List of quantum processors

From HandWiki
Short description: List of quantum computer components

This list contains quantum processors, also known as quantum processing units (QPUs). Some devices listed below have only been announced at press conferences so far, with no actual demonstrations or scientific publications characterizing the performance.

Quantum processors are difficult to compare due to the different architectures and approaches. Due to this, published qubit numbers do not reflect the performance levels of the processor. This is instead achieved through benchmarking metrics such as Quantum volume, Randomized benchmarking or CLOPS.[1]

Circuit-based quantum processors

These QPUs are based on the quantum circuit and quantum logic gate-based model of computing.

Manufacturer Name/Codename/Designation Architecture Layout Socket Fidelity Qubits (Logical) Release date Quantum Volume
Google N/A Superconducting N/A N/A 99.5%[2] 20 qb 2017
Google N/A Superconducting 7×7 lattice N/A 99.7%[2] 49 qb[3] Q4 2017 (planned)
Google Bristlecone Superconducting transmon 6×12 lattice N/A 99% (readout)
99.9% (1 qubit)
99.4% (2 qubits)
72 qb[4][5] March 5, 2018
Google Sycamore Superconducting transmon 9×6 lattice N/A N/A 53 qb effective 2019
USTC Jiuzhang Photonics N/A N/A N/A 76 qb[6][7] 2020
USTC Zuchongzhi Superconducting N/A N/A N/A 62 qb[8] 2020
Xanadu Borealis[9] Photonics N/A N/A N/A 216 qb[9] 2022[9]
Xanadu X8 [10] Photonics N/A N/A N/A 8 qb 2020
Xanadu X12 Photonics N/A N/A N/A 12 qb 2020[10]
Xanadu X24 Photonics N/A N/A N/A 24 qb 2020[10]
IBM IBM Q 5 Tenerife Superconducting bow tie N/A 99.897% (average gate)
98.64% (readout)
5 qb 2016[2]
IBM IBM Q 5 Yorktown Superconducting bow tie N/A 99.545% (average gate)
94.2% (readout)
5 qb
IBM IBM Q 14 Melbourne Superconducting N/A N/A 99.735% (average gate)
97.13% (readout)
14 qb
IBM IBM Q 16 Rüschlikon Superconducting 2×8 lattice N/A 99.779% (average gate)
94.24% (readout)
16 qb[11] May 17, 2017
(Retired: 26 September 2018)[12]
IBM IBM Q 17 Superconducting N/A N/A N/A 17 qb[11] May 17, 2017
IBM IBM Q 20 Tokyo Superconducting 5×4 lattice N/A 99.812% (average gate)
93.21% (readout)
20 qb[13] November 10, 2017
IBM IBM Q 20 Austin Superconducting 5×4 lattice N/A N/A 20 qb (Retired: 4 July 2018)[12]
IBM IBM Q 50 prototype Superconducting transmon N/A N/A N/A 50 qb[13]
IBM IBM Q 53 Superconducting N/A N/A N/A 53 qb October 2019
IBM IBM Eagle Superconducting N/A N/A N/A 127 qubit November 2021
IBM IBM Osprey Superconducting N/A N/A N/A 433 qubit November 2022
Intel 17-Qubit Superconducting Test Chip Superconducting N/A 40-pin cross gap N/A 17 qb[14][15] October 10, 2017
Intel Tangle Lake Superconducting N/A 108-pin cross gap N/A 49 qb[16] January 9, 2018
