Timeline of quantum computing
From HandWiki
This article or section may contain misleading parts.July 2016) ( |
This is a timeline of quantum computing.
1960s
- 1960
- Stephen Wiesner invents conjugate coding.[1]
1970s
- 1970
- James Park articulates the no-cloning theorem [2]
- 1973
- Alexander Holevo publishes a paper showing that n qubits can carry more than n classical bits of information, but at most n classical bits are accessible (a result known as "Holevo's theorem" or "Holevo's bound").
- Charles H. Bennett shows that computation can be done reversibly.[3]
- 1975
- R. P. Poplavskii publishes "Thermodynamical models of information processing" (in Russian)[4] which showed the computational infeasibility of simulating quantum systems on classical computers, due to the superposition principle.
- 1976
- Polish mathematical physicist Roman Stanisław Ingarden publishes a seminal paper entitled "Quantum Information Theory" in Reports on Mathematical Physics, vol. 10, 43–72, 1976. (The paper was submitted in 1975.) It is one of the first attempts at creating a quantum information theory, showing that Shannon information theory cannot directly be generalized to the quantum case, but rather that it is possible to construct a quantum information theory, which is a generalization of Shannon's theory, within the formalism of a generalized quantum mechanics of open systems and a generalized concept of observables (the so-called semi-observables).
1980s
- 1980
- Paul Benioff describes the first quantum mechanical model of a computer. In this work, Benioff showed that a computer could operate under the laws of quantum mechanics by describing a Schrödinger equation description of Turing machines, laying a foundation for further work in quantum computing. The paper [5] was submitted in June 1979 and published in April 1980.
- Yuri Manin briefly motivates the idea of quantum computing[6]
- Tommaso Toffoli introduces the reversible Toffoli gate[7], which, together with the NOT and XOR gates provides a universal set for reversible classical computation.
- 1980
- At the First Conference on the Physics of Computation, held at MIT in May, Paul Benioff and Richard Feynman give talks on quantum computing. Benioff's built on his earlier 1980 work showing that a computer can operate under the laws of quantum mechanics. The talk was titled “Quantum mechanical Hamiltonian models of discrete processes that erase their own histories: application to Turing machines”.[8] In Feynman's talk, he observed that it appeared to be impossible to efficiently simulate an evolution of a quantum system on a classical computer, and he proposed a basic model for a quantum computer.[9]
- 1982
- Paul Benioff further develops his original model of a quantum mechanical Turing machine.[10]
- William Wootters and Wojciech Zurek,[11] and independently Dennis Dieks[12] rediscover the no-cloning theorem.
- 1984
- Charles Bennett and Gilles Brassard employ Wiesner's conjugate coding for distribution of cryptographic keys.[13]
- 1985
- David Deutsch, at the University of Oxford, describes the first universal quantum computer. Just as a Universal Turing machine can simulate any other Turing machine efficiently (Church-Turing thesis), so the universal quantum computer is able to simulate any other quantum computer with at most a polynomial slowdown.
- 1988
- Yoshihisa Yamamoto (scientist) and K. Igeta propose the first physical realization of a quantum computer, including Feynman's CNOT gate.[14] Their approach uses atoms and photons and is the progenitor of modern quantum computing and networking protocols using photons to transmit qubits and atoms to perform two-qubit operations.
- Gerard J. Milburn proposes a quantum-optical realization of a Fredkin gate.[15]
- 1989
- Bikas K. Chakrabarti & collaborators from Saha Institute of Nuclear Physics, Kolkata, propose the idea that quantum fluctuations could help explore rough energy landscapes by escaping from local minima of glassy systems having tall but thin barriers by tunneling (instead of climbing over using thermal excitations), suggesting the effectiveness of quantum annealing over classical simulated annealing.[16][17]
1990s
- 1991
- Artur Ekert at the University of Oxford, expands on the original proposal by David Deutsch [18], for entanglement-based secure communication.[19]
- 1992
- David Deutsch and Richard Jozsa propose a computational problem that can be solved efficiently with the determinist Deutsch–Jozsa algorithm on a quantum computer, but for which no deterministic classical algorithm is possible. This was perhaps the earliest result in the computational complexity of quantum computers, proving that they were capable of performing some well-defined computational task more efficiently than any classical computer.
- 1993
- Dan Simon, at Université de Montréal, invents an oracle problem for which a quantum computer would be exponentially faster than a conventional computer. This algorithm introduces the main ideas which were then developed in Peter Shor's factorization algorithm.
- 1994
- Peter Shor, at AT&T's Bell Labs in New Jersey, discovers an important algorithm. It allows a quantum computer to factor large integers quickly. It solves both the factoring problem and the discrete log problem. Shor's algorithm can theoretically break many of the cryptosystems in use today. Its invention sparked a tremendous interest in quantum computers.
- First United States Government workshop on quantum computing is organized by NIST in Gaithersburg, Maryland, in autumn.
- Isaac Chuang and Yoshihisa Yamamoto (scientist) propose a quantum-optical realization of a quantum computer to implement Deutsch's algorithm.[20] Their work introduces dual-rail encoding for photonic qubits.
- In December, Ignacio Cirac, at University of Castilla-La Mancha at Ciudad Real, and Peter Zoller at the University of Innsbruck propose an experimental realization of the controlled-NOT gate with cold trapped ions.
- 1995
- The first United States Department of Defense workshop on quantum computing and quantum cryptography is organized by United States Army physicists Charles M. Bowden, Jonathan P. Dowling, and Henry O. Everitt; it takes place in February at the University of Arizona in Tucson.
- Peter Shor proposes the first schemes for quantum error correction.[21]
- Christopher Monroe and David Wineland at NIST (Boulder, Colorado) experimentally realize the first quantum logic gate – the controlled-NOT gate – with trapped ions, following the Cirac-Zoller proposal.[22]
- 1996
- Lov Grover, at Bell Labs, invents the quantum database search algorithm. The quadratic speedup is not as dramatic as the speedup for factoring, discrete logs, or physics simulations. However, the algorithm can be applied to a much wider variety of problems. Any problem that has to be solved by random, brute-force search, can take advantage of this quadratic speedup (in the number of search queries).
- The United States Government, particularly in a joint partnership of the Army Research Office (now part of the Army Research Laboratory) and the National Security Agency, issues the first public call for research proposals in quantum information processing.
- Andrew Steane designs Steane codes for error correction.[23]
- David P. DiVincenzo, from IBM, proposes a list of minimal requirements for creating a quantum computer.[24]
- 1997
- David Cory, Amr Fahmy and Timothy Havel, and at the same time Neil Gershenfeld and Isaac L. Chuang at MIT publish the first papers realizing gates for quantum computers based on bulk nuclear spin resonance, or thermal ensembles. The technology is based on a nuclear magnetic resonance (NMR) machine, which is similar to the medical magnetic resonance imaging machine.
- Alexei Kitaev describes the principles of topological quantum computation as a method for combating decoherence.[25]
- Daniel Loss and David P. DiVincenzo propose the Loss-DiVincenzo quantum computer, using as qubits the intrinsic spin-1/2 degree of freedom of individual electrons confined to quantum dots.[26]
- 1998
- First experimental demonstration of a quantum algorithm. A working 2-qubit NMR quantum computer is used to solve Deutsch's problem by Jonathan A. Jones and Michele Mosca at Oxford University and shortly after by Isaac L. Chuang at IBM's Almaden Research Center and Mark Kubinec and the University of California, Berkeley together with coworkers at Stanford University and MIT.[27]
- First working 3-qubit NMR computer.
- Bruce Kane proposes a silicon based nuclear spin quantum computer, using nuclear spins of individual phosphorus atoms in silicon as the qubits and donor electrons to mediate the coupling between qubits.[28]
- First execution of Grover's algorithm on an NMR computer.
- Hidetoshi Nishimori & colleagues from Tokyo Institute of Technology showed that quantum annealing algorithm can perform better than classical simulated annealing.
- Daniel Gottesman and Emanuel Knill independently prove that a certain subclass of quantum computations can be efficiently emulated with classical resources (Gottesman–Knill theorem).[29]
- 1999
- Samuel L. Braunstein and collaborators show that none of the bulk NMR experiments performed to date contained any entanglement, the quantum states being too strongly mixed. This is seen as evidence that NMR computers would likely not yield a benefit over classical computers. It remains an open question, however, whether entanglement is necessary for quantum computational speedup.[30]
- Gabriel Aeppli, Thomas Felix Rosenbaum and colleagues demonstrate experimentally the basic concepts of quantum annealing in a condensed matter system.
