
  23. Michel, T.; Reichhart, J. M.; Hoffmann, J. A.; Royet, J. (2001-12-13). "Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein". Nature 414 (6865): 756–759. doi:10.1038/414756a. ISSN 0028-0836. PMID 11742401. Bibcode2001Natur.414..756M. https://pubmed.ncbi.nlm.nih.gov/11742401. 
  24. Gobert, Vanessa; Gottar, Marie; Matskevich, Alexey A.; Rutschmann, Sophie; Royet, Julien; Belvin, Marcia; Hoffmann, Jules A.; Ferrandon, Dominique (2003-12-19). "Dual activation of the Drosophila toll pathway by two pattern recognition receptors". Science 302 (5653): 2126–2130. doi:10.1126/science.1085432. ISSN 1095-9203. PMID 14684822. Bibcode2003Sci...302.2126G. https://pubmed.ncbi.nlm.nih.gov/14684822. 
  25. Bischoff, Vincent; Vignal, Cécile; Boneca, Ivo G.; Michel, Tatiana; Hoffmann, Jules A.; Royet, Julien (November 2004). "Function of the drosophila pattern-recognition receptor PGRP-SD in the detection of Gram-positive bacteria". Nature Immunology 5 (11): 1175–1180. doi:10.1038/ni1123. ISSN 1529-2908. PMID 15448690. https://pubmed.ncbi.nlm.nih.gov/15448690. 
  26. Leulier, François; Parquet, Claudine; Pili-Floury, Sebastien; Ryu, Ji-Hwan; Caroff, Martine; Lee, Won-Jae; Mengin-Lecreulx, Dominique; Lemaitre, Bruno (May 2003). "The Drosophila immune system detects bacteria through specific peptidoglycan recognition". Nature Immunology 4 (5): 478–484. doi:10.1038/ni922. ISSN 1529-2908. PMID 12692550. https://pubmed.ncbi.nlm.nih.gov/12692550. 
  27. Kaneko, Takashi; Goldman, William E.; Mellroth, Peter; Steiner, Håkan; Fukase, Koichi; Kusumoto, Shoichi; Harley, William; Fox, Alvin et al. (May 2004). "Monomeric and polymeric gram-negative peptidoglycan but not purified LPS stimulate the Drosophila IMD pathway". Immunity 20 (5): 637–649. doi:10.1016/s1074-7613(04)00104-9. ISSN 1074-7613. PMID 15142531. 
  28. Choe, Kwang-Min; Lee, Hyangkyu; Anderson, Kathryn V. (2005-01-25). "Drosophila peptidoglycan recognition protein LC (PGRP-LC) acts as a signal-transducing innate immune receptor". Proceedings of the National Academy of Sciences of the United States of America 102 (4): 1122–1126. doi:10.1073/pnas.0404952102. ISSN 0027-8424. PMID 15657141. Bibcode2005PNAS..102.1122C. 
  29. Ha, Eun-Mi; Lee, Kyung-Ah; Seo, You Yeong; Kim, Sung-Hee; Lim, Jae-Hong; Oh, Byung-Ha; Kim, Jaesang; Lee, Won-Jae (September 2009). "Coordination of multiple dual oxidase-regulatory pathways in responses to commensal and infectious microbes in drosophila gut". Nature Immunology 10 (9): 949–957. doi:10.1038/ni.1765. ISSN 1529-2916. PMID 19668222. https://pubmed.ncbi.nlm.nih.gov/19668222. 
  30. Takehana, Aya; Katsuyama, Tomonori; Yano, Tamaki; Oshima, Yoshiteru; Takada, Haruhiko; Aigaki, Toshiro; Kurata, Shoichiro (2002-10-15). "Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae". Proceedings of the National Academy of Sciences of the United States of America 99 (21): 13705–13710. doi:10.1073/pnas.212301199. ISSN 0027-8424. PMID 12359879. Bibcode2002PNAS...9913705T. 
  31. Park, Ji-Won; Kim, Chan-Hee; Kim, Jung-Hyun; Je, Byung-Rok; Roh, Kyung-Baeg; Kim, Su-Jin; Lee, Hyeon-Hwa; Ryu, Ji-Hwan et al. (2007-04-17). "Clustering of peptidoglycan recognition protein-SA is required for sensing lysine-type peptidoglycan in insects". Proceedings of the National Academy of Sciences of the United States of America 104 (16): 6602–6607. doi:10.1073/pnas.0610924104. ISSN 0027-8424. PMID 17409189. Bibcode2007PNAS..104.6602P. 
  32. 32.0 32.1 Mellroth, Peter; Karlsson, Jenny; Steiner, Hakan (2003-02-28). "A scavenger function for a Drosophila peptidoglycan recognition protein". The Journal of Biological Chemistry 278 (9): 7059–7064. doi:10.1074/jbc.M208900200. ISSN 0021-9258. PMID 12496260. 
  33. Bischoff, Vincent; Vignal, Cécile; Duvic, Bernard; Boneca, Ivo G.; Hoffmann, Jules A.; Royet, Julien (February 2006). "Downregulation of the Drosophila immune response by peptidoglycan-recognition proteins SC1 and SC2". PLOS Pathogens 2 (2): e14. doi:10.1371/journal.ppat.0020014. ISSN 1553-7374. PMID 16518472. 
  34. Zaidman-Rémy, Anna; Hervé, Mireille; Poidevin, Mickael; Pili-Floury, Sébastien; Kim, Min-Sung; Blanot, Didier; Oh, Byung-Ha; Ueda, Ryu et al. (April 2006). "The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection". Immunity 24 (4): 463–473. doi:10.1016/j.immuni.2006.02.012. ISSN 1074-7613. PMID 16618604. 
  35. Mellroth, Peter; Steiner, Håkan (2006-12-01). "PGRP-SB1: an N-acetylmuramoyl L-alanine amidase with antibacterial activity". Biochemical and Biophysical Research Communications 350 (4): 994–999. doi:10.1016/j.bbrc.2006.09.139. ISSN 0006-291X. PMID 17046713. https://pubmed.ncbi.nlm.nih.gov/17046713. 
  36. Wang, Jingwen; Aksoy, Serap (2012-06-26). "PGRP-LB is a maternally transmitted immune milk protein that influences symbiosis and parasitism in tsetse's offspring". Proceedings of the National Academy of Sciences of the United States of America 109 (26): 10552–10557. doi:10.1073/pnas.1116431109. ISSN 1091-6490. PMID 22689989. Bibcode2012PNAS..10910552W. 
  37. Maillet, Frédéric; Bischoff, Vincent; Vignal, Cécile; Hoffmann, Jules; Royet, Julien (2008-05-15). "The Drosophila peptidoglycan recognition protein PGRP-LF blocks PGRP-LC and IMD/JNK pathway activation". Cell Host & Microbe 3 (5): 293–303. doi:10.1016/j.chom.2008.04.002. ISSN 1934-6069. PMID 18474356. 
  38. Basbous, Nada; Coste, Franck; Leone, Philippe; Vincentelli, Renaud; Royet, Julien; Kellenberger, Christine; Roussel, Alain (April 2011). "The Drosophila peptidoglycan-recognition protein LF interacts with peptidoglycan-recognition protein LC to downregulate the Imd pathway". EMBO Reports 12 (4): 327–333. doi:10.1038/embor.2011.19. ISSN 1469-3178. PMID 21372849. 
  39. Blanco, Guillermo A.; Malchiodi, Emilio L.; De Marzi, Mauricio C. (October 2008). "Cellular clot formation in a sipunculan worm: entrapment of foreign particles, cell death and identification of a PGRP-related protein". Journal of Invertebrate Pathology 99 (2): 156–165. doi:10.1016/j.jip.2008.05.006. ISSN 1096-0805. PMID 18621387. https://pubmed.ncbi.nlm.nih.gov/18621387. 
  40. Zhang, Si-Ming; Zeng, Yong; Loker, Eric S. (November 2007). "Characterization of immune genes from the schistosome host snail Biomphalaria glabrata that encode peptidoglycan recognition proteins and gram-negative bacteria binding protein". Immunogenetics 59 (11): 883–898. doi:10.1007/s00251-007-0245-3. ISSN 0093-7711. PMID 17805526. 
  41. Itoh, Naoki; Takahashi, Keisuke G. (August 2008). "Distribution of multiple peptidoglycan recognition proteins in the tissues of Pacific oyster, Crassostrea gigas". Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology 150 (4): 409–417. doi:10.1016/j.cbpb.2008.04.011. ISSN 1096-4959. PMID 18538602. https://pubmed.ncbi.nlm.nih.gov/18538602. 
