List of quantum processors
This article relies too much on references to primary sources. (July 2022) (Learn how and when to remove this template message) |
This list contains quantum processors, also known as quantum processing units (QPUs). Some devices listed below have only been announced at press conferences so far, with no actual demonstrations or scientific publications characterizing the performance.
Quantum processors are difficult to compare due to the different architectures and approaches. Due to this, published physical qubit numbers do not reflect the performance levels of the processor. This is instead achieved through the number of logical qubits or benchmarking metrics such as quantum volume, randomized benchmarking or circuit layer operations per second (CLOPS).[1]
Circuit-based quantum processors
These QPUs are based on the quantum circuit and quantum logic gate-based model of computing.
| Manufacturer | Name/codename
designation |
Architecture | Layout | Fidelity (%) | Qubits (physical) | Release date | Quantum volume |
|---|---|---|---|---|---|---|---|
| Alpine Quantum Technologies | PINE System[2] | Trapped ion | 24[3] | June 7, 2021 | 128[4] | ||
| Atom Computing | Phoenix | Neutral atoms in optical lattices | 100[5] | August 10, 2021 | |||
| Atom Computing | N/A | Neutral atoms in optical lattices | 35×35 lattice (with 45 vacancies) | < 99.5 (2 qubits)[6] | 1180[7][8] | October 2023 | |
| CAS | Xiaohong[9] | Superconducting | N/A | N/A | 504[9] | 2024 | |
| N/A | Superconducting | N/A | 99.5[10] | 20 | 2017 | ||
| N/A | Superconducting | 7×7 lattice | 99.7[10] | 49[11] | Q4 2017 (planned) | ||
| Bristlecone | Superconducting transmon | 6×12 lattice | 99 (readout) 99.9 (1 qubit) 99.4 (2 qubits) |
72[12][13] | March 5, 2018 | ||
| Sycamore | Superconducting transmon | 9×6 lattice | N/A | 53 effective (54 total) | 2019 | ||
| IBM | IBM Q 5 Tenerife | Superconducting | bow tie | 99.897 (average gate) 98.64 (readout) |
5 | 2016[10] | |
| IBM | IBM Q 5 Yorktown | Superconducting | bow tie | 99.545 (average gate) 94.2 (readout) |
5 | ||
| IBM | IBM Q 14 Melbourne | Superconducting | N/A | 99.735 (average gate) 97.13 (readout) |
14 | ||
| IBM | IBM Q 16 Rüschlikon | Superconducting | 2×8 lattice | 99.779 (average gate) 94.24 (readout) |
16[14] | May 17, 2017 (Retired: 26 September 2018)[15] |
|
| IBM | IBM Q 17 | Superconducting | N/A | N/A | 17[14] | May 17, 2017 | |
| IBM | IBM Q 20 Tokyo | Superconducting | 5×4 lattice | 99.812 (average gate) 93.21 (readout) |
20[16] | November 10, 2017 | |
| IBM | IBM Q 20 Austin | Superconducting | 5×4 lattice | N/A | 20 | (Retired: 4 July 2018)[15] | |
| IBM | IBM Q 50 prototype | Superconducting transmon | N/A | N/A | 50[16] | ||
| IBM | IBM Q 53 | Superconducting | N/A | N/A | 53 | October 2019 | |
| IBM | IBM Eagle | Superconducting transmon | N/A | N/A | 127[17] | November 2021 | |
| IBM | IBM Osprey[7][8] | Superconducting | N/A | N/A | 433[17] | November 2022 | |
| IBM | IBM Condor[18][7] | Superconducting | Honeycomb[19] | N/A | 1121[17] | December 2023 | |
| IBM | IBM Heron[18][7] | Superconducting | N/A | N/A | 133 | December 2023 | |
| IBM | IBM Heron R2[20] | Superconducting | Heavy hex | 96.5 (2 qubits) | 156 | November 2024 | |
| IBM | IBM Armonk[21] | Superconducting | Single Qubit | N/A | 1 | October 16, 2019 | |