- Yasunobu Nakamura and Jaw-Shen Tsai demonstrate that a superconducting circuit can be used as a qubit.[31] This leads to a global effort to develop quantum computers using superconducting circuits, culminating in Google's demonstration of quantum supremacy using this technology in 2019.
2000s
- 2000
- Arun K. Pati and Samuel L. Braunstein proved the quantum no-deleting theorem. This is dual to the no-cloning theorem which shows that one cannot delete a copy of an unknown qubit. Together with the stronger no-cloning theorem, the no-deleting theorem has important implication, i.e., quantum information can neither be created nor be destroyed.
- First working 5-qubit NMR computer demonstrated at the Technical University of Munich.
- First execution of order finding (part of Shor's algorithm) at IBM's Almaden Research Center and Stanford University.
- First working 7-qubit NMR computer demonstrated at the Los Alamos National Laboratory.
- The standard textbook, Quantum Computation and Quantum Information, by Michael Nielsen and Isaac Chuang is published.
- 2001
- First execution of Shor's algorithm at IBM's Almaden Research Center and Stanford University. The number 15 was factored using 1018 identical molecules, each containing seven active nuclear spins.
- Noah Linden and Sandu Popescu proved that the presence of entanglement is a necessary condition for a large class of quantum protocols. This, coupled with Braunstein's result (see 1999 above), called the validity of NMR quantum computation into question.[32]
- Emanuel Knill, Raymond Laflamme, and Gerard Milburn show that optical quantum computing is possible with single photon sources, linear optical elements, and single photon detectors, launching the field of linear optical quantum computing.
- Robert Raussendorf and Hans Jürgen Briegel propose measurement-based quantum computation.[33]
- 2002
- The Quantum Information Science and Technology Roadmapping Project, involving some of the main participants in the field, laid out the Quantum computation roadmap.
- The Institute for Quantum Computing was established at the University of Waterloo in Waterloo, Ontario by Mike Lazaridis, Raymond Laflamme and Michele Mosca.[34]
- 2003
- Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer at the University of Innsbruck [35]
- Todd D. Pittman and collaborators at Johns Hopkins University, Applied Physics Laboratory and independently Jeremy L. O'Brien and collaborators at the University of Queensland, demonstrate quantum controlled-not gates using only linear optical elements.[36][37]
- First implementation of a CNOT quantum gate according to the Cirac–Zoller proposal by a group at the University of Innsbruck led by Rainer Blatt.[38]
- DARPA Quantum Network becomes fully operational on October 23, 2003.
- The Institute for Quantum Optics and Quantum Information (IQOQI) was established in Innsbruck and Vienna, Austria, by the founding directors Rainer Blatt, Hans Jürgen Briegel, Rudolf Grimm, Anton Zeilinger and Peter Zoller.
- 2004
- First working pure state NMR quantum computer (based on parahydrogen) demonstrated at Oxford University and University of York.
- Physicists at the University of Innsbruck show deterministic quantum-state teleportation between a pair of trapped calcium ions.[39]
- First five-photon entanglement demonstrated by Jian-Wei Pan's group at the University of Science and Technology of China, the minimal number of qubits required for universal quantum error correction.[40]
2005
- University of Illinois at Urbana–Champaign scientists demonstrate quantum entanglement of multiple characteristics, potentially allowing multiple qubits per particle.
- Two teams of physicists measured the capacitance of a Josephson junction for the first time. The methods could be used to measure the state of quantum bits in a quantum computer without disturbing the state.[41]
- In December, the first quantum byte, or qubyte, is announced to have been created by scientists at the Institute for Quantum Optics and Quantum Information and the University of Innsbruck in Austria.[42]
- Harvard University and Georgia Institute of Technology researchers succeeded in transferring quantum information between "quantum memories" – from atoms to photons and back again.
2006
- Materials Science Department of Oxford University, cage a qubit in a "buckyball" (a molecule of buckminsterfullerene), and demonstrated quantum "bang-bang" error correction.[43]
- Researchers from the University of Illinois at Urbana–Champaign use the Zeno Effect, repeatedly measuring the properties of a photon to gradually change it without actually allowing the photon to reach the program, to search a database without actually "running" the quantum computer.[44]
- Vlatko Vedral of the University of Leeds and colleagues at the universities of Porto and Vienna found that the photons in ordinary laser light can be quantum mechanically entangled with the vibrations of a macroscopic mirror.[45]
- Samuel L. Braunstein at the University of York along with the University of Tokyo and the Japan Science and Technology Agency gave the first experimental demonstration of quantum telecloning.[46]
- Professors at the University of Sheffield develop a means to efficiently produce and manipulate individual photons at high efficiency at room temperature.[47]
- New error checking method theorized for Josephson junction computers.[48]
- First 12 qubit quantum computer benchmarked by researchers at the Institute for Quantum Computing and the Perimeter Institute for Theoretical Physics in Waterloo, as well as MIT, Cambridge.[49]
- Two dimensional ion trap developed for quantum computing.[50]
- Seven atoms placed in stable line, a step on the way to constructing a quantum gate, at the University of Bonn.[51]
- A team at Delft University of Technology in the Netherlands created a device that can manipulate the "up" or "down" spin-states of electrons on quantum dots.[52]
- University of Arkansas develops quantum dot molecules.[53]
- Spinning new theory on particle spin brings science closer to quantum computing.[54]
- University of Copenhagen develops quantum teleportation between photons and atoms.[55]
- University of Camerino scientists develop theory of macroscopic object entanglement, which has implications for the development of quantum repeaters.[56]
- Tai-Chang Chiang, at Illinois at Urbana–Champaign, finds that quantum coherence can be maintained in mixed-material systems.[57]
- Cristophe Boehme, University of Utah, demonstrates the feasibility of reading spin-data on a silicon-phosphorus quantum computer.[58]
2007
- Subwavelength waveguide developed for light.[59]
- Single photon emitter for optical fibers developed.[60]
- Six-photon one-way quantum computer is created in lab.[61]
- New material proposed for quantum computing.[62]
- Single atom single photon server devised.[63]
- First use of Deutsch's Algorithm in a cluster state quantum computer.[64]
- University of Cambridge develops electron quantum pump.[65]
- Superior method of qubit coupling developed.[66]
- Successful demonstration of controllably coupled qubits.[67]
- Breakthrough in applying spin-based electronics to silicon.[68]
- Scientists demonstrate quantum state exchange between light and matter.[69]
- Diamond quantum register developed.[70]
- Controlled-NOT quantum gates on a pair of superconducting quantum bits realized.[71]
- Scientists contain, study hundreds of individual atoms in 3D array.[72]
- Nitrogen in buckyball molecule used in quantum computing.[73]
- Large number of electrons quantum coupled.[74]
- Spin-orbit interaction of electrons measured.[75]
- Atoms quantum manipulated in laser light.[76]
- Light pulses used to control electron spins.[77]
- Quantum effects demonstrated across tens of nanometers.[78]
- Light pulses used to accelerate quantum computing development.[79]
- Quantum RAM blueprint unveiled.[80]
- Model of quantum transistor developed.[81]
- Long distance entanglement demonstrated.[82]
- Photonic quantum computing used to factor number by two independent labs.[83]
- Quantum bus developed by two independent labs.[84]
- Superconducting quantum cable developed.[85]
- Transmission of qubits demonstrated.[86]
- Superior qubit material devised.[87]
- Single electron qubit memory.[88]
- Bose-Einstein condensate quantum memory developed.[89]
- D-Wave Systems demonstrates use of a 28-qubit quantum annealing computer.[90]
- New cryonic method reduces decoherence and increases interaction distance, and thus quantum computing speed.[91]
- Photonic quantum computer demonstrated.[92]
- Graphene quantum dot spin qubits proposed.[93]
2008
- Graphene quantum dot qubits[94]
- Quantum bit stored[95]
- 3D qubit-qutrit entanglement demonstrated[96]
- Analog quantum computing devised[97]
- Control of quantum tunneling[98]
- Entangled memory developed[99]
- Superior NOT gate developed[100]
- Qutrits developed[101]
- Quantum logic gate in optical fiber[102]
- Superior quantum Hall Effect discovered[103]
- Enduring spin states in quantum dots[104]
- Molecular magnets proposed for quantum RAM[105]
- Quasiparticles offer hope of stable quantum computer[106]