  42. Iizuka, Masao; Nagasaki, Toshihiro; Takahashi, Keisuke G.; Osada, Makoto; Itoh, Naoki (March 2014). "Involvement of Pacific oyster CgPGRP-S1S in bacterial recognition, agglutination and granulocyte degranulation". Developmental and Comparative Immunology 43 (1): 30–34. doi:10.1016/j.dci.2013.10.011. ISSN 1879-0089. PMID 24201133. https://pubmed.ncbi.nlm.nih.gov/24201133. 
  43. Ni, Duojiao; Song, Linsheng; Wu, Longtao; Chang, Yaqing; Yu, Yundong; Qiu, Limei; Wang, Lingling (2007). "Molecular cloning and mRNA expression of peptidoglycan recognition protein (PGRP) gene in bay scallop (Argopecten irradians, Lamarck 1819)". Developmental and Comparative Immunology 31 (6): 548–558. doi:10.1016/j.dci.2006.09.001. ISSN 0145-305X. PMID 17064771. https://pubmed.ncbi.nlm.nih.gov/17064771. 
  44. Yang, Jialong; Wang, Wan; Wei, Xiumei; Qiu, Limei; Wang, Lingling; Zhang, Huan; Song, Linsheng (December 2010). "Peptidoglycan recognition protein of Chlamys farreri (CfPGRP-S1) mediates immune defenses against bacterial infection". Developmental and Comparative Immunology 34 (12): 1300–1307. doi:10.1016/j.dci.2010.08.006. ISSN 1879-0089. PMID 20713083. https://pubmed.ncbi.nlm.nih.gov/20713083. 
  45. Goodson, Michael S.; Kojadinovic, Mila; Troll, Joshua V.; Scheetz, Todd E.; Casavant, Thomas L.; Soares, M. Bento; McFall-Ngai, Margaret J. (November 2005). "Identifying components of the NF-kappaB pathway in the beneficial Euprymna scolopes-Vibrio fischeri light organ symbiosis". Applied and Environmental Microbiology 71 (11): 6934–6946. doi:10.1128/AEM.71.11.6934-6946.2005. ISSN 0099-2240. PMID 16269728. Bibcode2005ApEnM..71.6934G. 
  46. Coteur, Geoffroy; Mellroth, Peter; De Lefortery, Coline; Gillan, David; Dubois, Philippe; Communi, David; Steiner, Håkan (2007). "Peptidoglycan recognition proteins with amidase activity in early deuterostomes (Echinodermata)". Developmental and Comparative Immunology 31 (8): 790–804. doi:10.1016/j.dci.2006.11.006. ISSN 0145-305X. PMID 17240448. https://pubmed.ncbi.nlm.nih.gov/17240448. 
  47. Troll, Joshua V.; Adin, Dawn M.; Wier, Andrew M.; Paquette, Nicholas; Silverman, Neal; Goldman, William E.; Stadermann, Frank J.; Stabb, Eric V. et al. (July 2009). "Peptidoglycan induces loss of a nuclear peptidoglycan recognition protein during host tissue development in a beneficial animal-bacterial symbiosis". Cellular Microbiology 11 (7): 1114–1127. doi:10.1111/j.1462-5822.2009.01315.x. ISSN 1462-5822. PMID 19416268. 
  48. Troll, Joshua V.; Bent, Eric H.; Pacquette, Nicholas; Wier, Andrew M.; Goldman, William E.; Silverman, Neal; McFall-Ngai, Margaret J. (August 2010). "Taming the symbiont for coexistence: a host PGRP neutralizes a bacterial symbiont toxin". Environmental Microbiology 12 (8): 2190–2203. doi:10.1111/j.1462-2920.2009.02121.x. ISSN 1462-2920. PMID 21966913. 
  49. Huang, Shengfeng; Wang, Xin; Yan, Qingyu; Guo, Lei; Yuan, Shaochun; Huang, Guangrui; Huang, Huiqing; Li, Jun et al. (2011-02-15). "The evolution and regulation of the mucosal immune complexity in the basal chordate amphioxus". Journal of Immunology 186 (4): 2042–2055. doi:10.4049/jimmunol.1001824. ISSN 1550-6606. PMID 21248255. 
  50. 50.0 50.1 50.2 Li, Xinna; Wang, Shiyong; Qi, Jin; Echtenkamp, Stephen F.; Chatterjee, Rohini; Wang, Mu; Boons, Geert-Jan; Dziarski, Roman et al. (September 2007). "Zebrafish peptidoglycan recognition proteins are bactericidal amidases essential for defense against bacterial infections". Immunity 27 (3): 518–529. doi:10.1016/j.immuni.2007.07.020. ISSN 1074-7613. PMID 17892854. 
  51. Chang, M. X.; Nie, P.; Wei, L. L. (April 2007). "Short and long peptidoglycan recognition proteins (PGRPs) in zebrafish, with findings of multiple PGRP homologs in teleost fish". Molecular Immunology 44 (11): 3005–3023. doi:10.1016/j.molimm.2006.12.029. ISSN 0161-5890. PMID 17296228. https://pubmed.ncbi.nlm.nih.gov/17296228. 
  52. Montaño, Adriana M.; Tsujino, Fumi; Takahata, Naoyuki; Satta, Yoko (2011-03-25). "Evolutionary origin of peptidoglycan recognition proteins in vertebrate innate immune system". BMC Evolutionary Biology 11: 79. doi:10.1186/1471-2148-11-79. ISSN 1471-2148. PMID 21439073. 
  53. Li, Jun Hua; Chang, Ming Xian; Xue, Na Na; Nie, P. (August 2013). "Functional characterization of a short peptidoglycan recognition protein, PGRP5 in grass carp Ctenopharyngodon idella". Fish & Shellfish Immunology 35 (2): 221–230. doi:10.1016/j.fsi.2013.04.025. ISSN 1095-9947. PMID 23659995. https://pubmed.ncbi.nlm.nih.gov/23659995. 
  54. Li, Jun Hua; Yu, Zhang Long; Xue, Na Na; Zou, Peng Fei; Hu, Jing Yu; Nie, P.; Chang, Ming Xian (February 2014). "Molecular cloning and functional characterization of peptidoglycan recognition protein 6 in grass carp Ctenopharyngodon idella". Developmental and Comparative Immunology 42 (2): 244–255. doi:10.1016/j.dci.2013.09.014. ISSN 1879-0089. PMID 24099967. https://pubmed.ncbi.nlm.nih.gov/24099967. 
  55. Chang, M. X.; Nie, P. (2008-08-15). "RNAi suppression of zebrafish peptidoglycan recognition protein 6 (zfPGRP6) mediated differentially expressed genes involved in Toll-like receptor signaling pathway and caused increased susceptibility to Flavobacterium columnare". Veterinary Immunology and Immunopathology 124 (3–4): 295–301. doi:10.1016/j.vetimm.2008.04.003. ISSN 0165-2427. PMID 18495251. https://pubmed.ncbi.nlm.nih.gov/18495251. 
  56. Chang, M. X.; Wang, Y. P.; Nie, P. (February 2009). "Zebrafish peptidoglycan recognition protein SC (zfPGRP-SC) mediates multiple intracellular signaling pathways". Fish & Shellfish Immunology 26 (2): 264–274. doi:10.1016/j.fsi.2008.11.007. ISSN 1095-9947. PMID 19084604. https://pubmed.ncbi.nlm.nih.gov/19084604. 
  57. 57.0 57.1 Gelius, Eva; Persson, Carina; Karlsson, Jenny; Steiner, Håkan (2003-07-11). "A mammalian peptidoglycan recognition protein with N-acetylmuramoyl-L-alanine amidase activity". Biochemical and Biophysical Research Communications 306 (4): 988–994. doi:10.1016/s0006-291x(03)01096-9. ISSN 0006-291X. PMID 12821140. https://pubmed.ncbi.nlm.nih.gov/12821140. 
  58. 58.0 58.1 58.2 58.3 Wang, Zheng-Ming; Li, Xinna; Cocklin, Ross R.; Wang, Minhui; Wang, Mu; Fukase, Koichi; Inamura, Seiichi; Kusumoto, Shoichi et al. (2003-12-05). "Human peptidoglycan recognition protein-L is an N-acetylmuramoyl-L-alanine amidase". The Journal of Biological Chemistry 278 (49): 49044–49052. doi:10.1074/jbc.M307758200. ISSN 0021-9258. PMID 14506276. 
  59. 59.0 59.1 59.2 Tydell, C. Chace; Yount, Nannette; Tran, Dat; Yuan, Jun; Selsted, Michael E. (2002-05-31). "Isolation, characterization, and antimicrobial properties of bovine oligosaccharide-binding protein. A microbicidal granule protein of eosinophils and neutrophils". The Journal of Biological Chemistry 277 (22): 19658–19664. doi:10.1074/jbc.M200659200. ISSN 0021-9258. PMID 11880375. 