| IBM | IBM Ourense[21] | Superconducting | T | N/A | 5 | July 3, 2019 | |
| IBM | IBM Vigo[21] | Superconducting | T | N/A | 5 | July 3, 2019 | |
| IBM | IBM London[21] | Superconducting | T | N/A | 5 | September 13, 2019 | |
| IBM | IBM Burlington[21] | Superconducting | T | N/A | 5 | September 13, 2019 | |
| IBM | IBM Essex[21] | Superconducting | T | N/A | 5 | September 13, 2019 | |
| IBM | IBM Athens[22] | Superconducting | N/A | 5 | 32[23] | ||
| IBM | IBM Belem[22] | Superconducting | Falcon r4T[24] | N/A | 5 | 16[24] | |
| IBM | IBM Bogotá[22] | Superconducting | Falcon r4L[24] | N/A | 5 | 32[24] | |
| IBM | IBM Casablanca[22] | Superconducting | Falcon r4H[24] | N/A | 7 | (Retired – March 2022) | 32[24] |
| IBM | IBM Dublin[22] | Superconducting | N/A | 27 | 64 | ||
| IBM | IBM Guadalupe[22] | Superconducting | Falcon r4P[24] | N/A | 16 | 32[24] | |
| IBM | IBM Kolkata | Superconducting | N/A | 27 | 128 | ||
| IBM | IBM Lima[22] | Superconducting | Falcon r4T[24] | N/A | 5 | 8[24] | |
| IBM | IBM Manhattan[22] | Superconducting | N/A | 65 | 32[23] | ||
| IBM | IBM Montreal[22] | Superconducting | Falcon r4[24] | N/A | 27 | 128[24] | |
| IBM | IBM Mumbai[22] | Superconducting | Falcon r5.1[24] | N/A | 27 | 128[24] | |
| IBM | IBM Paris[22] | Superconducting | N/A | 27 | 32[23] | ||
| IBM | IBM Quito[22] | Superconducting | Falcon r4T[24] | N/A | 5 | 16[24] | |
| IBM | IBM Rome[22] | Superconducting | N/A | 5 | 32[23] | ||
| IBM | IBM Santiago[22] | Superconducting | N/A | 5 | 32[23] | ||
| IBM | IBM Sydney[22] | Superconducting | Falcon r4[24] | N/A | 27 | 32[24] | |
| IBM | IBM Toronto[22] | Superconducting | Falcon r4[24] | N/A | 27 | 32[24] | |
| Intel | 17-Qubit Superconducting Test Chip | Superconducting | 40-pin cross gap | N/A | 17[25][26] | October 10, 2017 | |
| Intel | Tangle Lake | Superconducting | 108-pin cross gap | N/A | 49[27] | January 9, 2018 | |
| Intel | Tunnel Falls | Semiconductor spin qubits | 12[28] | June 15, 2023 | |||
| IonQ | Harmony | Trapped ion | All-to-All[24] | 99.73 (1 qubit)
90.02 (2 qubit) 99.30 (SPAM) |
11[29] | 2022 | 8[24] |
| IonQ | Aria | Trapped ion | All-to-All[24] | 99.97 (1 qubit)
98.33 (2 qubit) 98.94 (SPAM) |
25[29] | 2022 | |
| IonQ | Forte | Trapped ion | 366x1 chain[30] All-to-All[24] | 99.98 (1 qubit) 98.5–99.3 (2 qubit)[30] 99.56 ((SPAM) |
36[29] (earlier 32) | 2022 | |
| IQM | - | Superconducting | Star | 99.91 (1 qubit) 99.14 (2 qubits) |
5[31] | November 30, 2021[32] | N/A |
| IQM | - | Superconducting | Square lattice | 99.91 (1 qubit median) 99.944 (1 qubit max) 98.25 (2 qubits median) 99.1 (2 qubits max) |
20 | October 9, 2023[33] | 16[34] |
| M Squared Lasers | Maxwell | Neutral atoms in optical lattices | 99.5 (3-qubit gate), 99.1 (4-qubit gate)[35] | 200[36] | November 2022 | ||
| Oxford Quantum Circuits | Lucy[37] | Superconducting | 8 | 2022 | |||
| Oxford Quantum Circuits | OQC Toshiko[38] | Superconducting (Coaxmon) | 32 | 2023 | |||
| Quandela | Ascella | Photonics | N/A | 99.6 (1 qubit) 93.8 (2 qubits) 86.0 (3 qubits) |
6[39] | 2022[40] | |
| QuTech at TU Delft | Spin-2 | Semiconductor spin qubits | 99 (average gate) 85 (readout)[41] |
2 | 2020 | ||
| QuTech at TU Delft | - | Semiconductor spin qubits | 6[42] | September 2022 | |||