Rigetti 8Q Agave Superconducting N/A N/A N/A 8 qb June 4, 2018[17]
Rigetti 16Q Aspen-1 Superconducting N/A N/A N/A 16 qb November 30, 2018[17]
Rigetti 19Q Acorn Superconducting transmon N/A N/A N/A 19 qb[18] December 17, 2017
Rigetti Aspen-M-3 Superconducting transmon N/A N/A 99.9% (Single-qubit gates) 94.7% (Two-qubit gates CZ) 95.1% (Two-qubit gates XY) 80 qb[19] December 2, 2022
IBM IBM Armonk[20] Superconducting Single Qubit N/A N/A 1 qb October 16, 2019
IBM IBM Ourense[20] Superconducting T N/A N/A 5 qb July 3, 2019
IBM IBM Vigo[20] Superconducting T N/A N/A 5 qb July 3, 2019
IBM IBM London[20] Superconducting T N/A N/A 5 qb September 13, 2019
IBM IBM Burlington[20] Superconducting T N/A N/A 5 qb September 13, 2019
IBM IBM Essex[20] Superconducting T N/A N/A 5 qb September 13, 2019
IBM IBM Athens [21] Superconducting QV32 [22] N/A N/A 5 qb
IBM IBM Belem[21] Superconducting QV16 N/A N/A 5 qb
IBM IBM Bogotá [21] Superconducting QV32 [22] N/A N/A 5 qb
IBM IBM Casablanca [21] Superconducting QV32 [22] N/A N/A 7 qb (Retired - March 2022)
IBM IBM Dublin [21] Superconducting QV64 N/A N/A 27 qb
IBM IBM Guadalupe [21] Superconducting QV32 [22] N/A N/A 16 qb
IBM IBM Kolkata Superconducting QV128 N/A N/A 27 qb
IBM IBM Lima [21] Superconducting QV8 N/A N/A 5 qb
IBM IBM Manhattan [21] Superconducting QV32 [22] N/A N/A 65 qb
IBM IBM Montreal [21] Superconducting QV128 N/A N/A 27 qb
IBM IBM Mumbai [21] Superconducting QV128 N/A N/A 27 qb
IBM IBM Paris [21] Superconducting QV32 [22] N/A N/A 27 qb
IBM IBM Quito [21] Superconducting QV16 N/A N/A 5 qb
IBM IBM Rome [21] Superconducting QV32 [22] N/A N/A 5 qb
IBM IBM Santiago [21] Superconducting QV32 [22] N/A N/A 5 qb
IBM IBM Sydney [21] Superconducting QV32 [22] N/A N/A 27 qb
IBM IBM Toronto [21] Superconducting QV32 [22] N/A N/A 27 qb
QuTech at TU Delft Spin-2 Semiconductor spin qubits 99% (average gate)
85%(readout)[23]
2 qb 2020
QuTech at TU Delft Starmon-5 Superconducting X configuration 97% (readout)[24] 5 qb 2020
IonQ Trapped ion 32x1 chain[25] N/A 99.98% (1 qubit)
98.5-99.3% (2 qubit)[25]
32 qb
Oxford Quantum Circuits Lucy[26] Superconducting N/A 8 qb 2022
Quantinuum H1-1[27] Trapped ion 15×15 (Circuit Size) N/A 20 qb 2022 32,768[28]
Quantinuum H1-2 [27] Trapped ion N/A 12 qb 2022 4096[29]
Quantware Soprano[30] Superconducting N/A 99.9% (single-qubit gates) 5 qb July 2021
Quantware Contralto[31] Superconducting N/A 99.9% (single-qubit gates) 25 qb March 7, 2022[32]
Quantware Tenor[33] Superconducting N/A 64 qb February 23, 2023
Alpine Quantum Technologies PINE System[34] Trapped ion N/A 24 qb.[35] June 7, 2021 128[36]
Atom Computing Phoenix Neutral atoms in optical lattices N/A 100 qb.[37] August 10, 2021
SpinQ Triangulum Nuclear magnetic resonance N/A 3 qb[38] September 2021