  60. 60.0 60.1 60.2 60.3 Dziarski, Roman; Platt, Kenneth A.; Gelius, Eva; Steiner, Håkan; Gupta, Dipika (2003-07-15). "Defect in neutrophil killing and increased susceptibility to infection with nonpathogenic gram-positive bacteria in peptidoglycan recognition protein-S (PGRP-S)-deficient mice". Blood 102 (2): 689–697. doi:10.1182/blood-2002-12-3853. ISSN 0006-4971. PMID 12649138. 
  61. Lo, David; Tynan, Wendy; Dickerson, Janet; Mendy, Jason; Chang, Hwai-Wen; Scharf, Melinda; Byrne, Daragh; Brayden, David et al. (July 2003). "Peptidoglycan recognition protein expression in mouse Peyer's Patch follicle associated epithelium suggests functional specialization". Cellular Immunology 224 (1): 8–16. doi:10.1016/s0008-8749(03)00155-2. ISSN 0008-8749. PMID 14572796. https://pubmed.ncbi.nlm.nih.gov/14572796. 
  62. Kappeler, S. R.; Heuberger, C.; Farah, Z.; Puhan, Z. (August 2004). "Expression of the peptidoglycan recognition protein, PGRP, in the lactating mammary gland". Journal of Dairy Science 87 (8): 2660–2668. doi:10.3168/jds.S0022-0302(04)73392-5. ISSN 0022-0302. PMID 15328291. 
  63. 63.0 63.1 63.2 Cho, Ju Hyun; Fraser, Iain P.; Fukase, Koichi; Kusumoto, Shoichi; Fujimoto, Yukari; Stahl, Gregory L.; Ezekowitz, R. Alan B. (2005-10-01). "Human peptidoglycan recognition protein S is an effector of neutrophil-mediated innate immunity". Blood 106 (7): 2551–2558. doi:10.1182/blood-2005-02-0530. ISSN 0006-4971. PMID 15956276. 
  64. 64.0 64.1 64.2 Ghosh, Amit; Lee, Seakwoo; Dziarski, Roman; Chakravarti, Shukti (September 2009). "A novel antimicrobial peptidoglycan recognition protein in the cornea". Investigative Ophthalmology & Visual Science 50 (9): 4185–4191. doi:10.1167/iovs.08-3040. ISSN 1552-5783. PMID 19387073. 
  65. 65.0 65.1 Park, Shin Yong; Jing, Xuefang; Gupta, Dipika; Dziarski, Roman (2013-04-01). "Peptidoglycan recognition protein 1 enhances experimental asthma by promoting Th2 and Th17 and limiting regulatory T cell and plasmacytoid dendritic cell responses". Journal of Immunology 190 (7): 3480–3492. doi:10.4049/jimmunol.1202675. ISSN 1550-6606. PMID 23420883. 
  66. 66.0 66.1 Yao, Xianglan; Gao, Meixia; Dai, Cuilian; Meyer, Katharine S.; Chen, Jichun; Keeran, Karen J.; Nugent, Gayle Z.; Qu, Xuan et al. (December 2013). "Peptidoglycan recognition protein 1 promotes house dust mite-induced airway inflammation in mice". American Journal of Respiratory Cell and Molecular Biology 49 (6): 902–911. doi:10.1165/rcmb.2013-0001OC. ISSN 1535-4989. PMID 23808363. 
  67. Xu, Min; Wang, Zhien; Locksley, Richard M. (September 2004). "Innate immune responses in peptidoglycan recognition protein L-deficient mice". Molecular and Cellular Biology 24 (18): 7949–7957. doi:10.1128/MCB.24.18.7949-7957.2004. ISSN 0270-7306. PMID 15340057. 
  68. 68.0 68.1 Li, Xinna; Wang, Shiyong; Wang, Haitao; Gupta, Dipika (2006-07-28). "Differential expression of peptidoglycan recognition protein 2 in the skin and liver requires different transcription factors". The Journal of Biological Chemistry 281 (30): 20738–20748. doi:10.1074/jbc.M601017200. ISSN 0021-9258. PMID 16714290. 
  69. Hoijer, M. A.; Melief, M. J.; Keck, W.; Hazenberg, M. P. (1996-02-09). "Purification and characterization of N-acetylmuramyl-L-alanine amidase from human plasma using monoclonal antibodies". Biochimica et Biophysica Acta (BBA) - General Subjects 1289 (1): 57–64. doi:10.1016/0304-4165(95)00136-0. ISSN 0006-3002. PMID 8605233. https://pubmed.ncbi.nlm.nih.gov/8605233. 
  70. Wang, Haitao; Gupta, Dipika; Li, Xinna; Dziarski, Roman (November 2005). "Peptidoglycan recognition protein 2 (N-acetylmuramoyl-L-Ala amidase) is induced in keratinocytes by bacteria through the p38 kinase pathway". Infection and Immunity 73 (11): 7216–7225. doi:10.1128/IAI.73.11.7216-7225.2005. ISSN 0019-9567. PMID 16239516. 
  71. 71.0 71.1 Uehara, A.; Sugawara, Y.; Kurata, S.; Fujimoto, Y.; Fukase, K.; Kusumoto, S.; Satta, Y.; Sasano, T. et al. (May 2005). "Chemically synthesized pathogen-associated molecular patterns increase the expression of peptidoglycan recognition proteins via toll-like receptors, NOD1 and NOD2 in human oral epithelial cells". Cellular Microbiology 7 (5): 675–686. doi:10.1111/j.1462-5822.2004.00500.x. ISSN 1462-5814. PMID 15839897. 
  72. 72.0 72.1 Duerr, C. U.; Salzman, N. H.; Dupont, A.; Szabo, A.; Normark, B. H.; Normark, S.; Locksley, R. M.; Mellroth, P. et al. (May 2011). "Control of intestinal Nod2-mediated peptidoglycan recognition by epithelium-associated lymphocytes". Mucosal Immunology 4 (3): 325–334. doi:10.1038/mi.2010.71. ISSN 1935-3456. PMID 20980996. 
  73. 73.0 73.1 Lee, Jooeun; Geddes, Kaoru; Streutker, Catherine; Philpott, Dana J.; Girardin, Stephen E. (August 2012). "Role of mouse peptidoglycan recognition protein PGLYRP2 in the innate immune response to Salmonella enterica serovar Typhimurium infection in vivo". Infection and Immunity 80 (8): 2645–2654. doi:10.1128/IAI.00168-12. ISSN 1098-5522. PMID 22615249. 
  74. 74.0 74.1 Sang, Yongming; Ramanathan, Balaji; Ross, Christopher R.; Blecha, Frank (November 2005). "Gene silencing and overexpression of porcine peptidoglycan recognition protein long isoforms: involvement in beta-defensin-1 expression". Infection and Immunity 73 (11): 7133–7141. doi:10.1128/IAI.73.11.7133-7141.2005. ISSN 0019-9567. PMID 16239507. 
  75. Mathur, Punam; Murray, Beth; Crowell, Thomas; Gardner, Humphrey; Allaire, Normand; Hsu, Yen-Ming; Thill, Greg; Carulli, John P. (June 2004). "Murine peptidoglycan recognition proteins PglyrpIalpha and PglyrpIbeta are encoded in the epidermal differentiation complex and are expressed in epidermal and hematopoietic tissues". Genomics 83 (6): 1151–1163. doi:10.1016/j.ygeno.2004.01.003. ISSN 0888-7543. PMID 15177568. https://pubmed.ncbi.nlm.nih.gov/15177568. 
  76. 76.0 76.1 76.2 Saha, Sukumar; Jing, Xuefang; Park, Shin Yong; Wang, Shiyong; Li, Xinna; Gupta, Dipika; Dziarski, Roman (2010-08-19). "Peptidoglycan recognition proteins protect mice from experimental colitis by promoting normal gut flora and preventing induction of interferon-gamma". Cell Host & Microbe 8 (2): 147–162. doi:10.1016/j.chom.2010.07.005. ISSN 1934-6069. PMID 20709292. 
  77. 77.0 77.1 Arentsen, T.; Qian, Y.; Gkotzis, S.; Femenia, T.; Wang, T.; Udekwu, K.; Forssberg, H.; Diaz Heijtz, R. (February 2017). "The bacterial peptidoglycan-sensing molecule Pglyrp2 modulates brain development and behavior". Molecular Psychiatry 22 (2): 257–266. doi:10.1038/mp.2016.182. ISSN 1476-5578. PMID 27843150. 