| QuTech at TU Delft | Starmon-5 | Superconducting | X configuration | 97 (readout)[43] | 5 | 2020 | |
| Quantinuum | H2[44] | Trapped ion | Racetrack, All-to-All | 99.997 (1 qubit) 99.87 (2 qubit) |
56[45] (earlier 32) | May 9, 2023 | 8,388,608[46] |
| Quantinuum | H1-1[47] | Trapped ion | 15×15 (Circuit Size) | 99.996 (1 qubit) 99.914 (2 qubit) |
20 | 2022 | 1,048,576[48] |
| Quantinuum | H1-2 [47] | Trapped ion | All-to-All[24] | 99.996 (1 qubit) 99.7 (2 qubit) |
12 | 2022 | 4096[49] |
| Quantware | Soprano[50] | Superconducting | 99.9 (single-qubit gates) | 5 | July 2021 | ||
| Quantware | Contralto[51] | Superconducting | 99.9 (single-qubit gates) | 25 | March 7, 2022[52] | ||
| Quantware | Tenor[53] | Superconducting | 64 | February 23, 2023 | |||
| Rigetti | Agave | Superconducting | N/A | 96 (Single-qubit gates)
87 (Two-qubit gates) |
8 | June 4, 2018[54] | |
| Rigetti | Acorn | Superconducting transmon | N/A | 98.63 (Single-qubit gates)
87.5 (Two-qubit gates) |
19[55] | December 17, 2017 | |
| Rigetti | Aspen-1 | Superconducting | N/A | 93.23 (Single-qubit gates)
90.84 (Two-qubit gates) |
16 | November 30, 2018[54] | |
| Rigetti | Aspen-4 | Superconducting | 99.88 (Single-qubit gates)
94.42 (Two-qubit gates) |
13 | March 10, 2019 | ||
| Rigetti | Aspen-7 | Superconducting | 99.23 (Single-qubit gates)
95.2 (Two-qubit gates) |
28 | November 15, 2019 | ||
| Rigetti | Aspen-8 | Superconducting | 99.22 (Single-qubit gates)
94.34 (Two-qubit gates) |
31 | May 5, 2020 | ||
| Rigetti | Aspen-9 | Superconducting | 99.39 (Single-qubit gates)
94.28 (Two-qubit gates) |
32 | February 6, 2021 | ||
| Rigetti | Aspen-10 | Superconducting | 99.37 (Single-qubit gates)
94.66 (Two-qubit gates) |
32 | November 4, 2021 | ||
| Rigetti | Aspen-11 | Superconducting | Octagonal[24] | 99.8 (Single-qubit gates) 92.7 (Two-qubit gates CZ) 91.0 (Two-qubit gates XY) | 40 | December 15, 2021 | |
| Rigetti | Aspen-M-1 | Superconducting transmon | Octagonal[24] | 99.8 (Single-qubit gates) 93.7 (Two-qubit gates CZ) 94.6 (Two-qubit gates XY) | 80 | February 15, 2022 | 8[24] |
| Rigetti | Aspen-M-2 | Superconducting transmon | 99.8 (Single-qubit gates) 91.3 (Two-qubit gates CZ) 90.0 (Two-qubit gates XY) | 80 | August 1, 2022 | ||
| Rigetti | Aspen-M-3 | Superconducting transmon | N/A | 99.9 (Single-qubit gates) 94.7 (Two-qubit gates CZ) 95.1 (Two-qubit gates XY) | 80[56] | December 2, 2022 | |
| Rigetti | Ankaa-2 | Superconducting transmon | N/A | 98 (Two-qubit gates) | 84[57] | December 20, 2023 | |
| RIKEN | RIKEN[58] | Superconducting | N/A | N/A | 53 effective (64 total)[59][60] | March 27, 2023 | N/A |
| SaxonQ | Princess | Nitrogen-vacancy center | 4[61] | June 26, 2024 | |||
| SaxonQ | Princess+ | Nitrogen-vacancy center | 4[62] | June 12, 2025 | |||
| SpinQ | Triangulum | Nuclear magnetic resonance | 3[63] | September 2021 | |||
| USTC | Jiuzhang | Photonics | N/A | N/A | 76[64][65] | 2020 | |
| USTC | Zuchongzhi | Superconducting | N/A | N/A | 62[66] | 2020 | |
| USTC | Zuchongzhi 2.1 | Superconducting | lattice[67] | 99.86 (Single-qubit gates) 99.41 (Two-qubit gates) 95.48 (Readout) | 66[68] | 2021 | |
| USTC | Zuchongzhi 3.0[69] | Superconducting transmon | 15 x 7 | 99.90 (Single-qubit gates) 99.62 (Two-qubit gates) 99.18 (Readout) | 105 | December 16, 2024 | |