Annealing quantum processors

These QPUs are based on quantum annealing.

Manufacturer Name/Codename/Designation Architecture Layout Socket Fidelity Qubits Release date
D-Wave D-Wave One (Rainier) Superconducting C4 = Chimera(4,4,4)[39] = 4×4 K4,4 N/A N/A 128 qb 11 May 2011
D-Wave D-Wave Two Superconducting C8 = Chimera(8,8,4)[39] = 8×8 K4,4 N/A N/A 512 qb 2013
D-Wave D-Wave 2X Superconducting C12 = Chimera(12,12,4)[39] = 12×12 K4,4 N/A N/A 1152 qb 2015
D-Wave D-Wave 2000Q Superconducting C16 = Chimera(16,16,4)[39] = 16×16 K4,4 N/A N/A 2048 qb 2017
D-Wave D-Wave Advantage Superconducting Pegasus P16[40] N/A N/A 5760 qb 2020

Analog quantum processors

These QPUs are based on analog Hamiltonian simulation.

Manufacturer Name/Codename/Designation Architecture Layout Socket Fidelity Qubits Release date
QuEra Aquila Neutral atoms N/A N/A N/A 256 qb Nov 2022

See also

References

  1. Wack, Andrew; Paik, Hanhee; Javadi-Abhari, Ali; Jurcevic, Petar; Faro, Ismael; Gambetta, Jay M.; Johnson, Blake R. (29 Oct 2021). "A practical heuristic for finding graph minors". arXiv:2110.14108 [quant-ph].
  2. 2.0 2.1 2.2 Lant, Karla (2017-06-23). "Google is Closer Than Ever to a Quantum Computer Breakthrough". Futurism. https://futurism.com/google-is-closer-than-ever-to-a-quantum-computer-breakthrough/. Retrieved 2017-10-18. 
  3. Simonite, Tom (2017-04-21). "Google's New Chip Is a Stepping Stone to Quantum Computing Supremacy". MIT Technology Review. https://www.technologyreview.com/s/604242/googles-new-chip-is-a-stepping-stone-to-quantum-computing-supremacy/. Retrieved 2017-10-18. 
  4. "A Preview of Bristlecone, Google's New Quantum Processor", Research (Google), March 2018, https://research.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html .
  5. Greene, Tristan (2018-03-06). "Google reclaims quantum computer crown with 72 qubit processor". The Next Web. https://thenextweb.com/artificial-intelligence/2018/03/06/google-reclaims-quantum-computer-crown-with-72-qubit-processor/. Retrieved 2018-06-27. 
  6. Ball, Philip (2020-12-03). "Physicists in China challenge Google's 'quantum advantage'" (in en). Nature 588 (7838): 380. doi:10.1038/d41586-020-03434-7. PMID 33273711. Bibcode2020Natur.588..380B. 
  7. December 2020, Rafi Letzter-Staff Writer 07 (7 December 2020). "China claims fastest quantum computer in the world" (in en). https://www.livescience.com/china-quantum-supremacy.html. 
  8. Ball, Philip (2020-12-03). "Strong Quantum Computational Advantage Using a Superconducting Quantum Processor". PhysRevLett 127 (18). doi:10.1103/PhysRevLett.127.180501. 
  9. 9.0 9.1 9.2 Madsen, Lars S.; Laudenbach, Fabian; Askarani, Mohsen Falamarzi; Rortais, Fabien; Vincent, Trevor; Bulmer, Jacob F. F.; Miatto, Filippo M.; Neuhaus, Leonhard et al. (June 2022). "Quantum computational advantage with a programmable photonic processor" (in en). Nature 606 (7912): 75–81. doi:10.1038/s41586-022-04725-x. ISSN 1476-4687. PMID 35650354. Bibcode2022Natur.606...75M. 
  10. 10.0 10.1 10.2 "A new kind of quantum". https://spie.org/news/photonics-focus/novdec-2020/a-new-kind-of-quantum. 
  11. 11.0 11.1 "IBM Builds Its Most Powerful Universal Quantum Computing Processors". IBM. 2017-05-17. https://www-03.ibm.com/press/us/en/pressrelease/52403.wss. Retrieved 2017-10-18. 
  12. 12.0 12.1 "Quantum devices & simulators" (in en-US). 2018-06-05. https://www.research.ibm.com/ibm-q/technology/devices/. 
  13. 13.0 13.1 "IBM Announces Advances to IBM Quantum Systems & Ecosystem". 10 November 2017. https://www-03.ibm.com/press/us/en/pressrelease/53374.wss. Retrieved 10 November 2017. 