- Image storage may have better storage of qubits[107]
- Quantum entangled images[108]
- Quantum state intentionally altered in molecule[109]
- Electron position controlled in silicon circuit[110]
- Superconducting electronic circuit pumps microwave photons[111]
- Amplitude spectroscopy developed[112]
- Superior quantum computer test developed[113]
- Optical frequency comb devised[114]
- Quantum Darwinism supported[115]
- Hybrid qubit memory developed[116]
- Qubit stored for over 1 second in atomic nucleus[117]
- Faster electron spin qubit switching and reading developed[118]
- Possible non-entanglement quantum computing[119]
- D-Wave Systems claims to have produced a 128 qubit computer chip, though this claim has yet to be verified.[120]
2009
- Carbon 12 purified for longer coherence times[121]
- Lifetime of qubits extended to hundreds of milliseconds[122]
- Quantum control of photons[123]
- Quantum entanglement demonstrated over 240 micrometres[124]
- Qubit lifetime extended by factor of 1000[125]
- First electronic quantum processor created[126]
- Six-photon graph state entanglement used to simulate the fractional statistics of anyons living in artificial spin-lattice models[127]
- Single molecule optical transistor[128]
- NIST reads, writes individual qubits[129]
- NIST demonstrates multiple computing operations on qubits[130]
- First large-scale topological cluster state quantum architecture developed for atom-optics[131]
- A combination of all of the fundamental elements required to perform scalable quantum computing through the use of qubits stored in the internal states of trapped atomic ions shown[132]
- Researchers at University of Bristol demonstrate Shor's algorithm on a silicon photonic chip[133]
- Quantum Computing with an Electron Spin Ensemble[134]
- Scalable flux qubit demonstrated[135]
- Photon machine gun developed for quantum computing[136]
- Quantum algorithm developed for differential equation systems[137]
- First universal programmable quantum computer unveiled[138]
- Scientists electrically control quantum states of electrons[139]
- Google collaborates with D-Wave Systems on image search technology using quantum computing[140]
- A method for synchronizing the properties of multiple coupled CJJ rf-SQUID flux qubits with a small spread of device parameters due to fabrication variations was demonstrated[141]
- Realization of Universal Ion Trap Quantum Computation with Decoherence Free Qubits [142]
2010s
2010
- Ion trapped in optical trap[143]
- Optical quantum computer with three qubits calculated the energy spectrum of molecular hydrogen to high precision[144]
- First germanium laser brings us closer to optical computers[145]
- Single electron qubit developed[146]
- Quantum state in macroscopic object[147]
- New quantum computer cooling method developed[148]
- Racetrack ion trap developed[149]
- Evidence for a Moore-Read state in the [math]\displaystyle{ u=5/2 }[/math] quantum Hall plateau,[150] which would be suitable for topological quantum computation
- Quantum interface between a single photon and a single atom demonstrated[151]
- LED quantum entanglement demonstrated[152]
- Multiplexed design speeds up transmission of quantum information through a quantum communications channel[153]
- Two photon optical chip[154]
- Microfabricated planar ion traps[155][156]
- Qubits manipulated electrically, not magnetically[157]
2011
- Entanglement in a solid-state spin ensemble[158]
- NOON photons in superconducting quantum integrated circuit[159]
- Quantum antenna[160]
- Multimode quantum interference[161]
- Magnetic Resonance applied to quantum computing[162]
- Quantum pen[163]
- Atomic "Racing Dual"[164]
- 14 qubit register[165]
- D-Wave claims to have developed quantum annealing and introduces their product called D-Wave One. The company claims this is the first commercially available quantum computer[166]
- Repetitive error correction demonstrated in a quantum processor[167]
- Diamond quantum computer memory demonstrated[168]
- Qmodes developed[169]
- Decoherence suppressed[170]
- Simplification of controlled operations[171]
- Ions entangled using microwaves[172]
- Practical error rates achieved[173]
- Quantum computer employing Von Neumann architecture[174]
- Quantum spin Hall topological insulator[175]
- Two Diamonds Linked by Quantum Entanglement could help develop photonic processors[176]
2012
- D-Wave claims a quantum computation using 84 qubits.[177]
- Physicists create a working transistor from a single atom[178][179]
- A method for manipulating the charge of nitrogen vacancy-centres in diamond[180]
- Reported creation of a 300 qubit/particle quantum simulator.[181][182]
- Demonstration of topologically protected qubits with an eight-photon entanglement, a robust approach to practical quantum computing[183]
- 1QB Information Technologies (1QBit) founded. World's first dedicated quantum computing software company.[184]
- First design of a quantum repeater system without a need for quantum memories[185]
- Decoherence suppressed for 2 seconds at room temperature by manipulating Carbon-13 atoms with lasers.[186][187]
- Theory of Bell-based randomness expansion with reduced assumption of measurement independence.[188]
- New low overhead method for fault-tolerant quantum logic developed, called lattice surgery[189]
2013
- Coherence time of 39 minutes at room temperature (and 3 hours at cryogenic temperatures) demonstrated for an ensemble of impurity-spin qubits in isotopically purified silicon.[190]
- Extension of time for qubit maintained in superimposed state for ten times longer than what has ever been achieved before[191]
- First resource analysis of a large-scale quantum algorithm using explicit fault-tolerant, error-correction protocols was developed for factoring[192]
2014
- Documents leaked by Edward Snowden confirm the Penetrating Hard Targets project,[193] by which the National Security Agency seeks to develop a quantum computing capability for cryptography purposes.[194][195][196]
- Researchers in Japan and Austria publish the first large-scale quantum computing architecture for a diamond based system[197]
- Scientists at the University of Innsbruck do quantum computations on a topologically encoded qubit which is encoded in entangled states distributed over seven trapped-ion qubits[198]
- Scientists transfer data by quantum teleportation over a distance of 10 feet (3.048 meters) with zero percent error rate, a vital step towards a quantum Internet.[199][200]
- Nike Dattani & Nathan Bryans break the record for largest number factored on a quantum device: 56153 (previous record was 143).[201][202]
2015
- Optically addressable nuclear spins in a solid with a six-hour coherence time.[203]
- Quantum information encoded by simple electrical pulses.[204]
- Quantum error detection code using a square lattice of four superconducting qubits.[205]
- D-Wave Systems Inc. announced on June 22 that it had broken the 1000 qubit barrier.[206]
- Two qubit silicon logic gate successfully developed.[207]
- Quantum computer, along with quantum superposition and entanglement, emulated by a classical analog computer, with the result that the fully classical system behaves like a true quantum computer.[208]
2016
- Physicists led by Rainer Blatt joined forces with scientists at MIT, led by Isaac Chuang, to efficiently implement Shor's algorithm in an ion-trap based quantum computer.[209]
- IBM releases the Quantum Experience, an online interface to their superconducting systems. The system is immediately used to publish new protocols in quantum information processing[210][211]
- Google, using an array of 9 superconducting qubits developed by the Martinis group and UCSB, simulates a hydrogen molecule.[212]
- Scientists in Japan and Australia invent the quantum version of a Sneakernet communications system[213]
2017
- D-Wave Systems Inc. announces general commercial availability of the D-Wave 2000Q quantum annealer, which it claims has 2000 qubits.[214]
- Blueprint for a microwave trapped ion quantum computer published.[215]
- IBM unveils 17-qubit quantum computer—and a better way of benchmarking it.[216]
- Scientists build a microchip that generates two entangled qudits each with 10 states, for 100 dimensions total.[217]
- Microsoft reveals Q Sharp, a quantum programming language integrated with Visual Studio. Programs can be executed locally on a 32-qubit simulator, or a 40-qubit simulator on Azure.[218]
- Intel confirms development of a 17-qubit superconducting test chip.[219]
- IBM reveals a working 50-qubit quantum computer that can maintain its quantum state for 90 microseconds.[220]
2018
- MIT scientists report the discovery of a new triple-photon form of light.[221][222]
- Oxford researchers successfully used a trapped-ion technique where they place two charged atoms in a state of quantum entanglement, to speed up logic gates by a factor of 20 to 60 times as compared with the previous best gates, translated to 1.6 microseconds long, with 99.8% precision.[223]
- QuTech successfully tests silicon-based 2-spin-qubit processor.[224]
- Google announces the creation of a 72-qubit quantum chip, called "Bristlecone",[225] achieving a new record.
