Chemistry:Darunavir

From HandWiki
Short description: Antiretroviral medication
Darunavir
Darunavir structure.svg
Darunavir-from-xtal-3D-bs-17.png
Clinical data
Trade namesPrezista, others[1]
Other namesTMC114, DRV, darunavir ethanolate
AHFS/Drugs.comMonograph
MedlinePlusa607042
License data
Pregnancy
category
  • AU: B2[2]
  • US: N (Not classified yet)[2]
Routes of
administration
By mouth
ATC code
Legal status
Legal status
  • AU: S4 (Prescription only)
  • CA: ℞-only
  • UK: POM (Prescription only)
  • US: ℞-only
  • EU: Rx-only
  • In general: ℞ (Prescription only)
Pharmacokinetic data
Bioavailability37% (without ritonavir), 82% (with ritonavir)
Protein binding95%
Metabolismhepatic (CYP3A4)
Elimination half-life15 hours (with ritonavir)
ExcretionFeces (80%), urine (14%)
Identifiers
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
NIAID ChemDB
PDB ligand
Chemical and physical data
FormulaC27H37N3O7S
Molar mass547.67 g·mol−1
3D model (JSmol)
 ☒N☑Y (what is this?)  (verify)

Darunavir (DRV), sold under the brand name Prezista among others, is an antiretroviral medication used to treat and prevent HIV/AIDS.[1] It is generally recommended for use with other antiretrovirals.[1][3] It is often used with low doses of ritonavir or cobicistat to increase darunavir levels.[1] It may be used for prevention after a needlestick injury or other potential exposure.[1] It is taken by mouth once to twice a day.[1]

Common side effects include diarrhea, nausea, abdominal pain, headache, rash and vomiting.[1][3] Severe side effects include allergic reactions, liver problems, and skin rashes such as toxic epidermal necrolysis.[1] While poorly studied in pregnancy it appears to be safe for the baby.[2] It is of the protease inhibitor (PI) class and works by blocking HIV protease.[1]

Developed by pharmaceutical company Tibotec, darunavir is named after Arun K. Ghosh, the chemistry professor who discovered the molecule at the University of Illinois at Chicago.[4] It was approved by the Food and Drug Administration (FDA) in June 2006.[5] It is on the World Health Organization's List of Essential Medicines.[6] It is available as a generic medication.[7]

The fixed-dose combination medication darunavir/cobicistat (Prezcobix, Rezolsta) is available as a single pill.[8]

Medical uses

Darunavir is an Office of AIDS Research Advisory Council (DHHS) recommended treatment option for adults and adolescents, regardless of whether they have received HIV treatment in the past.[9][10] In a study of patients that had never received HIV treatment, darunavir was as effective as lopinavir/ritonavir at 96 weeks with a once-daily dosing.[11] It was approved by the FDA on 21 October 2008 for people not previously treated for HIV.[12] As with other antiretrovirals, darunavir does not cure HIV/AIDS.[13]

It is indicated for the treatment of human immunodeficiency virus (HIV-1) infection in adults and children three years of age and older when co-administered with ritonavir, in combination with other antiretroviral agents.[3][14]

Adverse effects

Darunavir is generally well tolerated by people. Rash is the most common side effect (7% of patients).[13] Other common side effects are diarrhea (2.3%), headache (3.8%), abdominal pain (2.3%), constipation (2.3%), and vomiting (1.5%).[13] Darunavir can also cause allergic reactions, and people allergic to ritonavir can also have a reaction to darunavir.[13]

High blood sugar, diabetes or worsening of diabetes, muscle pain, tenderness or weakness, and increased bleeding in people with hemophilia have been reported in patients taking protease inhibitor medicines like darunavir.[13] Changes in body fat have been seen in some patients taking medicines for HIV, including loss of fat from legs, arms and face, increased fat in the abdomen and other internal organs, breast enlargement, and fatty lumps on the back of the neck. The cause and long-term health effects of these conditions are not known.[13]