| Xanadu | Borealis[70] | Photonics (Continuous-variable) | N/A | N/A | 216[70] | 2022[70] | |
| Xanadu | X8 [71] | Photonics (Continuous-variable) | N/A | N/A | 8 | 2020 | |
| Xanadu | X12 | Photonics (Continuous-variable) | N/A | N/A | 12 | 2020[71] | |
| Xanadu | X24 | Photonics (Continuous-variable) | N/A | N/A | 24 | 2020[71] |
Annealing quantum processors
These QPUs are based on quantum annealing, not to be confused with digital annealing.[72]
| Manufacturer | Name/Codename
/Designation |
Architecture | Layout | Fidelity (%) | Qubits | Release date |
|---|---|---|---|---|---|---|
| D-Wave | D-Wave One (Rainier) | Superconducting | C4 = Chimera(4,4,4)[73] = 4×4 K4,4 | N/A | 128 | May 11, 2011 |
| D-Wave | D-Wave Two | Superconducting | C8 = Chimera(8,8,4)[73] = 8×8 K4,4 | N/A | 512 | 2013 |
| D-Wave | D-Wave 2X | Superconducting | C12 = Chimera(12,12,4)[73] = 12×12 K4,4 | N/A | 1152 | 2015 |
| D-Wave | D-Wave 2000Q | Superconducting | C16 = Chimera(16,16,4)[73] = 16×16 K4,4 | N/A | 2000[74] | 2017 |
| D-Wave | D-Wave Advantage | Superconducting | Pegasus P16[75] | N/A | 5000[76][74] | 2020 |
| D-Wave | D-Wave Advantage 2[77][78][79][80][81] | Superconducting[77][78] | Zephyr Z15[80][82] | N/A | 4400[81][83] | 2025[77][78][79][80][82] |
Analog quantum processors
These QPUs are based on analog Hamiltonian simulation.
| Manufacturer | Name/Codename/Designation | Architecture | Layout | Fidelity (%) | Qubits | Release date |
|---|---|---|---|---|---|---|
| QuEra | Aquila | Neutral atoms | N/A | N/A | 256[84] | November 2022 |
See also
References
- ↑ Wack, Andrew; Paik, Hanhee; Javadi-Abhari, Ali; Jurcevic, Petar; Faro, Ismael; Gambetta, Jay M.; Johnson, Blake R. (29 Oct 2021). "A practical heuristic for finding graph minors". arXiv:2110.14108 [quant-ph].
- ↑ "THE SYSTEM IS THE FIRST COMMERCIAL 19-INCH RACK-MOUNTED ROOM-TEMPERATURE QUANTUM COMPUTER". https://www.aqt.eu/pine-system-19-rack-mounted-quantum-computer/.
- ↑ Pogorelov, I.; Feldker, T.; Et, al. (2021-06-07). "Compact Ion-Trap Quantum Computing Demonstrator". PRX Quantum 2 (2). doi:10.1103/PRXQuantum.2.020343. Bibcode: 2021PRXQ....2b0343P.
- ↑ "STATE OF QUANTUM COMPUTING IN EUROPE: AQT PUSHING PERFORMANCE WITH A QUANTUM VOLUME OF 128". 8 February 2023. https://www.aqt.eu/aqt-pushing-performance-with-a-quantum-volume-of-128/.
- ↑ Barnes, Katrina; Battaglino, Peter; Et, al. (2022). "Assembly and coherent control of a register of nuclear spin qubits". Nature Communications 13 (1): 2779. doi:10.1038/s41467-022-29977-z. PMID 35589685. Bibcode: 2022NatCo..13.2779B.
- ↑ Atom Computing Previews an 1180 Qubit Neutral Atom Processor, Quantum Computing Report
- ↑ 7.0 7.1 7.2 7.3 Padavic-Callaghan, Karmela (December 9, 2023). "IBM unveils 1000-qubit computer" (in en). New Scientist: p. 13.
- ↑ 8.0 8.1 Wilkins, Alex (October 24, 2023). "Record-breaking quantum computer has more than 1000 qubits" (in en-US). https://www.newscientist.com/article/2399246-record-breaking-quantum-computer-has-more-than-1000-qubits/.
- ↑ 9.0 9.1 "China launches 504-qubit quantum chip, open to global users". https://www.chinadaily.com.cn/a/202404/26/WS662b15dfa31082fc043c431e.html.
- ↑ 10.0 10.1 10.2 Lant, Karla (2017-06-23). "Google is Closer Than Ever to a Quantum Computer Breakthrough". Futurism. https://futurism.com/google-is-closer-than-ever-to-a-quantum-computer-breakthrough/.