- Intel begins testing silicon-based spin-qubit processor, manufactured in the company's D1D Fab in Oregon.[226]
- Intel confirms development of a 49-qubit superconducting test chip, called "Tangle Lake".[227]
- Japanese researchers demonstrate universal holonomic quantum gates.[228]
- Integrated photonic platform for quantum information with continuous variables.[229]
- On December 17, 2018, the company IonQ introduced the first commercial trapped-ion quantum computer, with a program length of over 60 two-qubit gates, 11 fully connected qubits, 55 addressable pairs, one-qubit gate error <0.03% and two-qubit gate error <1.0% [230] [231]
- On December 21, 2018, the National Quantum Initiative Act was signed into law by President Donald Trump, establishing the goals and priorities for a 10-year plan to accelerate the development of quantum information science and technology applications in the United States .[232][233][234]
2019
- IBM unveils its first commercial quantum computer, the IBM Q System One,[235] designed by UK-based Map Project Office and Universal Design Studio and manufactured by Goppion.[236]
- Nike Dattani and co-workers de-code D-Wave's Pegasus architecture and make its description open to the public.[237][238]
- Austrian physicists demonstrate self-verifying, hybrid, variational quantum simulation of lattice models in condensed matter and high-energy physics using a feedback loop between a classical computer and a quantum co-processor. [239]
- A paper by Google's quantum computer research team was briefly available in late September 2019, claiming the project has reached quantum supremacy.[240][241][242]
- IBM reveals its biggest yet quantum computer, consisting of 53 qubits. The system goes online in October 2019.[243]
2020
This section needs additional citations for verification. (Learn how and when to remove this template message) |
- UNSW Sydney develops a way of producing 'hot qubits' – quantum devices that operate at 1.5 Kelvin.
- Griffith university, UNSW and UTS in partnership with 7 USA universities develop Noise cancelling for quantum bits via machine learning, taking quantum noise in a quantum chip down to 0%.
- UNSW performs electric nuclear resonance to control single atoms in electronic devices.
- Bob Coecke (Oxford university) explains why NLP is quantum-native. A graphical representation of how the meanings of the words are combined to build the meaning of a sentence as a whole, was created.
- Tokyo university and Australian scientists create and successfully test a solution to the quantum wiring problem, creating a 2d structure for qubits. Such structure can be built using existing integrated circuit technology and has a considerably lower cross-talk.
- Content copied from 2020 in science
- 16 January – Quantum physicists report the first direct splitting of one photon into three using spontaneous parametric down-conversion and which may have applications in quantum technology.[244][245]
- 11 February – Quantum engineers report that they have created artificial atoms in silicon quantum dots for quantum computing and that artificial atoms with a higher number of electrons can be more stable qubits than previously thought possible. Enabling silicon-based quantum computers may make it possible to reuse of manufacturing technology of "classical" modern-day computer chips among other advantages.[246][247]
- 14 February – Quantum physicists develop a novel single-photon source which may allow to bridge semiconductor-based quantum-computers that use photons by converting the state of an electron spin to the polarisation of a photon. They show that they can generate a single photon in a controlled way without the need for randomly formed quantum dots or structural defects in a diamonds.[248][249]
- 25 February – Scientists visualize a quantum measurement: by taking snapshots of ion states at different times of measurement via coupling of a trapped ion qutrit to the photon environment they show that the changes of the degrees of superpositions and therefore of probabilities of states after measurement happens gradually under the measurement influence.[250][251]
- 2 March – Scientists report to have achieved repeated quantum nondemolition measurements of an electron's spin in a silicon quantum dot: measurements that don't change the electron's spin in the process.[252][253]
- 11 March – Quantum engineers report to have managed to control the nucleus of a single atom using only electric fields. This was first suggested to be possible in 1961 and may be used for silicon quantum computers that use single-atom spins without needing oscillating magnetic fields which may be especially useful for nanodevices, for precise sensors of electric and magnetic fields as well as for fundamental inquiries into quantum nature.[254][255]
- 19 March – An US Army laboratory announces that its scientists analysed a Rydberg sensor's sensitivity to oscillating electric fields over an enormous range of frequencies—from 0 to 10^12 Hertz (the spectrum to 0.3mm wavelength). The Rydberg sensor may potentially be used detect communications signals as it could reliably detect signals over the entire spectrum and compare favourably with other established electric field sensor technologies, such as electro-optic crystals and dipole antenna-coupled passive electronics.[256][257]
- 23 March – Researchers report that they have found a way to correct for signal loss in a prototype quantum node that can catch, store and entangle bits of quantum information. Their concepts could be used for key components of quantum repeaters in quantum networks and extend their longest possible range.[258][259]
- 15 April – Researchers demonstrate a proof-of-concept silicon quantum processor unit cell which works at 1.5 Kelvin – many times warmer than common quantum processors that are being developed. It may enable integrating classical control electronics with the qubit array and reduce costs substantially. The cooling requirements necessary for quantum computing have been called one of the toughest roadblocks in the field.[260][261][262][263][264][265]
- 16 April – Scientists prove the existence of the Rashba effect in bulk perovskites. Previously researchers have hypothesized that the materials' extraordinary electronic, magnetic and optical properties – which make it a commonly used material for solar cells and quantum electronics – are related to this effect which to date hasn't been proven to be present in the material.[266][267]
- 8 May – Researchers report to have developed a proof-of-concept of a quantum radar using quantum entanglement and microwaves which may potentially be useful for the development of improved radar systems, security scanners and medical imaging systems.[268][269][270]
- 12 May – Researchers report to have developed a method to selectively manipulate a layered manganite's correlated electrons' spin state while leaving its orbital state intact using femtosecond X-ray laser pulses. This may indicate that orbitronics – using variations in the orientations of orbitals – may be used as the basic unit of information in novel IT devices.[271][272]
- 19 May – Researchers report to have developed the first integrated silicon on-chip low-noise single-photon source compatible with large-scale quantum photonics.[273][274][275][276]
- 11 June – Scientists report the generation of rubidium Bose–Einstein condensates (BECs) in the Cold Atom Laboratory aboard the International Space Station under microgravity which could enable improved research of BECs and quantum mechanics, whose physics are scaled to macroscopic scales in BECs, support long-term investigations of few-body physics, support the development of techniques for atom-wave interferometry and atom lasers and has verified the successful operation of the laboratory.[277][278][279]
- 15 June – Scientists report the development of the smallest synthetic molecular motor, consisting of 12 atoms and a rotor of 4 atoms, shown to be capable of being powered by an electric current using an electron scanning microscope and moving even with very low amounts of energy due to quantum tunneling.[280][281][282]
- 17 June – Quantum scientists report the development of a system that entangles two photon quantum communication nodes through a microwave cable that can send information inbetween without the photons ever being sent through, or occupying, the cable. On 12 June it was reported that they also, for the first time, entangled two phonons as well as erase information from their measurement after the measurement has been completed using delayed-choice quantum erasure.[283][284][285][286]
See also
- List of companies involved in quantum computing or communication
- List of quantum processors
- Category:Quantum information scientists
References
- ↑ Bassard, Gilles (October 17, 2005). Brief History of Quantum Cryptography: A Personal Perspective.
- ↑ Park, James (1970). "The concept of transition in quantum mechanics". Foundations of Physics 1 (1): 23–33. doi:10.1007/BF00708652. Bibcode: 1970FoPh....1...23P.
- ↑ Bennett, C. (November 1973). "Logical Reversibility of Computation". IBM Journal of Research and Development 17 (6): 525–532. doi:10.1147/rd.176.0525. https://www.math.ucsd.edu/~sbuss/CourseWeb/Math268_2013W/Bennett_Reversibiity.pdf.
- ↑ Poplavskii, R.P (1975). "Thermodynamical models of information processing" (in Russian). Uspekhi Fizicheskikh Nauk 115 (3): 465–501. doi:10.3367/UFNr.0115.197503d.0465.
- ↑ Benioff, Paul (1980). "The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines". Journal of Statistical Physics 22 (5): 563–591. doi:10.1007/bf01011339. Bibcode: 1980JSP....22..563B.
- ↑ Manin, Yu I (1980) (in Russian). Vychislimoe i nevychislimoe (Computable and Noncomputable). Sov. Radio. pp. 13–15. http://publ.lib.ru/ARCHIVES/M/MANIN_Yuriy_Ivanovich/Manin_Yu.I._Vychislimoe_i_nevychislimoe.(1980).%5Bdjv%5D.zip. Retrieved March 4, 2013.
- ↑ Technical Report MIT/LCS/TM-151 (1980) and an adapted and condensed version: Toffoli, Tommaso (1980). "Reversible computing". in J. W. de Bakker and J. van Leeuwen. Automata, Languages and Programming, Seventh Colloquium. Noordwijkerhout, Netherlands: Springer Verlag. pp. 632–644. doi:10.1007/3-540-10003-2_104. ISBN 3-540-10003-2. Archived from the original on April 15, 2010. https://web.archive.org/web/20100415041123/http://pm1.bu.edu/~tt/publ/revcomp-rep.pdf.