Drug interactions

Darunavir may interact with medications commonly taken by people with HIV/AIDS such as other antiretrovirals, and antacids such as proton pump inhibitors and H2 receptor antagonists.[13] St. John's wort may reduce the effectiveness of darunavir by increasing the breakdown of darunavir by the metabolic enzyme CYP3A.[13]

Mechanism of action

Darunavir is a nonpeptidic inhibitor of protease (PR) that lodges itself in the active site of PR through a number of hydrogen bonds.[15] It was developed to increase interactions with HIV-1 protease and to be more resistant against HIV-1 protease mutations. With a Kd (dissociation constant) of 4.5 x 10−12 M, darunavir has a much stronger interaction with PR and its dissociation constant is 1/100 to 1/1000 of other protease inhibitors.[16] This strong interaction comes from increased hydrogen bonds between darunavir and the backbone of the PR active site (Figure 2). Darunavir's structure allows it to create more hydrogen bonds with the PR active site than most PIs that have been developed and approved by the FDA.[17] Furthermore, the backbone of HIV-1 protease maintains its spatial conformation in the presence of mutations.[18] Because darunavir interacts with this stable portion of the protease, the PR-PI interaction is less likely to be disrupted by a mutation.[17]

File:Figure 3.a.tiff

Catalytic site

The chemical activity of the HIV-1 protease depends on two residues in the active site, Asp25 and Asp25’, one from each copy of the homodimer.[19] Darunavir interacts with these catalytic aspartates and the backbone of the active site through hydrogen bonds, specifically binding to residues Asp25, Asp25’, Asp 29, Asp 30, Asp 30’, and Gly 27 (Figure 3). This interaction prevents viral replication, as it competitively inhibits the viral polypeptides from gaining access to the active site and strongly binds to the enzymatic portions of this protein.[15]

Cost

In the US and UK, healthcare costs were estimated to be lower with boosted darunavir than with investigator-selected control protease inhibitors in treatment-experienced patients.[20]

History

Figure 2. Hydrogen bonds between darunavir and HIV-1 protease: The bonds with the red residues indicate hydrogen bonds that are also present between the PI saquinavir and HIV-1 protease. The hydrogen bonds with the blue residue are unique to darunavir.

Darunavir was approved for use in the United States in June 2006 and for use in the European Union in February 2007.[21][22][23][24][14][excessive citations]

The development of first-generation clinical inhibitors was founded on creating more protease-ligand interactions through hydrogen bonding and hydrophobic interactions.[15] The first HIV protease inhibitor approved by the FDA was saquinavir, which was designed to target wild-type HIV-1 protease.[25] However, this inhibitor is no longer effective due to resistance-causing mutations on the HIV-1 protease structure. The HIV genome has high plasticity, so has been able to become resistant to multiple HIV-1 protease inhibitors.[26] Since saquinavir, the FDA has approved several PIs, including darunavir.[23]

