Chemistry:Pantetheine
Names | |
---|---|
Systematic IUPAC name
(2R)-2,4-Dihydroxy-3,3-dimethyl-N-{3-oxo-3-[(2-sulfanylethyl)amino]propyl}butanamide | |
Other names
Pantetheine
| |
Identifiers | |
| |
3D model (JSmol)
|
|
3DMet | |
1714196 R | |
ChEBI | |
ChemSpider | |
EC Number |
|
KEGG | |
MeSH | Pantetheine |
PubChem CID
|
|
UNII | |
| |
| |
Properties | |
C11H22N2O4S | |
Molar mass | 278.37 g·mol−1 |
Related compounds | |
Related compounds
|
Pantethine |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). | |
verify (what is ?) | |
Infobox references | |
Pantetheine is the cysteamine amide analog of pantothenic acid (vitamin B5). The dimer of this compound, pantethine is more commonly known, and is considered to be the most potent form of vitamin B5. Pantetheine is an intermediate in the catabolism of coenzyme A by the body.[1][2][3]
Metabolism
Pantetheine is the product of dephosphorylation of phosphopantetheine:
phosphopantetheine → pantetheine + Pi
In E. coli, this reaction is catalyzed by for example alkaline phosphatase.[4] The reverse reaction, phosphopantetheine synthesis, is catalyzed by various kinases:[5]
- phosphopantetheine + ATP → pantetheine + ADP
These kinases are able to act upon pantothenoic acid as well and are present in both microorganisms and animal livers.[5]
Pantetheine is degraded by pantetheinase, which splits it into cysteamine and pantothenic acid:[3]
- pantetheine → cysteamine + pantothenate
Prebiotic evolution
Since pantetheine is a part of coenzyme A, a common cofactor, it is thought to have been present in prebiotic soup. A synthesis mechanism has also been suggested.[6]
References
- ↑ "Biosynthesis of coenzyme A from phospho-pantetheine and of pantetheine from pantothenate". The Journal of Biological Chemistry 207 (2): 767–773. April 1954. doi:10.1016/S0021-9258(18)65696-0. PMID 13163064.
- ↑ "The chain-flipping mechanism of ACP (acyl carrier protein)-dependent enzymes appears universal". The Biochemical Journal 460 (2): 157–163. June 2014. doi:10.1042/BJ20140239. PMID 24825445.
- ↑ 3.0 3.1 "Linkage between coenzyme a metabolism and inflammation: roles of pantetheinase". Journal of Pharmacological Sciences 123 (1): 1–8. September 2013. doi:10.1254/jphs.13R01CP. PMID 23978960.
- ↑ "Metabolism of 4'-phosphopantetheine in Escherichia coli". Journal of Bacteriology 158 (1): 115–120. April 1984. doi:10.1128/jb.158.1.115-120.1984. PMID 6370952.
- ↑ 5.0 5.1 "Section d - Biosynthesis of Pantothenic Acid and Coenzyme A", Comprehensive Biochemistry, Metabolism of Vitamins and Trace Elements (Elsevier) 21: pp. 73–80, 1970-01-01, doi:10.1016/b978-0-444-40871-6.50012-x, https://www.sciencedirect.com/science/article/pii/B978044440871650012X, retrieved 2023-10-29
- ↑ "A possible prebiotic synthesis of pantetheine, a precursor to coenzyme A". Nature 373 (6516): 683–685. February 1995. doi:10.1038/373683a0. PMID 7854449. Bibcode: 1995Natur.373..683K.
Original source: https://en.wikipedia.org/wiki/Pantetheine.
Read more |