  78. Rehman, A.; Taishi, P.; Fang, J.; Majde, J. A.; Krueger, J. M. (2001-01-07). "The cloning of a rat peptidoglycan recognition protein (PGRP) and its induction in brain by sleep deprivation". Cytokine 13 (1): 8–17. doi:10.1006/cyto.2000.0800. ISSN 1043-4666. PMID 11145837. https://pubmed.ncbi.nlm.nih.gov/11145837. 
  79. Lang, Ming-Fei; Schneider, Armin; Krüger, Carola; Schmid, Roland; Dziarski, Roman; Schwaninger, Markus (2008-01-10). "Peptidoglycan recognition protein-S (PGRP-S) is upregulated by NF-kappaB". Neuroscience Letters 430 (2): 138–141. doi:10.1016/j.neulet.2007.10.027. ISSN 0304-3940. PMID 18035491. https://pubmed.ncbi.nlm.nih.gov/18035491. 
  80. 80.0 80.1 80.2 Wang, Minhui; Liu, Li-Hui; Wang, Shiyong; Li, Xinna; Lu, Xiaofeng; Gupta, Dipika; Dziarski, Roman (2007-03-01). "Human peptidoglycan recognition proteins require zinc to kill both gram-positive and gram-negative bacteria and are synergistic with antibacterial peptides". Journal of Immunology 178 (5): 3116–3125. doi:10.4049/jimmunol.178.5.3116. ISSN 0022-1767. PMID 17312159. 
  81. 81.0 81.1 81.2 Kashyap, Des Raj; Wang, Minhui; Liu, Li-Hui; Boons, Geert-Jan; Gupta, Dipika; Dziarski, Roman (June 2011). "Peptidoglycan recognition proteins kill bacteria by activating protein-sensing two-component systems". Nature Medicine 17 (6): 676–683. doi:10.1038/nm.2357. ISSN 1546-170X. PMID 21602801. 
  82. Bobrovsky, Pavel; Manuvera, Valentin; Polina, Nadezhda; Podgorny, Oleg; Prusakov, Kirill; Govorun, Vadim; Lazarev, Vassili (July 2016). "Recombinant Human Peptidoglycan Recognition Proteins Reveal Antichlamydial Activity". Infection and Immunity 84 (7): 2124–2130. doi:10.1128/IAI.01495-15. ISSN 1098-5522. PMID 27160295. 
  83. 83.0 83.1 Kashyap, Des Raj; Rompca, Annemarie; Gaballa, Ahmed; Helmann, John D.; Chan, Jefferson; Chang, Christopher J.; Hozo, Iztok; Gupta, Dipika et al. (July 2014). "Peptidoglycan recognition proteins kill bacteria by inducing oxidative, thiol, and metal stress". PLOS Pathogens 10 (7): e1004280. doi:10.1371/journal.ppat.1004280. ISSN 1553-7374. PMID 25032698. 
  84. 84.0 84.1 Kashyap, Des R.; Kuzma, Marcin; Kowalczyk, Dominik A.; Gupta, Dipika; Dziarski, Roman (September 2017). "Bactericidal peptidoglycan recognition protein induces oxidative stress in Escherichia coli through a block in respiratory chain and increase in central carbon catabolism". Molecular Microbiology 105 (5): 755–776. doi:10.1111/mmi.13733. ISSN 1365-2958. PMID 28621879. 
  85. 85.0 85.1 Dziarski, Roman; Gupta, Dipika (February 2018). "How innate immunity proteins kill bacteria and why they are not prone to resistance". Current Genetics 64 (1): 125–129. doi:10.1007/s00294-017-0737-0. ISSN 1432-0983. PMID 28840318. 
  86. 86.0 86.1 Kashyap, Des R.; Kowalczyk, Dominik A.; Shan, Yue; Yang, Chun-Kai; Gupta, Dipika; Dziarski, Roman (6 February 2020). "Formate dehydrogenase, ubiquinone, and cytochrome bd-I are required for peptidoglycan recognition protein-induced oxidative stress and killing in Escherichia coli". Scientific Reports 10 (1): 1993. doi:10.1038/s41598-020-58302-1. ISSN 2045-2322. PMID 32029761. Bibcode2020NatSR..10.1993K. 
  87. 87.0 87.1 87.2 Gupta, Akash; Arora, Gunjan; Rosen, Connor E.; Kloos, Zachary; Cao, Yongguo; Cerny, Jiri; Sajid, Andaleeb; Hoornstra, Dieuwertje et al. (2020-11-11). Coburn, Jenifer. ed. "A human secretome library screen reveals a role for Peptidoglycan Recognition Protein 1 in Lyme borreliosis" (in en). PLOS Pathogens 16 (11): e1009030. doi:10.1371/journal.ppat.1009030. ISSN 1553-7374. PMID 33175909. 
  88. Liu, C.; Gelius, E.; Liu, G.; Steiner, H.; Dziarski, R. (2000-08-11). "Mammalian peptidoglycan recognition protein binds peptidoglycan with high affinity, is expressed in neutrophils, and inhibits bacterial growth". The Journal of Biological Chemistry 275 (32): 24490–24499. doi:10.1074/jbc.M001239200. ISSN 0021-9258. PMID 10827080. 
  89. Tydell, C. Chace; Yuan, Jun; Tran, Patti; Selsted, Michael E. (2006-01-15). "Bovine peptidoglycan recognition protein-S: antimicrobial activity, localization, secretion, and binding properties". Journal of Immunology 176 (2): 1154–1162. doi:10.4049/jimmunol.176.2.1154. ISSN 0022-1767. PMID 16394004. 
  90. Yang, Chun-Kai; Kashyap, Des R.; Kowalczyk, Dominik A.; Rudner, David Z.; Wang, Xindan; Gupta, Dipika; Dziarski, Roman (2021-01-08). "Respiratory chain components are required for peptidoglycan recognition protein-induced thiol depletion and killing in Bacillus subtilis and Escherichia coli". Scientific Reports 11 (1): 64. doi:10.1038/s41598-020-79811-z. ISSN 2045-2322. PMID 33420211. 
  91. Hoijer, M. A.; Melief, M. J.; Debets, R.; Hazenberg, M. P. (December 1997). "Inflammatory properties of peptidoglycan are decreased after degradation by human N-acetylmuramyl-L-alanine amidase". European Cytokine Network 8 (4): 375–381. ISSN 1148-5493. PMID 9459617. https://pubmed.ncbi.nlm.nih.gov/9459617. 
  92. Dziarski, Roman; Kashyap, Des Raj; Gupta, Dipika (June 2012). "Mammalian peptidoglycan recognition proteins kill bacteria by activating two-component systems and modulate microbiome and inflammation". Microbial Drug Resistance (Larchmont, N.Y.) 18 (3): 280–285. doi:10.1089/mdr.2012.0002. ISSN 1931-8448. PMID 22432705. 
  93. Osanai, Arihiro; Sashinami, Hiroshi; Asano, Krisana; Li, Sheng-Jun; Hu, Dong-Liang; Nakane, Akio (February 2011). "Mouse peptidoglycan recognition protein PGLYRP-1 plays a role in the host innate immune response against Listeria monocytogenes infection". Infection and Immunity 79 (2): 858–866. doi:10.1128/IAI.00466-10. ISSN 1098-5522. PMID 21134971. 
  94. 94.0 94.1 Gowda, Ranjita N.; Redfern, Rachel; Frikeche, Jihane; Pinglay, Sudarshan; Foster, James William; Lema, Carolina; Cope, Leslie; Chakravarti, Shukti (2015). "Functions of Peptidoglycan Recognition Proteins (Pglyrps) at the Ocular Surface: Bacterial Keratitis in Gene-Targeted Mice Deficient in Pglyrp-2, -3 and -4". PLOS ONE 10 (9): e0137129. doi:10.1371/journal.pone.0137129. ISSN 1932-6203. PMID 26332373. Bibcode2015PLoSO..1037129G. 
  95. 95.0 95.1 Dabrowski, Alexander N.; Conrad, Claudia; Behrendt, Ulrike; Shrivastav, Anshu; Baal, Nelli; Wienhold, Sandra M.; Hackstein, Holger; N'Guessan, Philippe D. et al. (2019). "Peptidoglycan Recognition Protein 2 Regulates Neutrophil Recruitment Into the Lungs After Streptococcus pneumoniae Infection". Frontiers in Microbiology 10: 199. doi:10.3389/fmicb.2019.00199. ISSN 1664-302X. PMID 30837960. 