See also

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 "Darunavir". The American Society of Health-System Pharmacists. https://www.drugs.com/monograph/darunavir.html. 
  2. 2.0 2.1 2.2 "Darunavir (Prezista) Use During Pregnancy". 23 October 2018. https://www.drugs.com/pregnancy/darunavir.html. 
  3. 3.0 3.1 3.2 "Prezista- darunavir tablet, film coated Prezista- darunavir suspension". 6 June 2019. https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=814301f9-c990-46a5-b481-2879a521a16f. 
  4. "HIV/AIDS Research". https://www.chem.purdue.edu/ghosh/. 
  5. "Darunavir: promising initial results". Lancet 369 (9568): 1143–1144. April 2007. doi:10.1016/S0140-6736(07)60499-1. PMID 17416241. 
  6. World Health Organization model list of essential medicines: 21st list 2019. Geneva: World Health Organization. 2019. WHO/MVP/EMP/IAU/2019.06. License: CC BY-NC-SA 3.0 IGO. 
  7. "2022 First Generic Drug Approvals". 3 March 2023. https://www.fda.gov/drugs/drug-and-biologic-approval-and-ind-activity-reports/2022-first-generic-drug-approvals. 
  8. "Darunavir / Cobicistat". AIDSinfo. U.S. Department of Health and Human Services. https://aidsinfo.nih.gov/drugs/538/prezcobix/0/patient. 
  9. "Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents with HIV". Department of Health and Human Services. 18 December 2019. https://files.aidsinfo.nih.gov/contentfiles/lvguidelines/AdultandAdolescentGL.pdf. 
  10. "What's New in the Guidelines? Adult and Adolescent ARV". June 26, 2018. https://aidsinfo.nih.gov/guidelines/html/1/adult-and-adolescent-arv/37/whats-new-in-the-guidelines-. 
  11. hivandhepatitis.com , Efficacy and Safety of Boosted Darunavir (Prezista) Are Superior to Lopinavir/ritonavir (Kaletra) at 96 Weeks: ARTEMIS Trial, 2008-10-28, URL .
  12. hivandhepatitis.com , Darunavir (Prezista) Receives Full Traditional Approval, Dose Set for Treatment-naive Patients, Caution Urged for Pregnant Women, 2008-10-24, URL .
  13. 13.0 13.1 13.2 13.3 13.4 13.5 13.6 13.7 "Drug Monograph, Prezista". http://www.prezista.com/patients/full-product-information. 
  14. 14.0 14.1 "Prezista EPAR". 17 September 2018. https://www.ema.europa.eu/en/medicines/human/EPAR/prezista.  This article incorporates text from this source, which is in the public domain.
  15. 15.0 15.1 15.2 "Computational studies of darunavir into HIV-1 protease and DMPC bilayer: necessary conditions for effective binding and the role of the flaps". Journal of Chemical Information and Modeling 52 (6): 1542–1558. June 2012. doi:10.1021/ci300014z. PMID 22587384. 
  16. "Structural and thermodynamic basis for the binding of TMC114, a next-generation human immunodeficiency virus type 1 protease inhibitor". Journal of Virology 78 (21): 12012–12021. November 2004. doi:10.1128/JVI.78.21.12012-12021.2004. PMID 15479840. 
  17. 17.0 17.1 "Resilience to resistance of HIV-1 protease inhibitors: profile of darunavir". AIDS Reviews 10 (3): 131–142. 2008. PMID 18820715. 
  18. "Role of darunavir in the management of HIV infection". HIV/AIDS: Research and Palliative Care 1: 31–39. 2009. doi:10.2147/hiv.s5397. PMID 22096377. 
  19. "Investigation on the mechanism for the binding and drug resistance of wild type and mutations of G86 residue in HIV-1 protease complexed with Darunavir by molecular dynamic simulation and free energy calculation". Journal of Molecular Modeling 20 (2): 2122. February 2014. doi:10.1007/s00894-014-2122-y. PMID 24526384. 
  20. "Darunavir: a review of its use in the management of HIV infection in adults". Drugs 69 (4): 477–503. 2009. doi:10.2165/00003495-200969040-00007. PMID 19323590. 
  21. "Darunavir: promising initial results". Lancet 369 (9568): 1143–1144. April 2007. doi:10.1016/S0140-6736(07)60499-1. PMID 17416241. 
  22. "FDA Approves New HIV Treatment for Patients Who Do Not Respond to Existing Drugs". U.S. Food and Drug Administration (FDA) (Press release). Archived from the original on 13 November 2016. Retrieved 10 November 2016.
  23. 23.0 23.1 "HIV/AIDS Historical Time Line 2000 - 2010". 5 January 2018. https://www.fda.gov/patients/hiv-timeline-and-history-approvals/hivaids-historical-time-line-2000-2010. 
  24. "Drug Approval Package: Prezista (Darumavir) NDA #021976". 6 September 2006. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2006/021976s000_SprycelTOC.cfm. 
  25. "Effect of flap mutations on structure of HIV-1 protease and inhibition by saquinavir and darunavir". Journal of Molecular Biology 381 (1): 102–115. August 2008. doi:10.1016/j.jmb.2008.05.062. PMID 18597780. 
  26. "HIV-1 protease inhibitors". Clinical Infectious Diseases 30 (Suppl 2): S160–S170. June 2000. doi:10.1086/313853. PMID 10860901. 

Further reading

External links