- ↑ Benioff, Paul A. (April 1, 1982). "Quantum mechanical Hamiltonian models of discrete processes that erase their own histories: Application to Turing machines" (in en). International Journal of Theoretical Physics 21 (3): 177–201. doi:10.1007/BF01857725. ISSN 1572-9575. Bibcode: 1982IJTP...21..177B.
- ↑ Simulating physics with computers https://web.archive.org/web/20190830190404/https://people.eecs.berkeley.edu/~christos/classics/Feynman.pdf
- ↑ Benioff, P. (1982). "Quantum mechanical hamiltonian models of turing machines". Journal of Statistical Physics 29 (3): 515–546. doi:10.1007/BF01342185. Bibcode: 1982JSP....29..515B.
- ↑ Wootters, W. K.; Zurek, W. H. (1982). "A single quantum cannot be cloned". Nature 299 (5886): 802–803. doi:10.1038/299802a0. Bibcode: 1982Natur.299..802W.
- ↑ Dieks, D. (1982). "Communication by EPR devices". Physics Letters A 92 (6): 271–272. doi:10.1016/0375-9601(82)90084-6. Bibcode: 1982PhLA...92..271D.
- ↑ Bennett, Charles H.; Brassard, Gilles (1984). "Quantum cryptography: Public key distribution and coin tossing" (in en). Theoretical Computer Science. Theoretical Aspects of Quantum Cryptography – celebrating 30 years of BB84 560: 7–11. doi:10.1016/j.tcs.2014.05.025. ISSN 0304-3975.
- ↑ K. Igeta and Y. Yamamoto. "Quantum mechanical computers with single atom and photon fields." International Quantum Electronics Conference (1988) https://www.osapublishing.org/abstract.cfm?uri=IQEC-1988-TuI4
- ↑ G. J. Milburn. "Quantum optical Fredkin gate." Physical Review Letters 62, 2124 (1989) https://doi.org/10.1103/PhysRevLett.62.2124
- ↑ Ray, P.; Chakrabarti, B. K.; Chakrabarti, Arunava (1989). "Sherrington-Kirkpatrick model in a transverse field: Absence of replica symmetry breaking due to quantum fluctuations". Physical Review B 39 (16): 11828–11832. doi:10.1103/PhysRevB.39.11828. PMID 9948016. Bibcode: 1989PhRvB..3911828R.
- ↑ Das, A.; Chakrabarti, B. K. (2008). "Quantum Annealing and Analog Quantum Computation". Rev. Mod. Phys. 80 (3): 1061–1081. doi:10.1103/RevModPhys.80.1061. Bibcode: 2008RvMP...80.1061D.
- ↑ Deutsch, David (1985). "Quantum theory, the Church-Turing principle and the universal quantum computer". Proceedings of the Royal Society A 400 (1818): 97. doi:10.1098/rspa.1985.0070. Bibcode: 1985RSPSA.400...97D.
- ↑ Ekert, A. K (1991). "Quantum cryptography based on Bell's theorem". Phys. Rev. Lett. 67 (6): 661–663. doi:10.1103/PhysRevLett.67.661. PMID 10044956. Bibcode: 1991PhRvL..67..661E.
- ↑ Isaac L. Chuang and Yoshihisa Yamamoto. "Simple quantum computer." Physical Review A 52, 3489 (1995)
- ↑ W.Shor, Peter (1995). "Scheme for reducing decoherence in quantum computer memory". Physical Review A 52 (4): R2493–R2496. doi:10.1103/PhysRevA.52.R2493. PMID 9912632. Bibcode: 1995PhRvA..52.2493S.
- ↑ Monroe, C; Meekhof, D. M; King, B. E; Itano, W. M; Wineland, D. J (December 18, 1995). "Demonstration of a Fundamental Quantum Logic Gate". Physical Review Letters 75 (25): 4714–4717. doi:10.1103/PhysRevLett.75.4714. PMID 10059979. Bibcode: 1995PhRvL..75.4714M. http://tf.nist.gov/general/pdf/140.pdf. Retrieved December 29, 2007.
- ↑ Steane, Andrew (1996). "Multiple-Particle Interference and Quantum Error Correction". Proc. Roy. Soc. Lond. A 452 (1954): 2551–2577. doi:10.1098/rspa.1996.0136. Bibcode: 1996RSPSA.452.2551S. http://www.citebase.org/cgi-bin/citations?id=oai:arXiv.org:quant-ph/9601029.
- ↑ DiVincenzo, David P (1996). "Topics in Quantum Computers". Bibcode: 1996cond.mat.12126D.
- ↑ A. Yu. Kitaev (2003). "Fault-tolerant quantum computation by anyons". Annals of Physics 303 (1): 2–30. doi:10.1016/S0003-4916(02)00018-0. Bibcode: 2003AnPhy.303....2K.
- ↑ D. Loss and D. P. DiVincenzo, "Quantum computation with quantum dots", Phys. Rev. A 57, p120 (1998); on arXiv.org in Jan. 1997
- ↑ Chuang, Isaac L.; Gershenfeld, Neil; Kubinec, Mark (April 13, 1998). "Experimental Implementation of Fast Quantum Searching". Physical Review Letters 80 (15): 3408–3411. doi:10.1103/PhysRevLett.80.3408. Bibcode: 1998PhRvL..80.3408C. https://semanticscholar.org/paper/6c055053f4f1605fdc0bd474c7a350dcd01f627d.
- ↑ Kane, B. E. (May 14, 1998). "A silicon-based nuclear spin quantum computer". Nature 393 (6681): 133–137. doi:10.1038/30156. ISSN 0028-0836. Bibcode: 1998Natur.393..133K.
- ↑ Gottesman, Daniel (1999). "The Heisenberg Representation of Quantum Computers". Proceedings of the Xxii International Colloquium on Group Theoretical Methods in Physics. 22. Cambridge, MA: International Press. pp. 32–43. Bibcode: 1998quant.ph..7006G.
- ↑ Braunstein, S. L; Caves, C. M; Jozsa, R; Linden, N; Popescu, S; Schack, R (1999). "Separability of Very Noisy Mixed States and Implications for NMR Quantum Computing". Physical Review Letters 83 (5): 1054–1057. doi:10.1103/PhysRevLett.83.1054. Bibcode: 1999PhRvL..83.1054B.
- ↑ Y. Nakamura, Yu. A. Pashkin and J. S. Tsai. "Coherent control of macroscopic quantum states in a single-Cooper-pair box." Nature 398, 786–788 (1999) https://doi.org/10.1038/19718
- ↑ Linden, Noah; Popescu, Sandu (2001). "Good Dynamics versus Bad Kinematics: Is Entanglement Needed for Quantum Computation?". Physical Review Letters 87 (4): 047901. doi:10.1103/PhysRevLett.87.047901. PMID 11461646. Bibcode: 2001PhRvL..87d7901L.
- ↑ Raussendorf, R; Briegel, H. J (2001). "A One-Way Quantum Computer". Physical Review Letters 86 (22): 5188–91. doi:10.1103/PhysRevLett.86.5188. PMID 11384453. Bibcode: 2001PhRvL..86.5188R.
- ↑ n.d. Institute for Quantum Computing "Quick Facts". May 15, 2013. https://uwaterloo.ca/institute-for-quantum-computing/about/quick-facts. Retrieved July 26, 2016.
- ↑ Gulde, S; Riebe, M; Lancaster, G. P. T; Becher, C; Eschner, J; Häffner, H; Schmidt-Kaler, F; Chuang, I. L et al. (January 2, 2003). "Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer". Nature 421 (6918): 48–50. doi:10.1038/nature01336. PMID 12511949. Bibcode: 2003Natur.421...48G.
- ↑ Pittman, T. B.; Fitch, M. J.; Jacobs, B. C; Franson, J. D. (2003). "Experimental controlled-not logic gate for single photons in the coincidence basis". Phys. Rev. A 68 (3): 032316. doi:10.1103/physreva.68.032316. Bibcode: 2003PhRvA..68c2316P.
- ↑ O'Brien, J. L.; Pryde, G. J.; White, A. G.; Ralph, T. C.; Branning, D. (2003). "Demonstration of an all-optical quantum controlled-NOT gate". Nature 426 (6964): 264–267. doi:10.1038/nature02054. PMID 14628045. Bibcode: 2003Natur.426..264O.