  96. 96.0 96.1 96.2 Dabrowski, Alexander N.; Shrivastav, Anshu; Conrad, Claudia; Komma, Kassandra; Weigel, Markus; Dietert, Kristina; Gruber, Achim D.; Bertrams, Wilhelm et al. (2019). "Peptidoglycan Recognition Protein 4 Limits Bacterial Clearance and Inflammation in Lungs by Control of the Gut Microbiota". Frontiers in Immunology 10: 2106. doi:10.3389/fimmu.2019.02106. ISSN 1664-3224. PMID 31616404. 
  97. 97.0 97.1 Dziarski, Roman; Park, Shin Yong; Kashyap, Des Raj; Dowd, Scot E.; Gupta, Dipika (2016). "Pglyrp-Regulated Gut Microflora Prevotella falsenii, Parabacteroides distasonis and Bacteroides eggerthii Enhance and Alistipes finegoldii Attenuates Colitis in Mice". PLOS ONE 11 (1): e0146162. doi:10.1371/journal.pone.0146162. ISSN 1932-6203. PMID 26727498. Bibcode2016PLoSO..1146162D. 
  98. 98.0 98.1 98.2 Banskar, Sunil; Detzner, Ashley A.; Juarez-Rodriguez, Maria D.; Hozo, Iztok; Gupta, Dipika; Dziarski, Roman (15 December 2019). "The Pglyrp1-Regulated Microbiome Enhances Experimental Allergic Asthma". Journal of Immunology 203 (12): 3113–3125. doi:10.4049/jimmunol.1900711. ISSN 1550-6606. PMID 31704882. 
  99. Laman, Jon D.; 't Hart, Bert A.; Power, Christopher; Dziarski, Roman (July 2020). "Bacterial Peptidoglycan as a Driver of Chronic Brain Inflammation". Trends in Molecular Medicine 26 (7): 670–682. doi:10.1016/j.molmed.2019.11.006. ISSN 1471-499X. PMID 32589935. https://pubmed.ncbi.nlm.nih.gov/32589935. 
  100. Jing, Xuefang; Zulfiqar, Fareeha; Park, Shin Yong; Núñez, Gabriel; Dziarski, Roman; Gupta, Dipika (2014-09-15). "Peptidoglycan recognition protein 3 and Nod2 synergistically protect mice from dextran sodium sulfate-induced colitis". Journal of Immunology 193 (6): 3055–3069. doi:10.4049/jimmunol.1301548. ISSN 1550-6606. PMID 25114103. 
  101. Zenhom, Marwa; Hyder, Ayman; de Vrese, Michael; Heller, Knut J.; Roeder, Thomas; Schrezenmeir, Jürgen (April 2012). "Peptidoglycan recognition protein 3 (PglyRP3) has an anti-inflammatory role in intestinal epithelial cells". Immunobiology 217 (4): 412–419. doi:10.1016/j.imbio.2011.10.013. ISSN 1878-3279. PMID 22099350. https://pubmed.ncbi.nlm.nih.gov/22099350. 
  102. 102.0 102.1 Park, Shin Yong; Gupta, Dipika; Kim, Chang H.; Dziarski, Roman (2011). "Differential effects of peptidoglycan recognition proteins on experimental atopic and contact dermatitis mediated by Treg and Th17 cells". PLOS ONE 6 (9): e24961. doi:10.1371/journal.pone.0024961. ISSN 1932-6203. PMID 21949809. Bibcode2011PLoSO...624961P. 
  103. Skerry, Ciaran; Goldman, William E.; Carbonetti, Nicholas H. (February 2019). "Peptidoglycan Recognition Protein 4 Suppresses Early Inflammatory Responses to Bordetella pertussis and Contributes to Sphingosine-1-Phosphate Receptor Agonist-Mediated Disease Attenuation". Infection and Immunity 87 (2). doi:10.1128/IAI.00601-18. ISSN 1098-5522. PMID 30510103. 
  104. 104.0 104.1 Park, Shin Yong; Gupta, Dipika; Hurwich, Risa; Kim, Chang H.; Dziarski, Roman (2011-12-01). "Peptidoglycan recognition protein Pglyrp2 protects mice from psoriasis-like skin inflammation by promoting regulatory T cells and limiting Th17 responses". Journal of Immunology 187 (11): 5813–5823. doi:10.4049/jimmunol.1101068. ISSN 1550-6606. PMID 22048773. 
  105. Saha, Sukumar; Qi, Jin; Wang, Shiyong; Wang, Minhui; Li, Xinna; Kim, Yun-Gi; Núñez, Gabriel; Gupta, Dipika et al. (2009-02-19). "PGLYRP-2 and Nod2 are both required for peptidoglycan-induced arthritis and local inflammation". Cell Host & Microbe 5 (2): 137–150. doi:10.1016/j.chom.2008.12.010. ISSN 1934-6069. PMID 19218085. 
  106. Arentsen, Tim; Khalid, Roksana; Qian, Yu; Diaz Heijtz, Rochellys (January 2018). "Sex-dependent alterations in motor and anxiety-like behavior of aged bacterial peptidoglycan sensing molecule 2 knockout mice". Brain, Behavior, and Immunity 67: 345–354. doi:10.1016/j.bbi.2017.09.014. ISSN 1090-2139. PMID 28951252. 
  107. 107.0 107.1 107.2 Schnell, Alexandra; Huang, Linglin; Regan, Brianna M. L.; Singh, Vasundhara; Vonficht, Dominik; Bollhagen, Alina; Wang, Mona; Hou, Yu et al. (2023-10-12). "Targeting PGLYRP1 promotes antitumor immunity while inhibiting autoimmune neuroinflammation" (in en). Nature Immunology: 1–13. doi:10.1038/s41590-023-01645-4. ISSN 1529-2908. PMID 37828379. https://www.nature.com/articles/s41590-023-01645-4. 
  108. Read, Christine B.; Kuijper, Joseph L.; Hjorth, Siv A.; Heipel, Mark D.; Tang, Xiaoting; Fleetwood, Andrew J.; Dantzler, Jeffrey L.; Grell, Susanne N. et al. (2015-02-15). "Cutting Edge: identification of neutrophil PGLYRP1 as a ligand for TREM-1". Journal of Immunology 194 (4): 1417–1421. doi:10.4049/jimmunol.1402303. ISSN 1550-6606. PMID 25595774. 
  109. Sashchenko, Lidia P.; Dukhanina, Elena A.; Yashin, Denis V.; Shatalov, Yurii V.; Romanova, Elena A.; Korobko, Elena V.; Demin, Alexander V.; Lukyanova, Tamara I. et al. (2004-01-16). "Peptidoglycan recognition protein tag7 forms a cytotoxic complex with heat shock protein 70 in solution and in lymphocytes". The Journal of Biological Chemistry 279 (3): 2117–2124. doi:10.1074/jbc.M307513200. ISSN 0021-9258. PMID 14585845. 
  110. Sashchenko, Lidia P.; Dukhanina, Elena A.; Shatalov, Yury V.; Yashin, Denis V.; Lukyanova, Tamara I.; Kabanova, Olga D.; Romanova, Elena A.; Khaidukov, Sergei V. et al. (2007-09-15). "Cytotoxic T lymphocytes carrying a pattern recognition protein Tag7 can detect evasive, HLA-negative but Hsp70-exposing tumor cells, thereby ensuring FasL/Fas-mediated contact killing" (in en). Blood 110 (6): 1997–2004. doi:10.1182/blood-2006-12-064444. ISSN 0006-4971. PMID 17551095. https://ashpublications.org/blood/article/110/6/1997/24106/Cytotoxic-T-lymphocytes-carrying-a-pattern. 
  111. Dukhanina, Elena A.; Kabanova, Olga D.; Lukyanova, Tamara I.; Shatalov, Yury V.; Yashin, Denis V.; Romanova, Elena A.; Gnuchev, Nikolai V.; Galkin, Alexander V. et al. (2009-08-18). "Opposite roles of metastasin (S100A4) in two potentially tumoricidal mechanisms involving human lymphocyte protein Tag7 and Hsp70". Proceedings of the National Academy of Sciences of the United States of America 106 (33): 13963–13967. doi:10.1073/pnas.0900116106. ISSN 1091-6490. PMID 19666596. Bibcode2009PNAS..10613963D. 
  112. Yashin, Denis V.; Dukhanina, Elena A.; Kabanova, Olga D.; Romanova, Elena A.; Lukyanova, Tamara I.; Tonevitskii, Alexsander G.; Raynes, Deborah A.; Gnuchev, Nikolai V. et al. (2011-03-25). "The heat shock-binding protein (HspBP1) protects cells against the cytotoxic action of the Tag7-Hsp70 complex". The Journal of Biological Chemistry 286 (12): 10258–10264. doi:10.1074/jbc.M110.163436. ISSN 1083-351X. PMID 21247889. 