- ↑ Simonite, Tom (2017-04-21). "Google's New Chip Is a Stepping Stone to Quantum Computing Supremacy". MIT Technology Review. https://www.technologyreview.com/s/604242/googles-new-chip-is-a-stepping-stone-to-quantum-computing-supremacy/.
- ↑ "A Preview of Bristlecone, Google's New Quantum Processor", Research (Google), March 2018, https://research.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html.
- ↑ Greene, Tristan (2018-03-06). "Google reclaims quantum computer crown with 72 qubit processor". The Next Web. https://thenextweb.com/artificial-intelligence/2018/03/06/google-reclaims-quantum-computer-crown-with-72-qubit-processor/.
- ↑ 14.0 14.1 "IBM Builds Its Most Powerful Universal Quantum Computing Processors". IBM. 2017-05-17. https://www-03.ibm.com/press/us/en/pressrelease/52403.wss.
- ↑ 15.0 15.1 "Quantum devices & simulators" (in en-US). 2018-06-05. https://www.research.ibm.com/ibm-q/technology/devices/.
- ↑ 16.0 16.1 "IBM Announces Advances to IBM Quantum Systems & Ecosystem". 10 November 2017. https://www-03.ibm.com/press/us/en/pressrelease/53374.wss.
- ↑ 17.0 17.1 17.2 Brooks, Michael (January–February 2024). "Bring on the noise". MIT Technology Review (Cambridge, Massachusetts) 127 (1): p. 50.
- ↑ 18.0 18.1 "IBM's 'Condor' quantum computer has more than 1000 qubits" (in en-US). https://www.newscientist.com/article/2405789-ibms-condor-quantum-computer-has-more-than-1000-qubits/.
- ↑ AbuGhanem, M. (2025). "IBM quantum computers: Evolution, performance, and future directions". The Journal of Supercomputing 81 (5). doi:10.1007/s11227-025-07047-7.
- ↑ "IBM Quantum delivers on 2022 100x100 performance challenge | IBM Quantum Computing Blog" (in en). https://www.ibm.com/quantum/blog/qdc-2024.
- ↑ 21.0 21.1 21.2 21.3 21.4 21.5 "IBM Q Experience" (in en). https://quantum-computing.ibm.com/.
- ↑ 22.00 22.01 22.02 22.03 22.04 22.05 22.06 22.07 22.08 22.09 22.10 22.11 22.12 22.13 22.14 22.15 "IBM Quantum" (in en). https://quantum-computing.ibm.com/.
- ↑ 23.0 23.1 23.2 23.3 23.4 "IBM Blog" (in en-US). https://admin01.prod.blogs.cis.ibm.net/blog/.
- ↑ 24.00 24.01 24.02 24.03 24.04 24.05 24.06 24.07 24.08 24.09 24.10 24.11 24.12 24.13 24.14 24.15 24.16 24.17 24.18 24.19 24.20 24.21 24.22 24.23 24.24 24.25 24.26 24.27 Pelofske, Elijah; Bärtschi, Andreas; Eidenbenz, Stephan (2022). "Quantum Volume in Practice: What Users Can Expect from NISQ Devices". IEEE Transactions on Quantum Engineering 3: 1–19. doi:10.1109/TQE.2022.3184764. ISSN 2689-1808. Bibcode: 2022ITQE....3E4764P.
- ↑ "Intel Delivers 17-Qubit Superconducting Chip with Advanced Packaging to QuTech". Intel Newsroom. 2017-10-10. https://newsroom.intel.com/news/intel-delivers-17-qubit-superconducting-chip-advanced-packaging-qutech/.
- ↑ Novet, Jordan (2017-10-10). "Intel shows off its latest chip for quantum computing as it looks past Moore's Law". CNBC. https://www.cnbc.com/2017/10/10/intel-delivers-17-qubit-quantum-computing-chip-to-qutech.html.
- ↑ "CES 2018: Intel's 49-Qubit Chip Shoots for Quantum Supremacy". 2018-01-09. https://spectrum.ieee.org/intels-49qubit-chip-aims-for-quantum-supremacy.
- ↑ "Intel's New Chip to Advance Silicon Spin Qubit Research for Quantum Computing". 15 June 2023. https://www.intel.com/content/www/us/en/newsroom/news/quantum-computing-chip-to-advance-research.html.
- ↑ 29.0 29.1 29.2 "IonQ | Trapped Ion Quantum Computing" (in en). https://ionq.com/.