- ↑ Schmidt-Kaler, F; Häffner, H; Riebe, M; Gulde, S; Lancaster, G. P. T; Deutschle, T; Becher, C; Roos, C. F et al. (March 27, 2003). "Realization of the Cirac-Zoller controlled-NOT quantum gate". Nature 422 (6930): 408–411. doi:10.1038/nature01494. PMID 12660777. Bibcode: 2003Natur.422..408S.
- ↑ Riebe, M; Häffner, H; Roos, C. F; Hänsel, W; Benhelm, J; Lancaster, G. P. T; Körber, T. W; Becher, C et al. (June 17, 2004). "Deterministic quantum teleportation with atoms". Nature 429 (6993): 734–737. doi:10.1038/nature02570. PMID 15201903. Bibcode: 2004Natur.429..734R.
- ↑ Zhao, Z; Chen, Y. A; Zhang, A. N; Yang, T; Briegel, H. J; Pan, J. W (2004). "Experimental demonstration of five-photon entanglement and open-destination teleportation". Nature 430 (6995): 54–58. doi:10.1038/nature02643. PMID 15229594. Bibcode: 2004Natur.430...54Z.
- ↑ Dumé, Belle (November 22, 2005). "Breakthrough for quantum measurement". PhysicsWeb. https://physicsworld.com/a/breakthrough-for-quantum-measurement/. Retrieved August 10, 2018.
- ↑ Häffner, H; Hänsel, W; Roos, C. F; Benhelm, J; Chek-Al-Kar, D; Chwalla, M; Körber, T; Rapol, U. D et al. (December 1, 2005). "Scalable multiparticle entanglement of trapped ions". Nature 438 (7068): 643–646. doi:10.1038/nature04279. PMID 16319886. Bibcode: 2005Natur.438..643H.
- ↑ January 4, 2006 University of Oxford "Bang-bang: a step closer to quantum supercomputers". http://www.admin.ox.ac.uk/po/news/2005-06/jan/04a.shtml. Retrieved December 29, 2007.
- ↑ Dowling, Jonathan P. (2006). "To Compute or Not to Compute?". Nature 439 (7079): 919–920. doi:10.1038/439919a. PMID 16495978. Bibcode: 2006Natur.439..919D.
- ↑ Belle Dumé (February 23, 2007). "Entanglement heats up". Physics World. http://physicsworld.com/cws/article/news/24285.
- ↑ February 16, 2006 University of York "Captain Kirk's clone and the eavesdropper" (Press release). Archived from the original on February 7, 2007. Retrieved December 29, 2007.
- ↑ March 24, 2006 Soft Machines "The best of both worlds – organic semiconductors in inorganic nanostructures". http://www.softmachines.org/wordpress/?p=215. Retrieved May 20, 2010.
- ↑ June 8, 2010 New Scientist Tom Simonite. "Error-check breakthrough in quantum computing". http://www.newscientisttech.com/article/dn9301-errorcheck-breakthrough-in-quantum-computing.html. Retrieved May 20, 2010.
- ↑ May 8, 2006 ScienceDaily "12-qubits Reached In Quantum Information Quest". https://www.sciencedaily.com/releases/2006/05/060508164700.htm. Retrieved May 20, 2010.
- ↑ July 7, 2010 New Scientist Tom Simonite. "Flat 'ion trap' holds quantum computing promise". http://www.newscientisttech.com/article/dn9502-flat-ion-trap-holds-quantum-computing-promise.html. Retrieved May 20, 2010.
- ↑ July 12, 2006 PhysOrg.com Luerweg, Frank. "Quantum Computer: Laser tweezers sort atoms". Archived from the original on December 15, 2007. https://web.archive.org/web/20071215041757/http://www.physorg.com/news71935118.html. Retrieved December 29, 2007.
- ↑ August 16, 2006 New Scientist "'Electron-spin' trick boosts quantum computing". Archived from the original on November 22, 2006. https://web.archive.org/web/20061122102719/http://www.newscientisttech.com/article.ns?id=dn9768. Retrieved December 29, 2007.
- ↑ August 16, 2006 NewswireToday Michael Berger. "Quantum Dot Molecules – One Step Further Towards Quantum Computing". http://www.newswiretoday.com/news/7723/. Retrieved December 29, 2007.
- ↑ September 7, 2006 PhysOrg.com "Spinning new theory on particle spin brings science closer to quantum computing". Archived from the original on January 17, 2008. https://web.archive.org/web/20080117223659/http://www.physorg.com/news76863086.html. Retrieved December 29, 2007.
- ↑ October 4, 2006 New Scientist Merali, Zeeya (2006). "Spooky steps to a quantum network". New Scientist 192 (2572): 12. doi:10.1016/s0262-4079(06)60639-8. http://www.newscientisttech.com/article/dn10226-spooky-steps-to-a-quantum-network.html. Retrieved December 29, 2007.
- ↑ October 24, 2006 PhysOrg.com Lisa Zyga. "Scientists present method for entangling macroscopic objects". Archived from the original on October 13, 2007. https://web.archive.org/web/20071013014512/http://physorg.com/news80896839.html. Retrieved December 29, 2007.
- ↑ November 2, 2006 University of Illinois at Urbana–Champaign James E. Kloeppel. "Quantum coherence possible in incommensurate electronic systems". http://news.illinois.edu/news/06/1102quantum.html. Retrieved August 19, 2010.
- ↑ November 19, 2006 PhysOrg.com "A Quantum (Computer) Step: Study Shows It's Feasible to Read Data Stored as Nuclear 'Spins'". Archived from the original on September 29, 2007. https://web.archive.org/web/20070929120422/http://physorg.com/news83163617.html. Retrieved December 29, 2007.
- ↑ January 8, 2007 New Scientist Jeff Hecht. "Nanoscopic 'coaxial cable' transmits light". http://www.newscientisttech.com/article/dn10911-nanoscopic-coaxial-cable-transmits-light.html. Retrieved December 30, 2007.
- ↑ February 21, 2007 The Engineer "Toshiba unveils quantum security". http://www.e4engineering.com/Articles/298360/Toshiba+unveils+quantum+security.htm. Retrieved December 30, 2007.
- ↑ Lu, Chao-Yang; Zhou, Xiao-Qi; Gühne, Otfried; Gao, Wei-Bo; Zhang, Jin; Yuan, Zhen-Sheng; Goebel, Alexander; Yang, Tao et al. (2007). "Experimental entanglement of six photons in graph states". Nature Physics 3 (2): 91–95. doi:10.1038/nphys507. Bibcode: 2007NatPh...3...91L.
- ↑ March 15, 2007 New Scientist Zeeya Merali. "The universe is a string-net liquid". https://www.newscientist.com/article.ns?id=mg19325954.200&feedId=fundamentals_rss20. Retrieved December 30, 2007.
- ↑ March 12, 2007 Max Planck Society "A Single-Photon Server with Just One Atom" (Press release). Retrieved December 30, 2007.
- ↑ April 18, 2007 PhysOrg.com Miranda Marquit. "First use of Deutsch's Algorithm in a cluster state quantum computer". Archived from the original on January 17, 2008. https://web.archive.org/web/20080117224207/http://www.physorg.com/news96107220.html. Retrieved December 30, 2007.
- ↑ April 19, 2007 Electronics Weekly Steve Bush. "Cambridge team closer to working quantum computer". http://www.electronicsweekly.com/Articles/2007/04/19/41206/Cambridge+team+closer+to+working+quantum+computer.htm. Retrieved December 30, 2007.
- ↑ May 7, 2007 Wired Cyrus Farivar (May 7, 2007). "It's the "Wiring" That's Tricky in Quantum Computing". Wired. Archived from the original on July 6, 2008. https://web.archive.org/web/20080706171401/http://www.wired.com/science/discoveries/news/2007/05/quantumcoupling. Retrieved December 30, 2007.
- ↑ May 8, 2007 Media-Newswire.com "NEC, JST, and RIKEN Successfully Demonstrate World's First Controllably Coupled Qubits" (Press release). Retrieved December 30, 2007.
- ↑ May 16, 2007 Scientific American JR Minkel. "Spintronics Breaks the Silicon Barrier". http://www.sciam.com/article.cfm?articleId=959FBD96-E7F2-99DF-341F959A7DA2A292&chanId=sa013&modsrc=most_popular. Retrieved December 30, 2007.
- ↑ May 22, 2007 PhysOrg.com Lisa Zyga. "Scientists demonstrate quantum state exchange between light and matter". Archived from the original on March 7, 2008. https://web.archive.org/web/20080307093926/http://www.physorg.com/news99050442.html. Retrieved December 30, 2007.