  113. 113.0 113.1 Yashin, Denis V.; Ivanova, Olga K.; Soshnikova, Natalia V.; Sheludchenkov, Anton A.; Romanova, Elena A.; Dukhanina, Elena A.; Tonevitsky, Alexander G.; Gnuchev, Nikolai V. et al. (2015-08-28). "Tag7 (PGLYRP1) in Complex with Hsp70 Induces Alternative Cytotoxic Processes in Tumor Cells via TNFR1 Receptor" (in en). Journal of Biological Chemistry 290 (35): 21724–21731. doi:10.1074/jbc.M115.639732. ISSN 0021-9258. PMID 26183779. 
  114. Yashin, Denis V.; Romanova, Elena A.; Ivanova, Olga K.; Sashchenko, Lidia P. (April 2016). "The Tag7-Hsp70 cytotoxic complex induces tumor cell necroptosis via permeabilisation of lysosomes and mitochondria". Biochimie 123: 32–36. doi:10.1016/j.biochi.2016.01.007. ISSN 1638-6183. PMID 26796882. https://pubmed.ncbi.nlm.nih.gov/26796882. 
  115. Romanova, Elena A.; Sharapova, Tatiana N.; Telegin, Georgii B.; Minakov, Alexei N.; Chernov, Alexander S.; Ivanova, Olga K.; Bychkov, Maxim L.; Sashchenko, Lidia P. et al. (20 February 2020). "A 12-mer Peptide of Tag7 (PGLYRP1) Forms a Cytotoxic Complex with Hsp70 and Inhibits TNF-Alpha Induced Cell Death". Cells 9 (2): 488. doi:10.3390/cells9020488. ISSN 2073-4409. PMID 32093269. 
  116. 116.0 116.1 Sharapova, Tatiana N.; Romanova, Elena A.; Chernov, Aleksandr S.; Minakov, Alexey N.; Kazakov, Vitaly A.; Kudriaeva, Anna A.; Belogurov, Alexey A.; Ivanova, Olga K. et al. (2021-10-18). "Protein PGLYRP1/Tag7 Peptides Decrease the Proinflammatory Response in Human Blood Cells and Mouse Model of Diffuse Alveolar Damage of Lung through Blockage of the TREM-1 and TNFR1 Receptors" (in en). International Journal of Molecular Sciences 22 (20): 11213. doi:10.3390/ijms222011213. ISSN 1422-0067. PMID 34681871. 
  117. Telegin, Georgii B.; Chernov, Aleksandr S.; Kazakov, Vitaly A.; Romanova, Elena A.; Sharapova, Tatiana N.; Yashin, Denis V.; Gabibov, Alexander G.; Sashchenko, Lidia P. (2021-06-07). "A 8-mer Peptide of PGLYRP1/Tag7 Innate Immunity Protein Binds to TNFR1 Receptor and Inhibits TNFα-Induced Cytotoxic Effect and Inflammation". Frontiers in Immunology 12. doi:10.3389/fimmu.2021.622471. ISSN 1664-3224. PMID 34163464. 
  118. Zulfiqar, Fareeha; Hozo, Iztok; Rangarajan, Sneha; Mariuzza, Roy A.; Dziarski, Roman; Gupta, Dipika (2013). "Genetic Association of Peptidoglycan Recognition Protein Variants with Inflammatory Bowel Disease". PLOS ONE 8 (6): e67393. doi:10.1371/journal.pone.0067393. ISSN 1932-6203. PMID 23840689. Bibcode2013PLoSO...867393Z. 
  119. Nkya, Siana; Mwita, Liberata; Mgaya, Josephine; Kumburu, Happiness; van Zwetselaar, Marco; Menzel, Stephan; Mazandu, Gaston Kuzamunu; Sangeda, Raphael et al. (5 June 2020). "Identifying genetic variants and pathways associated with extreme levels of fetal hemoglobin in sickle cell disease in Tanzania". BMC Medical Genetics 21 (1): 125. doi:10.1186/s12881-020-01059-1. ISSN 1471-2350. PMID 32503527. 
  120. Ng, David; Hu, Nan; Hu, Ying; Wang, Chaoyu; Giffen, Carol; Tang, Ze-Zhong; Han, Xiao-You; Yang, Howard H. et al. (2008-10-01). "Replication of a genome-wide case-control study of esophageal squamous cell carcinoma". International Journal of Cancer 123 (7): 1610–1615. doi:10.1002/ijc.23682. ISSN 1097-0215. PMID 18649358. 
  121. Goldman, Samuel M.; Kamel, Freya; Ross, G. Webster; Jewell, Sarah A.; Marras, Connie; Hoppin, Jane A.; Umbach, David M.; Bhudhikanok, Grace S. et al. (August 2014). "Peptidoglycan recognition protein genes and risk of Parkinson's disease". Movement Disorders 29 (9): 1171–1180. doi:10.1002/mds.25895. ISSN 1531-8257. PMID 24838182. 
  122. Gorecki, Anastazja M.; Bakeberg, Megan C.; Theunissen, Frances; Kenna, Jade E.; Hoes, Madison E.; Pfaff, Abigail L.; Akkari, P. Anthony; Dunlop, Sarah A. et al. (2020-11-17). "Single Nucleotide Polymorphisms Associated With Gut Homeostasis Influence Risk and Age-at-Onset of Parkinson's Disease". Frontiers in Aging Neuroscience 12. doi:10.3389/fnagi.2020.603849. ISSN 1663-4365. PMID 33328979. 
  123. Luan, Mengting; Jin, Jianing; Wang, Ying; Li, Xiaoyuan; Xie, Anmu (April 2022). "Association of PGLYRP2 gene polymorphism and sporadic Parkinson's disease in northern Chinese Han population" (in en). Neuroscience Letters 775: 136547. doi:10.1016/j.neulet.2022.136547. PMID 35218888. https://linkinghub.elsevier.com/retrieve/pii/S0304394022001045. 
  124. Sun, Chao; Mathur, Punam; Dupuis, Josée; Tizard, Rich; Ticho, Barry; Crowell, Tom; Gardner, Humphrey; Bowcock, Anne M. et al. (March 2006). "Peptidoglycan recognition proteins Pglyrp3 and Pglyrp4 are encoded from the epidermal differentiation complex and are candidate genes for the Psors4 locus on chromosome 1q21". Human Genetics 119 (1–2): 113–125. doi:10.1007/s00439-005-0115-8. ISSN 0340-6717. PMID 16362825. https://pubmed.ncbi.nlm.nih.gov/16362825. 
  125. Kainu, Kati; Kivinen, Katja; Zucchelli, Marco; Suomela, Sari; Kere, Juha; Inerot, Annica; Baker, Barbara S.; Powles, Anne V. et al. (February 2009). "Association of psoriasis to PGLYRP and SPRR genes at PSORS4 locus on 1q shows heterogeneity between Finnish, Swedish and Irish families". Experimental Dermatology 18 (2): 109–115. doi:10.1111/j.1600-0625.2008.00769.x. ISSN 1600-0625. PMID 18643845. https://pubmed.ncbi.nlm.nih.gov/18643845. 
  126. Igartua, Catherine; Davenport, Emily R.; Gilad, Yoav; Nicolae, Dan L.; Pinto, Jayant; Ober, Carole (1 February 2017). "Host genetic variation in mucosal immunity pathways influences the upper airway microbiome". Microbiome 5 (1): 16. doi:10.1186/s40168-016-0227-5. ISSN 2049-2618. PMID 28143570. 
  127. Zhang, Lei; Luo, Min; Yang, Hongying; Zhu, Shaoyan; Cheng, Xianliang; Qing, Chen (2019-02-20). "Next-generation sequencing-based genomic profiling analysis reveals novel mutations for clinical diagnosis in Chinese primary epithelial ovarian cancer patients". Journal of Ovarian Research 12 (1): 19. doi:10.1186/s13048-019-0494-4. ISSN 1757-2215. PMID 30786925. 
  128. Rohatgi, Anand; Ayers, Colby R.; Khera, Amit; McGuire, Darren K.; Das, Sandeep R.; Matulevicius, Susan; Timaran, Carlos H.; Rosero, Eric B. et al. (April 2009). "The association between peptidoglycan recognition protein-1 and coronary and peripheral atherosclerosis: Observations from the Dallas Heart Study". Atherosclerosis 203 (2): 569–575. doi:10.1016/j.atherosclerosis.2008.07.015. ISSN 1879-1484. PMID 18774573. https://pubmed.ncbi.nlm.nih.gov/18774573. 