  14. "Intel Delivers 17-Qubit Superconducting Chip with Advanced Packaging to QuTech". 2017-10-10. https://newsroom.intel.com/news/intel-delivers-17-qubit-superconducting-chip-advanced-packaging-qutech/. Retrieved 2017-10-18. 
  15. Novet, Jordan (2017-10-10). "Intel shows off its latest chip for quantum computing as it looks past Moore's Law". CNBC. https://www.cnbc.com/2017/10/10/intel-delivers-17-qubit-quantum-computing-chip-to-qutech.html. Retrieved 2017-10-18. 
  16. "CES 2018: Intel's 49-Qubit Chip Shoots for Quantum Supremacy". 2018-01-09. https://spectrum.ieee.org/tech-talk/computing/hardware/intels-49qubit-chip-aims-for-quantum-supremacy. Retrieved 2018-01-14. 
  17. 17.0 17.1 "QPU". https://rigetti.com/qpu. 
  18. "Unsupervised Machine Learning on Rigetti 19Q with Forest 1.2". 2017-12-18. https://medium.com/rigetti/unsupervised-machine-learning-on-rigetti-19q-with-forest-1-2-39021339699. Retrieved 2018-03-21. 
  19. "Aspen-M-3 Quantum Processor". https://qcs.rigetti.com/qpus. Retrieved 2023-02-20. 
  20. 20.0 20.1 20.2 20.3 20.4 20.5 "IBM Q Experience" (in en). https://quantum-computing.ibm.com/. 
  21. 21.00 21.01 21.02 21.03 21.04 21.05 21.06 21.07 21.08 21.09 21.10 21.11 21.12 21.13 21.14 21.15 IBM Quantum. https://quantum-computing.ibm.com/, 2021
  22. 22.0 22.1 22.2 22.3 22.4 22.5 22.6 22.7 22.8 22.9 IBM Research Blog. https://www.ibm.com/blogs/research/2020/07/qv32-performance/, 2021
  23. "Spin-2". https://www.quantum-inspire.com/backends/spin-2/. 
  24. "Starmon-5". https://www.quantum-inspire.com/backends/starmon-5. 
  25. 25.0 25.1 arXiv:2009.11482
  26. "Lucy". https://oxfordquantumcircuits.com/oqc-on-aws. 
  27. 27.0 27.1 "Quantinuum System Model H1 Product Data Sheet". https://assets.website-files.com/62b9d45fb3f64842a96c9686/63ed174d23f98eb2418f4023_Quantinuum%20H1%20Product%20Data%20Sheet%20v5-2%2015FEB23%5B2%5D.pdf. 
  28. "Quantum Volume reaches 5 digits for the first time: 5 perspectives on what it means for quantum computing". https://www.quantinuum.com/news/quantum-volume-reaches-5-digits-for-the-first-time-5-perspectives-on-what-it-means-for-quantum-computing. 
  29. "Quantinuum Announces Quantum Volume 4096 Achievement". https://www.quantinuum.com/news/quantum-volume-reaches-5-digits-for-the-first-time-5-perspectives-on-what-it-means-for-quantum-computing. 
  30. "Soprano specs". https://www.quantware.eu/product/soprano. 
  31. "Contralto specs". https://www.quantware.eu/product/contralto. 
  32. "QUANTWARE RELEASES 25-QUBIT CONTRALTO QPU". https://www.quantware.eu/press/quantware-releases-25-qubit-contralto-qpu. 
  33. "Tenor specs". https://www.quantware.eu/product/tenor. 
  34. "THE SYSTEM IS THE FIRST COMMERCIAL 19-INCH RACK-MOUNTED ROOM-TEMPERATURE QUANTUM COMPUTER". https://www.aqt.eu/pine-system-19-rack-mounted-quantum-computer/. 
  35. Pogorelov, I.; Feldker, T.; Et, al. (2021-06-07). "A compact ion-trap quantum computing demonstrator". arXiv:2101.11390 [quant-ph].
  36. "STATE OF QUANTUM COMPUTING IN EUROPE: AQT PUSHING PERFORMANCE WITH A QUANTUM VOLUME OF 128". https://www.aqt.eu/aqt-pushing-performance-with-a-quantum-volume-of-128/. 
  37. Barnes, Katrina; Battaglino, Peter; Et, al. (2021-10-08). "Assembly and coherent control of a register of nuclear spin qubits". arXiv:2108.04790 [quant-ph].
  38. "Triangulum3 qubits desktop NMR quantum computer". https://www.spinquanta.com/products-solutions/Triangulum. 
  39. 39.0 39.1 39.2 39.3 Cai, Jun; Macready, Bill; Roy, Aidan (10 Jun 2014). "A practical heuristic for finding graph minors". arXiv:1406.2741 [quant-ph].
  40. Boothby, Kelly; Bunyk, Paul; Raymond, Jack; Roy, Aidan (29 Feb 2020). "Next-Generation Topology of D-Wave Quantum Processors". arXiv:2003.00133 [quant-ph].