- ↑ 30.0 30.1 Egan, Laird; Debroy, Dripto M.; Noel, Crystal; Risinger, Andrew; Zhu, Daiwei; Biswas, Debopriyo; Newman, Michael; Li, Muyuan; Brown, Kenneth R.; Cetina, Marko; Monroe, Christopher (2020). "Fault-Tolerant Operation of a Quantum Error-Correction Code". arXiv:2009.11482 [quant-ph].
- ↑ "The Power of Co-Design, Hermanni Heimonen, IQM". 2022-12-08. https://www.youtube.com/watch?v=dLlUIkIsFig.
- ↑ "Finland's first 5-qubit quantum computer is now operational". 2022-12-08. https://www.vttresearch.com/en/news-and-ideas/finlands-first-5-qubit-quantum-computer-now-operational.
- ↑ "Finland launches a 20-qubit quantum computer – development towards more powerful quantum computers continues". 2023-10-09. https://meetiqm.com/resources/press-releases/finland-launches-a-20-qubit-quantum-computer/.
- ↑ "Finland Unveils Second Quantum Computer with 20 Qubits, Aims for 50-Qubit Device by 2024". 2023-10-10. https://quantumzeitgeist.com/finland-unveils-second-quantum-computer-with-20-qubits-aims-for-50-qubit-device-by-2024/.
- ↑ Pelegrí, G.; Daley, A. J.; Pritchard, J. D. (2022). "High-fidelity multiqubit Rydberg gates via two-photon adiabatic rapid passage". Quantum Science and Technology 7 (4): 045020. doi:10.1088/2058-9565/ac823a. Bibcode: 2022QS&T....7d5020P.
- ↑ "MAXWELL: NEUTRAL ATOM QUANTUM PROCESSOR". https://www.m2lasers.com/quantum-datasheet.html?file=Maxwell_Explainer.pdf.
- ↑ "Lucy". 30 November 2021. https://oxfordquantumcircuits.com/oqc-on-aws.
- ↑ "OQC Toshiko". 24 November 2023. https://oqc.tech/tech/toshiko/.
- ↑ Pont, M.; Corrielli, G.; Fyrillas, A.; et, al. (2022-11-29). "High-fidelity generation of four-photon GHZ states on-chip". arXiv:2211.15626 [quant-ph].
- ↑ "La puissance d'un ordinateur quantique testée en ligne (The power of a quantum computer tested online)". Le Monde.fr (Le Monde). 22 November 2022. https://www.lemonde.fr/sciences/article/2022/11/22/la-puissance-d-un-ordinateur-quantique-testee-en-ligne_6151063_1650684.html.
- ↑ "Spin-2". https://www.quantum-inspire.com/backends/spin-2/.
- ↑ "Six-qubit silicon quantum processor sets a record". 19 October 2022. https://physicsworld.com/a/six-qubit-silicon-quantum-processor-sets-a-record/.
- ↑ "Starmon-5". https://www.quantum-inspire.com/backends/starmon-5.
- ↑ "Quantinuum H2 Product Data Sheet". https://assets.website-files.com/62b9d45fb3f64842a96c9686/6459acc9b999bb7fb526c4bf_Quantinuum%20H2%20Product%20Data%20Sheet.pdf.
- ↑ "Quantinuum's H-Series hits 56 physical qubits that are all-to-all connected, and departs the era of classical simulation" (in en). https://www.quantinuum.com/news/quantinuums-h-series-hits-56-physical-qubits-that-are-all-to-all-connected-and-departs-the-era-of-classical-simulation.
- ↑ "Quantinuum Dominates the Quantum Landscape: New World-Record in Quantum Volume" (in en). https://www.quantinuum.com/blog/quantum-volume-milestone.
- ↑ 47.0 47.1 "Quantinuum System Model H1 Product Data Sheet". https://assets.website-files.com/62b9d45fb3f64842a96c9686/648c742dd3e744dfeeb7cd06_Quantinuum%20H1%20Product%20Data%20Sheet%20v5.4%2015Jun23.pdf.
- ↑ "Quantinuum extends its significant lead in quantum computing, achieving historic milestones for hardware fidelity and Quantum Volume" (in en). https://www.quantinuum.com/news/quantinuum-extends-its-significant-lead-in-quantum-computing-achieving-historic-milestones-for-hardware-fidelity-and-quantum-volume.
- ↑ "Quantinuum Announces Quantum Volume 4096 Achievement". https://www.quantinuum.com/news/quantum-volume-reaches-5-digits-for-the-first-time-5-perspectives-on-what-it-means-for-quantum-computing.