  129. Brownell, Nicholas K.; Khera, Amit; de Lemos, James A.; Ayers, Colby R.; Rohatgi, Anand (17 May 2016). "Association Between Peptidoglycan Recognition Protein-1 and Incident Atherosclerotic Cardiovascular Disease Events: The Dallas Heart Study". Journal of the American College of Cardiology 67 (19): 2310–2312. doi:10.1016/j.jacc.2016.02.063. ISSN 1558-3597. PMID 27173041. 
  130. 130.0 130.1 Klimczak-Tomaniak, Dominika; Bouwens, Elke; Schuurman, Anne-Sophie; Akkerhuis, K. Martijn; Constantinescu, Alina; Brugts, Jasper; Westenbrink, B. Daan; van Ramshorst, Jan et al. (June 2020). "Temporal patterns of macrophage- and neutrophil-related markers are associated with clinical outcome in heart failure patients". ESC Heart Failure 7 (3): 1190–1200. doi:10.1002/ehf2.12678. ISSN 2055-5822. PMID 32196993. 
  131. Rathnayake, Nilminie; Gustafsson, Anders; Sorsa, Timo; Norhammar, Anna; Bostanci, Nagihan (September 2022). "Association of peptidoglycan recognition protein 1 to post‐myocardial infarction and periodontal inflammation: A subgroup report from the PAROKRANK (Periodontal Disease and the Relation to Myocardial Infarction) study" (in en). Journal of Periodontology 93 (9): 1325–1335. doi:10.1002/JPER.21-0595. ISSN 0022-3492. PMID 35344208. 
  132. 132.0 132.1 Han, Yanxin; Hua, Sha; Chen, Yanjia; Yang, Wenbo; Zhao, Weilin; Huang, Fanyi; Qiu, Zeping; Yang, Chendie et al. (May 2021). "Circulating PGLYRP1 Levels as a Potential Biomarker for Coronary Artery Disease and Heart Failure" (in en). Journal of Cardiovascular Pharmacology 77 (5): 578–585. doi:10.1097/FJC.0000000000000996. ISSN 0160-2446. PMID 33760799. https://journals.lww.com/10.1097/FJC.0000000000000996. 
  133. Jin, Yao; Huang, Hui; Shu, Xinyi; Liu, Zhuhui; Lu, Lin; Dai, Yang; Wu, Zhijun (December 2021). "Peptidoglycan Recognition Protein 1 Attenuates Atherosclerosis by Suppressing Endothelial Cell Adhesion" (in en). Journal of Cardiovascular Pharmacology 78 (4): 615–621. doi:10.1097/FJC.0000000000001100. ISSN 0160-2446. PMID 34269701. https://journals.lww.com/10.1097/FJC.0000000000001100. 
  134. Zhang, Junli; Cheng, Yuelei; Duan, Minmin; Qi, Nannan; Liu, Jian (May 2017). "Unveiling differentially expressed genes upon regulation of transcription factors in sepsis". 3 Biotech 7 (1): 46. doi:10.1007/s13205-017-0713-x. ISSN 2190-572X. PMID 28444588. 
  135. Molyneaux, Philip L.; Willis-Owen, Saffron A. G.; Cox, Michael J.; James, Phillip; Cowman, Steven; Loebinger, Michael; Blanchard, Andrew; Edwards, Lindsay M. et al. (15 June 2017). "Host-Microbial Interactions in Idiopathic Pulmonary Fibrosis". American Journal of Respiratory and Critical Care Medicine 195 (12): 1640–1650. doi:10.1164/rccm.201607-1408OC. ISSN 1535-4970. PMID 28085486. 
  136. Kasaian, M. T.; Lee, J.; Brennan, A.; Danto, S. I.; Black, K. E.; Fitz, L.; Dixon, A. E. (July 2018). "Proteomic analysis of serum and sputum analytes distinguishes controlled and poorly controlled asthmatics". Clinical and Experimental Allergy 48 (7): 814–824. doi:10.1111/cea.13151. ISSN 1365-2222. PMID 29665127. https://pubmed.ncbi.nlm.nih.gov/29665127. 
  137. Nylund, Karita M.; Ruokonen, Hellevi; Sorsa, Timo; Heikkinen, Anna Maria; Meurman, Jukka H.; Ortiz, Fernanda; Tervahartiala, Taina; Furuholm, Jussi et al. (January 2018). "Association of the salivary triggering receptor expressed on myeloid cells/its ligand peptidoglycan recognition protein 1 axis with oral inflammation in kidney disease". Journal of Periodontology 89 (1): 117–129. doi:10.1902/jop.2017.170218. ISSN 1943-3670. PMID 28846062. https://pubmed.ncbi.nlm.nih.gov/28846062. 
  138. Luo, Qing; Li, Xue; Zhang, Lu; Yao, Fangyi; Deng, Zhen; Qing, Cheng; Su, Rigu; Xu, Jianqing et al. (January 2019). "Serum PGLYRP‑1 is a highly discriminatory biomarker for the diagnosis of rheumatoid arthritis". Molecular Medicine Reports 19 (1): 589–594. doi:10.3892/mmr.2018.9632. ISSN 1791-3004. PMID 30431075. 
  139. Silbereisen, A.; Hallak, A. K.; Nascimento, G. G.; Sorsa, T.; Belibasakis, G. N.; Lopez, R.; Bostanci, N. (October 2019). "Regulation of PGLYRP1 and TREM-1 during Progression and Resolution of Gingival Inflammation". JDR Clinical and Translational Research 4 (4): 352–359. doi:10.1177/2380084419844937. ISSN 2380-0852. PMID 31013451. https://pubmed.ncbi.nlm.nih.gov/31013451. 
  140. Raivisto, T.; Heikkinen, A. M.; Silbereisen, A.; Kovanen, L.; Ruokonen, H.; Tervahartiala, T.; Haukka, J.; Sorsa, T. et al. (October 2020). "Regulation of Salivary Peptidoglycan Recognition Protein 1 in Adolescents". JDR Clinical and Translational Research 5 (4): 332–341. doi:10.1177/2380084419894287. ISSN 2380-0852. PMID 31860804. https://pubmed.ncbi.nlm.nih.gov/31860804. 
  141. Yucel, Zeynep Pinar Keles; Silbereisen, Angelika; Emingil, Gulnur; Tokgoz, Yavuz; Kose, Timur; Sorsa, Timo; Tsilingaridis, Georgios; Bostanci, Nagihan (October 2020). "Salivary biomarkers in the context of gingival inflammation in children with cystic fibrosis". Journal of Periodontology 91 (10): 1339–1347. doi:10.1002/JPER.19-0415. ISSN 1943-3670. PMID 32100289. https://pubmed.ncbi.nlm.nih.gov/32100289. 
  142. Karsiyaka Hendek, Meltem; Kisa, Ucler; Olgun, Ebru (January 2020). "The effect of smoking on gingival crevicular fluid peptidoglycan recognition protein-1 level following initial periodontal therapy in chronic periodontitis". Oral Diseases 26 (1): 166–172. doi:10.1111/odi.13207. ISSN 1601-0825. PMID 31587460. https://pubmed.ncbi.nlm.nih.gov/31587460. 
  143. Teixeira, Mayla K. S.; Lira-Junior, Ronaldo; Lourenço, Eduardo José Veras; Telles, Daniel Moraes; Boström, Elisabeth A.; Figueredo, Carlos Marcelo; Bostanci, Nagihan (May 2020). "The modulation of the TREM-1/PGLYRP1/MMP-8 axis in peri-implant diseases". Clinical Oral Investigations 24 (5): 1837–1844. doi:10.1007/s00784-019-03047-z. ISSN 1436-3771. PMID 31444693. 
  144. Inanc, Nevsun; Mumcu, Gonca; Can, Meryem; Yay, Meral; Silbereisen, Angelika; Manoil, Daniel; Direskeneli, Haner; Bostanci, Nagihan (2021-02-03). "Elevated serum TREM-1 is associated with periodontitis and disease activity in rheumatoid arthritis" (in en). Scientific Reports 11 (1): 2888. doi:10.1038/s41598-021-82335-9. ISSN 2045-2322. PMID 33536478. Bibcode2021NatSR..11.2888I. 
  145. Silbereisen, Angelika; Lira‐Junior, Ronaldo; Åkerman, Sigvard; Klinge, Björn; Boström, Elisabeth A.; Bostanci, Nagihan (November 2023). "Association of salivary TREM‐1 and PGLYRP1 inflammatory markers with non‐communicable diseases" (in en). Journal of Clinical Periodontology 50 (11): 1467–1475. doi:10.1111/jcpe.13858. ISSN 0303-6979. PMID 37524498. https://onlinelibrary.wiley.com/doi/10.1111/jcpe.13858. 