- ↑ June 1, 2007 Science Dutt, M. V; Childress, L; Jiang, L; Togan, E; Maze, J; Jelezko, F; Zibrov, A. S; Hemmer, P. R et al. (2007). "Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond". Science 316 (5829): 1312–6. doi:10.1126/science.1139831. PMID 17540898. Bibcode: 2007Sci...316.....D.
- ↑ June 14, 2007 Nature Plantenberg, J. H.; De Groot, P. C.; Harmans, C. J. P. M.; Mooij, J. E. (2007). "Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits". Nature 447 (7146): 836–839. doi:10.1038/nature05896. PMID 17568742. Bibcode: 2007Natur.447..836P.
- ↑ June 17, 2007 New Scientist Mason Inman. "Atom trap is a step towards a quantum computer". http://www.newscientisttech.com/article/dn12082-atom-trap-is-a-step-towards-a-quantum-computer-.html. Retrieved December 30, 2007.
- ↑ June 29, 2007 Nanowerk.com "Can nuclear qubits point the way?". http://www.nanowerk.com/news/newsid=2152.php. Retrieved December 30, 2007.
- ↑ July 27, 2007 ScienceDaily "Discovery Of 'Hidden' Quantum Order Improves Prospects For Quantum Super Computers". https://www.sciencedaily.com/releases/2007/07/070726142010.htm. Retrieved December 30, 2007.
- ↑ July 23, 2007 PhysOrg.com Miranda Marquit. "Indium arsenide may provide clues to quantum information processing". Archived from the original on September 26, 2007. https://web.archive.org/web/20070926220146/http://www.physorg.com/news104418332.html. Retrieved December 30, 2007.
- ↑ July 25, 2007 National Institute of Standards and Technology "Thousands of Atoms Swap 'Spins' with Partners in Quantum Square Dance". Archived from the original on December 18, 2007. https://web.archive.org/web/20071218224341/http://www.nist.gov/public_affairs/releases/quantum_gate.html. Retrieved December 30, 2007.
- ↑ August 15, 2007 PhysOrg.com Lisa Zyga. "Ultrafast quantum computer uses optically controlled electrons". Archived from the original on January 2, 2008. https://web.archive.org/web/20080102004025/http://www.physorg.com/news106395871.html. Retrieved December 30, 2007.
- ↑ August 15, 2007 Electronics Weekly Steve Bush. "Research points way to qubits on standard chips". http://www.electronicsweekly.com/Articles/2007/08/15/41988/research-points-way-to-qubits-on-standard-chips.htm. Retrieved December 30, 2007.
- ↑ August 17, 2007 ScienceDaily "Computing Breakthrough Could Elevate Security To Unprecedented Levels". https://www.sciencedaily.com/releases/2007/08/070816143801.htm. Retrieved December 30, 2007.
- ↑ August 21, 2007 New Scientist Stephen Battersby. "Blueprints drawn up for quantum computer RAM". https://www.newscientist.com/article/dn12516-blueprints-drawn-up-for-quantum-computer-ram.html. Retrieved December 30, 2007.
- ↑ August 26, 2007 PhysOrg.com "Photon-transistors for the supercomputers of the future". Archived from the original on January 1, 2008. https://web.archive.org/web/20080101165713/http://physorg.com/news107357370.html. Retrieved December 30, 2007.
- ↑ September 5, 2007 University of Michigan "Physicists establish "spooky" quantum communication". Archived from the original on December 28, 2007. https://web.archive.org/web/20071228220630/http://www.ns.umich.edu/htdocs/releases/story.php?id=6016. Retrieved December 30, 2007.
- ↑ September 13, 2007 huliq.com "Qubits poised to reveal our secrets". http://www.huliq.com/34160/qubits-poised-to-reveal-our-secrets. Retrieved December 30, 2007.
- ↑ September 26, 2007 New Scientist Saswato Das. "Quantum chip rides on superconducting bus". https://www.newscientist.com/article/dn12696-quantum-chip-rides-on-superconducting-bus.html. Retrieved December 30, 2007.
- ↑ September 27, 2007 ScienceDaily "Superconducting Quantum Computing Cable Created". https://www.sciencedaily.com/releases/2007/09/070926172232.htm. Retrieved December 30, 2007.
- ↑ October 11, 2007 Electronics Weekly Steve Bush. "Qubit transmission signals quantum computing advance". Archived from the original on October 12, 2007. https://web.archive.org/web/20071012144831/http://www.electronicsweekly.com/Articles/2007/10/11/42346/qubit+transmission+signals+quantum+computing+advance.htm. Retrieved December 30, 2007.
- ↑ October 8, 2007 TG Daily Rick C. Hodgin. "New material breakthrough brings quantum computers one step closer". Archived from the original on December 12, 2007. https://web.archive.org/web/20071212162540/http://www.tgdaily.com/content/view/34244/113/. Retrieved December 30, 2007.
- ↑ October 19, 2007 Optics.org "Single electron-spin memory with a semiconductor quantum dot". http://optics.org/cws/article/journals/31503. Retrieved December 30, 2007.
- ↑ November 7, 2007 New Scientist Stephen Battersby. "'Light trap' is a step towards quantum memory". https://www.newscientist.com/channel/fundamentals/quantum-world/dn12887-light-trap-is-a-step-towards-quantum-memory-.html. Retrieved December 30, 2007.
- ↑ November 12, 2007 Nanowerk.com "World's First 28 qubit Quantum Computer Demonstrated Online at Supercomputing 2007 Conference". http://www.nanowerk.com/news/newsid=3274.php. Retrieved December 30, 2007.
- ↑ December 12, 2007 PhysOrg.com "Desktop device generates and traps rare ultracold molecules". Archived from the original on December 15, 2007. https://web.archive.org/web/20071215075835/http://www.physorg.com/news116696579.html. Retrieved December 31, 2007.
- ↑ December 19, 2007 University of Toronto Kim Luke. "U of T scientists make quantum computing leap Research is step toward building first quantum computers". Archived from the original on December 28, 2007. https://web.archive.org/web/20071228170511/http://www.news.utoronto.ca/bin6/071219-3563.asp. Retrieved December 31, 2007.
- ↑ February 18, 2007 www.nature.com (journal) Trauzettel, Björn; Bulaev, Denis V.; Loss, Daniel; Burkard, Guido (2007). "Spin qubits in graphene quantum dots". Nature Physics 3 (3): 192–196. doi:10.1038/nphys544. Bibcode: 2007NatPh...3..192T.
- ↑ January 15, 2008 Miranda Marquit. "Graphene quantum dot may solve some quantum computing problems". Archived from the original on January 17, 2008. https://web.archive.org/web/20080117230333/http://www.physorg.com/news119632225.html. Retrieved January 16, 2008.
- ↑ January 25, 2008 EETimes Europe. "Scientists succeed in storing quantum bit". http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=205918527. Retrieved February 5, 2008.
- ↑ February 26, 2008 Lisa Zyga. "Physicists demonstrate qubit-qutrit entanglement". Archived from the original on February 29, 2008. https://web.archive.org/web/20080229001836/http://www.physorg.com/news123244300.html. Retrieved February 27, 2008.
- ↑ February 26, 2008 ScienceDaily. "Analog logic for quantum computing". https://www.sciencedaily.com/releases/2008/02/080221101910.htm. Retrieved February 27, 2008.
- ↑ March 5, 2008 Zenaida Gonzalez Kotala. "Future 'quantum computers' will offer increased efficiency... and risks". http://www.eurekalert.org/pub_releases/2008-03/uocf-fc030508.php. Retrieved March 5, 2008.
- ↑ March 6, 2008 Ray Kurzweil. "Entangled memory is a first". http://www.kurzweilai.net/news/frame.html?main=news_single.html?id%3D8142. Retrieved March 8, 2008.
- ↑ March 27, 2008 Joann Fryer. "Silicon chips for optical quantum technologies". http://www.eurekalert.org/pub_releases/2008-03/uob-scf032608.php. Retrieved March 29, 2008.
- ↑ April 7, 2008 Ray Kurzweil. "Qutrit breakthrough brings quantum computers closer". http://www.kurzweilai.net/news/frame.html?main=news_single.html?id%3D8354. Retrieved April 7, 2008.
- ↑ April 15, 2008 Kate Greene. "Toward a quantum internet". http://www.technologyreview.com/Infotech/20565/?a=f. Retrieved April 16, 2008.