- ↑ "Soprano specs". https://www.quantware.eu/product/soprano.
- ↑ "Contralto specs". https://www.quantware.eu/product/contralto.
- ↑ "QUANTWARE RELEASES 25-QUBIT CONTRALTO QPU". https://www.quantware.eu/press/quantware-releases-25-qubit-contralto-qpu.
- ↑ "Tenor specs". https://www.quantware.eu/product/tenor.
- ↑ 54.0 54.1 "QPU". https://rigetti.com/qpu.
- ↑ "Unsupervised Machine Learning on Rigetti 19Q with Forest 1.2". 2017-12-18. https://medium.com/rigetti/unsupervised-machine-learning-on-rigetti-19q-with-forest-1-2-39021339699.
- ↑ "Aspen-M-3 Quantum Processor". https://qcs.rigetti.com/qpus.
- ↑ Rigetti & Company LLC (2024-01-04). "Rigetti Announces Public Availability of Ankaa-2 System with a 2.5x Performance Improvement Compared to Previous QPUs". GlobeNewswire News Room (Press release). Retrieved 2024-01-23.
- ↑ "Japan's first homemade quantum computer goes online" (in en). https://www.riken.jp/en/news_pubs/news/2023/20230921_3/index.html.
- ↑ "Japanese joint research group launches quantum computing cloud service" (in en). https://www.fujitsu.com/global/about/resources/news/press-releases/2023/0324-01.html.
- ↑ "RIKEN and Fujitsu develop 64-qubit quantum computer" (in en). https://www.riken.jp/en/news_pubs/news/2023/20231005_2/index.html.
- ↑ "All tests passed: DLR QCI accepts 4-qubit demonstrator SQ-RT with Princess QPU from SaxonQ". https://qci.dlr.de/en/all-tests-passed-dlr-qci-accepts-4-qubit-demonstrator-sq-rt-with-princess-qpu-from-saxonq/.
- ↑ "Fraunhofer IWU nimmt Sachsens ersten mobilen Quantencomputer in Betrieb". https://www.iwu.fraunhofer.de/de/presse-und-medien/presseinformationen/2025-Fraunhofer-IWU-Dresden-nimmt-Sachsens-ersten-mobilen-Quantencomputer-in-Betrieb.html.
- ↑ "Triangulum3 qubits desktop NMR quantum computer". https://www.spinquanta.com/products-solutions/Triangulum.
- ↑ Ball, Philip (2020-12-03). "Physicists in China challenge Google's 'quantum advantage'" (in en). Nature 588 (7838): 380. doi:10.1038/d41586-020-03434-7. PMID 33273711. Bibcode: 2020Natur.588..380B.
- ↑ Letzter, Rafi – Staff Writer 07 (7 December 2020). "China claims fastest quantum computer in the world" (in en). https://www.livescience.com/china-quantum-supremacy.html.
- ↑ Ball, Philip (2020-12-03). "Strong Quantum Computational Advantage Using a Superconducting Quantum Processor". Physical Review Letters 127 (18). doi:10.1103/PhysRevLett.127.180501. PMID 34767433. Bibcode: 2021PhRvL.127r0501W.
- ↑ Zhu, Qingling et al. (2021). "Quantum Computational Advantage via 60-Qubit 24-Cycle Random Circuit Sampling". Science Bulletin 67 (3): 240–245. doi:10.1016/j.scib.2021.10.017. PMID 36546072.
- ↑ Wu, Yulin; Bao, Wan-Su; Cao, Sirui; Chen, Fusheng; Chen, Ming-Cheng; Chen, Xiawei; Chung, Tung-Hsun; Deng, Hui et al. (2021-10-25). "Strong Quantum Computational Advantage Using a Superconducting Quantum Processor" (in en). Physical Review Letters 127 (18). doi:10.1103/PhysRevLett.127.180501. ISSN 0031-9007. PMID 34767433. Bibcode: 2021PhRvL.127r0501W. https://link.aps.org/doi/10.1103/PhysRevLett.127.180501.
- ↑ Gao, Dongxin; Fan, Daojin; Zha, Chen; Bei, Jiahao; Cai, Guoqing; Cai, Jianbing; Cao, Sirui; Zeng, Xiangdong et al. (2025). "Establishing a New Benchmark in Quantum Computational Advantage with 105-qubit Zuchongzhi 3.0 Processor". Physical Review Letters 134 (9). doi:10.1103/PhysRevLett.134.090601. PMID 40131086. Bibcode: 2025PhRvL.134i0601G.