  146. Yang, Zhanyu; Ni, Jiangdong; Kuang, Letian; Gao, Yongquan; Tao, Shibin (2020-09-11). "Identification of genes and pathways associated with subchondral bone in osteoarthritis via bioinformatic analysis". Medicine 99 (37): e22142. doi:10.1097/MD.0000000000022142. ISSN 1536-5964. PMID 32925767. 
  147. Ortiz, Fernanda; Nylund, Karita M.; Ruokonen, Hellevi; Meurman, Jukka H.; Furuholm, Jussi; Bostanci, Nagihan; Sorsa, Timo (2020-08-04). "Salivary Biomarkers of Oral Inflammation Are Associated With Cardiovascular Events and Death Among Kidney Transplant Patients". Transplantation Proceedings 52 (10): 3231–3235. doi:10.1016/j.transproceed.2020.07.007. ISSN 1873-2623. PMID 32768288. https://pubmed.ncbi.nlm.nih.gov/32768288. 
  148. Soomro, Sanam; Venkateswaran, Suresh; Vanarsa, Kamala; Kharboutli, Marwa; Nidhi, Malavika; Susarla, Ramya; Zhang, Ting; Sasidharan, Prashanth et al. (2021-06-28). "Predicting disease course in ulcerative colitis using stool proteins identified through an aptamer-based screen" (in en). Nature Communications 12 (1): 3989. doi:10.1038/s41467-021-24235-0. ISSN 2041-1723. PMID 34183667. Bibcode2021NatCo..12.3989S. 
  149. Glickman, Jacob W.; Dubin, Celina; Renert-Yuval, Yael; Dahabreh, Dante; Kimmel, Grace W.; Auyeung, Kelsey; Estrada, Yeriel D.; Singer, Giselle et al. (2020-05-04). "Cross-sectional study of blood biomarkers of patients with moderate to severe alopecia areata reveals systemic immune and cardiovascular biomarker dysregulation". Journal of the American Academy of Dermatology 84 (2): 370–380. doi:10.1016/j.jaad.2020.04.138. ISSN 1097-6787. PMID 32376430. https://pubmed.ncbi.nlm.nih.gov/32376430. 
  150. Yang, Shuting; Cao, Chuqing; Xie, Zhiguo; Zhou, Zhiguang (March 2020). "Analysis of potential hub genes involved in the pathogenesis of Chinese type 1 diabetic patients". Annals of Translational Medicine 8 (6): 295. doi:10.21037/atm.2020.02.171. ISSN 2305-5839. PMID 32355739. 
  151. Arenius, Ilona; Ruokonen, Hellevi; Ortiz, Fernanda; Furuholm, Jussi; Välimaa, Hannamari; Bostanci, Nagihan; Eskola, Maija; Maria Heikkinen, Anna et al. (July 2020). "The relationship between oral diseases and infectious complications in patients under dialysis". Oral Diseases 26 (5): 1045–1052. doi:10.1111/odi.13296. ISSN 1601-0825. PMID 32026534. https://pubmed.ncbi.nlm.nih.gov/32026534. 
  152. Guo, Chao; Li, Zhenling (2019-12-05). "Bioinformatics Analysis of Key Genes and Pathways Associated with Thrombosis in Essential Thrombocythemia". Medical Science Monitor: International Medical Journal of Experimental and Clinical Research 25: 9262–9271. doi:10.12659/MSM.918719. ISSN 1643-3750. PMID 31801935. 
  153. Grande, Giuseppe; Vincenzoni, Federica; Milardi, Domenico; Pompa, Giuseppina; Ricciardi, Domenico; Fruscella, Erika; Mancini, Francesca; Pontecorvi, Alfredo et al. (2017). "Cervical mucus proteome in endometriosis". Clinical Proteomics 14: 7. doi:10.1186/s12014-017-9142-4. ISSN 1542-6416. PMID 28174513. 
  154. Turturice, Benjamin A; Theorell, Juliana; Koenig, Mary Dawn; Tussing-Humphreys, Lisa; Gold, Diane R; Litonjua, Augusto A; Oken, Emily; Rifas-Shiman, Sheryl L et al. (2021-02-10). "Perinatal granulopoiesis and risk of pediatric asthma" (in en). eLife 10. doi:10.7554/eLife.63745. ISSN 2050-084X. PMID 33565964. 
  155. Li, Hui; Meng, Defang; Jia, Jieting; Wei, Hua (December 2021). "PGLYRP2 as a novel biomarker for the activity and lipid metabolism of systemic lupus erythematosus" (in en). Lipids in Health and Disease 20 (1): 95. doi:10.1186/s12944-021-01515-8. ISSN 1476-511X. PMID 34461924. 
  156. Huang, Fei; Liu, Xu; Cheng, Yongjing; Sun, Xiaolin; Li, Yingni; Zhao, Jing; Cao, Di; Wu, Qin et al. (2021-08-31). "Antibody to peptidoglycan recognition protein (PGLYRP)-2 as a novel biomarker in rheumatoid arthritis" (in en). Clinical and Experimental Rheumatology 39 (5): 988–994. doi:10.55563/clinexprheumatol/vlvlqu. ISSN 1593-098X. PMID 33427621. https://www.clinexprheumatol.org/abstract.asp?a=15708. 
  157. Achkar, Jacqueline M.; Cortes, Laetitia; Croteau, Pascal; Yanofsky, Corey; Mentinova, Marija; Rajotte, Isabelle; Schirm, Michael; Zhou, Yiyong et al. (September 2015). "Host Protein Biomarkers Identify Active Tuberculosis in HIV Uninfected and Co-infected Individuals". eBioMedicine 2 (9): 1160–1168. doi:10.1016/j.ebiom.2015.07.039. ISSN 2352-3964. PMID 26501113. 
  158. Chen, Jing; Han, Yu‐Shuai; Yi, Wen‐Jing; Huang, Huai; Li, Zhi‐Bin; Shi, Li‐Ying; Wei, Li‐Liang; Yu, Yi et al. (November 2020). "Serum sCD14, PGLYRP2 and FGA as potential biomarkers for multidrug‐resistant tuberculosis based on data‐independent acquisition and targeted proteomics" (in en). Journal of Cellular and Molecular Medicine 24 (21): 12537–12549. doi:10.1111/jcmm.15796. ISSN 1582-1838. PMID 32967043. 
  159. Zhou, Yong; Qin, Shizhen; Sun, Mingjuan; Tang, Li; Yan, Xiaowei; Kim, Taek-Kyun; Caballero, Juan; Glusman, Gustavo et al. (3 January 2020). "Measurement of Organ-Specific and Acute-Phase Blood Protein Levels in Early Lyme Disease". Journal of Proteome Research 19 (1): 346–359. doi:10.1021/acs.jproteome.9b00569. ISSN 1535-3907. PMID 31618575. 
  160. Yang, Zongyi; Feng, Jia; Xiao, Li; Chen, Xi; Yao, Yuanfei; Li, Yiqun; Tang, Yu; Zhang, Shuai et al. (May 2020). "Tumor-Derived Peptidoglycan Recognition Protein 2 Predicts Survival and Antitumor Immune Responses in Hepatocellular Carcinoma". Hepatology 71 (5): 1626–1642. doi:10.1002/hep.30924. ISSN 1527-3350. PMID 31479523. 
  161. Das, Apabrita Ayan; Choudhury, Kamalika Roy; Jagadeeshaprasad, M. G.; Kulkarni, Mahesh J.; Mondal, Prakash Chandra; Bandyopadhyay, Arun (2020-06-30). "Proteomic analysis detects deregulated reverse cholesterol transport in human subjects with ST-segment elevation myocardial infarction". Journal of Proteomics 222: 103796. doi:10.1016/j.jprot.2020.103796. ISSN 1876-7737. PMID 32376501. https://pubmed.ncbi.nlm.nih.gov/32376501. 
  162. Tsuchiya, M.; Asahi, N.; Suzuoki, F.; Ashida, M.; Matsuura, S. (September 1996). "Detection of peptidoglycan and beta-glucan with silkworm larvae plasma test". FEMS Immunology and Medical Microbiology 15 (2–3): 129–134. doi:10.1111/j.1574-695X.1996.tb00063.x. ISSN 0928-8244. PMID 8880138. 
  163. Kobayashi, T.; Tani, T.; Yokota, T.; Kodama, M. (May 2000). "Detection of peptidoglycan in human plasma using the silkworm larvae plasma test". FEMS Immunology and Medical Microbiology 28 (1): 49–53. doi:10.1111/j.1574-695X.2000.tb01456.x. ISSN 0928-8244. PMID 10767607. 

Further reading