- ↑ 70.0 70.1 70.2 Madsen, Lars S.; Laudenbach, Fabian; Askarani, Mohsen Falamarzi; Rortais, Fabien; Vincent, Trevor; Bulmer, Jacob F. F.; Miatto, Filippo M.; Neuhaus, Leonhard et al. (June 2022). "Quantum computational advantage with a programmable photonic processor" (in en). Nature 606 (7912): 75–81. doi:10.1038/s41586-022-04725-x. ISSN 1476-4687. PMID 35650354. Bibcode: 2022Natur.606...75M.
- ↑ 71.0 71.1 71.2 "A new kind of quantum". https://spie.org/news/photonics-focus/novdec-2020/a-new-kind-of-quantum.
- ↑ "Digital Annealer – Quantum Computing Technology". https://www.fujitsu.com/global/services/business-services/digital-annealer/.
- ↑ 73.0 73.1 73.2 73.3 Cai, Jun; Macready, Bill; Roy, Aidan (10 Jun 2014). "A practical heuristic for finding graph minors". arXiv:1406.2741 [quant-ph].
- ↑ 74.0 74.1 "The Advantage™ Quantum Computer | D-Wave" (in en-US). https://dwavequantum.com/solutions-and-products/systems/.
- ↑ Boothby, Kelly; Bunyk, Paul; Raymond, Jack; Roy, Aidan (29 Feb 2020). "Next-Generation Topology of D-Wave Quantum Processors". arXiv:2003.00133 [quant-ph].
- ↑ "Product Overview | D-Wave" (in en-US). https://dwavequantum.com/solutions-and-products/product-overview/.
- ↑ 77.0 77.1 77.2 "D-Wave Announces 1,200+ Qubit Advantage2™ Prototype in New, Lower-Noise Fabrication Stack, Demonstrating 20x Faster Time-to-Solution on Important Class of Hard Optimization Problems". https://www.dwavesys.com/company/newsroom/press-release/d-wave-announces-1-200-qubit-advantage2-prototype-in-new-lower-noise-fabrication-stack-demonstrating-20x-faster-time-to-solution-on-important-class-of-hard-optimization-problems/.
- ↑ 78.0 78.1 78.2 "D-Wave Announces Availability of 1,200+ Qubit Advantage2™ Prototype in the Leap™ Quantum Cloud Service, Making its Most Performant System Available to Customers Today". https://www.dwavesys.com/company/newsroom/press-release/d-wave-announces-availability-of-1-200-qubit-advantage2-prototype/.
- ↑ 79.0 79.1 "D-Wave Clarity Roadmap: 2023-2024". November 18, 2024. https://www.dwavesys.com/media/xvjpraig/clarity-roadmap_digital_v2.pdf. "Advantage 2™ quantum system will incorporate a new qubit design that enables 20-way connectivity in a new topology. The Advantage 2 QPU will contain 7000+ qubits and make use of the latest improvements in quantum coherence in a multi-layer fabrication stack, further harnessing the quantum mechanical power of the system for finding better solutions, faster."
- ↑ 80.0 80.1 80.2 McGeoch, Catherine; Farre, Pau; Boothby, Kelly (June 9, 2022). "The D-wave Advantage2 Prototype: Technical Report". https://www.dwavesys.com/media/eixhdtpa/14-1063a-a_the_d-wave_advantage2_prototype-4.pdf.
- ↑ 81.0 81.1 "D-Wave Announces General Availability of Advantage2 Quantum Computer, Its Most Advanced and Performant System" (in en-US). https://www.dwavequantum.com/company/newsroom/press-release/d-wave-announces-general-availability-of-advantage2-quantum-computer-its-most-advanced-and-performant-system/.
- ↑ 82.0 82.1 "Ahead of the Game: D-Wave Delivers Prototype of Next-Generation Advantage2 Annealing Quantum Computer". https://www.dwavesys.com/company/newsroom/press-release/ahead-of-the-game-d-wave-delivers-prototype-of-next-generation-advantage2-annealing-quantum-computer/.
- ↑ Sun, Leo (2025). "Where Will D-Wave Quantum Stock Be in 3 Years?". The Motley Fool. What will happen to D-wave over the next three years?. https://www.msn.com/en-us/money/topstocks/where-will-d-wave-quantum-stock-be-in-3-years/ar-AA1JnDTz?ocid=winp2fptaskbar&cvid=474d99dbcd10456bd883ce14207d1b66&ei=57.
- ↑ Lee, Jane (2 November 2022). "Boston-based quantum computer QuEra joins Amazon's cloud for public access". Reuters.