- ↑ April 24, 2008 Princeton University. "Scientists discover exotic quantum state of matter". Archived from the original on April 30, 2008. https://web.archive.org/web/20080430131534/http://physorg.com/news128261028.html. Retrieved April 29, 2008.
- ↑ May 23, 2008 Belle Dumé. "Spin states endure in quantum dot". http://physicsworld.com/cws/article/news/34359. Retrieved June 3, 2008.
- ↑ May 27, 2008 Chris Lee. "Molecular magnets in soap bubbles could lead to quantum RAM". https://arstechnica.com/news.ars/post/20080527-molecular-magnets-in-soap-bubbles-could-lead-to-quantum-ram.html. Retrieved June 3, 2008.
- ↑ June 2, 2008 Weizmann Institute of Science. "Scientists find new 'quasiparticles'". http://physorg.com/news131631206.html. Retrieved June 3, 2008.
- ↑ June 23, 2008 Lisa Zyga. "Physicists Store Images in Vapor". Archived from the original on September 15, 2008. https://web.archive.org/web/20080915130750/http://www.physorg.com/news133439288.html. Retrieved June 26, 2008.
- ↑ June 25, 2008 Physorg.com. "Physicists Produce Quantum-Entangled Images". Archived from the original on August 29, 2008. https://web.archive.org/web/20080829225636/http://www.physorg.com/news133624014.html. Retrieved June 26, 2008.
- ↑ June 26, 2008 Steve Tally. "Quantum computing breakthrough arises from unknown molecule". http://news.uns.purdue.edu/x/2008a/080626KlimeckArsenic.html. Retrieved June 28, 2008.
- ↑ July 17, 2008 Lauren Rugani. "Quantum Leap". http://www.technologyreview.com/Infotech/21086/. Retrieved July 17, 2008.
- ↑ August 5, 2008 Science Daily. "Breakthrough In Quantum Mechanics: Superconducting Electronic Circuit Pumps Microwave Photons". https://www.sciencedaily.com/releases/2008/08/080805150812.htm. Retrieved August 6, 2008.
- ↑ September 3, 2008 Physorg.com. "New probe could aid quantum computing". Archived from the original on September 5, 2008. https://web.archive.org/web/20080905193420/http://www.physorg.com/news139665168.html. Retrieved September 6, 2008.
- ↑ September 25, 2008 ScienceDaily. "Novel Process Promises To Kick-start Quantum Technology Sector". https://www.sciencedaily.com/releases/2008/09/080925144609.htm. Retrieved October 16, 2008.
- ↑ September 22, 2008 Jeremy L. O’Brien. "Quantum computing over the rainbow". http://physics.aps.org/articles/v1/23. Retrieved October 16, 2008.
- ↑ October 20, 2008 Science Blog. "Relationships Between Quantum Dots – Stability and Reproduction". Archived from the original on October 22, 2008. https://web.archive.org/web/20081022201107/http://www.scienceblog.com/cms/blog/624-relationships-between-quantum-dots-stability-and-reproduction-17599.html. Retrieved October 20, 2008.
- ↑ October 22, 2008 Steven Schultz. "Memoirs of a qubit: Hybrid memory solves key problem for quantum computing". http://www.eurekalert.org/pub_releases/2008-10/pues-smt102208.php. Retrieved October 23, 2008.
- ↑ October 23, 2008 National Science Foundation. "World's Smallest Storage Space ... the Nucleus of an Atom". https://www.nsf.gov/news/news_summ.jsp?cntn_id=112538&govDel=USNSF_51. Retrieved October 27, 2008.
- ↑ November 20, 2008 Dan Stober. "Stanford: Quantum computing spins closer". http://www.eurekalert.org/pub_releases/2008-11/su-sqc112008.php. Retrieved November 22, 2008.
- ↑ December 5, 2008 Miranda Marquit. "Quantum computing: Entanglement may not be necessary". Archived from the original on December 8, 2008. https://web.archive.org/web/20081208091811/http://www.physorg.com/news147698804.html. Retrieved December 9, 2008.
- ↑ December 19, 2008 Next Big Future. "Dwave System's 128 qubit chip has been made". http://nextbigfuture.com/2008/12/dwave-systems-128-qubit-chip-has-been.html. Retrieved December 20, 2008.
- ↑ April 7, 2009 Next Big Future. "Three Times Higher Carbon 12 Purity for Synthetic Diamond Enables Better Quantum Computing". http://nextbigfuture.com/2009/04/element-six-is-global-leader-europe.html. Retrieved May 19, 2009.
- ↑ April 23, 2009 Kate Greene. "Extending the Life of Quantum Bits". https://www.technologyreview.com/2009/04/23/213539/extending-the-life-of-quantum-bits/. Retrieved June 1, 2020.
- ↑ May 29, 2009 physorg.com. "Researchers make breakthrough in the quantum control of light". http://www.physorg.com/news162814379.html. Retrieved May 30, 2009.
- ↑ June 3, 2009 physorg.com. "Physicists demonstrate quantum entanglement in mechanical system". http://www.physorg.com/news163253992.html. Retrieved June 13, 2009.
- ↑ June 24, 2009 Nicole Casal Moore. "Lasers can lengthen quantum bit memory by 1,000 times". http://www.eurekalert.org/pub_releases/2009-06/uom-lcl062309.php. Retrieved June 27, 2009.
- ↑ June 29, 2009 www.sciencedaily.com. "First Electronic Quantum Processor Created". https://www.sciencedaily.com/releases/2009/06/090628171949.htm. Retrieved June 29, 2009.
- ↑ Lu, C. Y; Gao, W. B; Gühne, O; Zhou, X. Q; Chen, Z. B; Pan, J. W (2009). "Demonstrating Anyonic Fractional Statistics with a Six-Qubit Quantum Simulator". Physical Review Letters 102 (3): 030502. doi:10.1103/PhysRevLett.102.030502. PMID 19257336. Bibcode: 2009PhRvL.102c0502L.
- ↑ July 6, 2009 Dario Borghino. "Quantum computer closer: Optical transistor made from single molecule". http://www.gizmag.com/optical-transistor-made-from-single-molecule/12157/. Retrieved July 8, 2009.
- ↑ July 8, 2009 R. Colin Johnson. "NIST advances quantum computing". http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=218401022. Retrieved July 9, 2009.
- ↑ August 7, 2009 Kate Greene. "Scaling Up a Quantum Computer". http://www.technologyreview.com/computing/23137/. Retrieved August 8, 2009.
- ↑ August 11, 2009 Devitt, S. J; Fowler, A. G; Stephens, A. M; Greentree, A. D; Hollenberg, L. C. L; Munro, W. J; Nemoto, K (2009). "Architectural design for a topological cluster state quantum computer". New J. Phys. 11 (83032): 1221. doi:10.1088/1367-2630/11/8/083032. Bibcode: 2009NJPh...11h3032D.
- ↑ September 4, 2009 Home, J. P; Hanneke, D; Jost, J. D; Amini, J. M; Leibfried, D; Wineland, D. J (2009). "Complete Methods Set for Scalable Ion Trap Quantum Information Processing". Science 325 (5945): 1227–30. doi:10.1126/science.1177077. PMID 19661380. Bibcode: 2009Sci...325.1227H.
- ↑ Politi, A; Matthews, J. C; O'Brien, J. L (2009). "Shor's Quantum Factoring Algorithm on a Photonic Chip". Science 325 (5945): 1221. doi:10.1126/science.1173731. PMID 19729649. Bibcode: 2009Sci...325.1221P.
- ↑ Wesenberg, J. H; Ardavan, A; Briggs, G. A. D; Morton, J. J. L; Schoelkopf, R. J; Schuster, D. I; Mølmer, K (2009). "Quantum Computing with an Electron Spin Ensemble". Physical Review Letters 103 (7): 070502. doi:10.1103/PhysRevLett.103.070502. PMID 19792625. Bibcode: 2009PhRvL.103g0502W.
- ↑ September 23, 2009 Geordie. "Experimental Demonstration of a Robust and Scalable Flux Qubit". http://dwave.wordpress.com/2009/09/23/experimental-demonstration-of-a-robust-and-scalable-flux-qubit/. Retrieved September 24, 2009.
- ↑ September 25, 2009 Colin Barras. "Photon 'machine gun' could power quantum computers". https://www.newscientist.com/article/mg20327275.700-photon-machine-gun-could-power-quantum-computers.html?DCMP=OTC-rss&nsref=online-news. Retrieved September 26, 2009.
- ↑ October 9, 2009 Larry Hardesty. "Quantum computing may actually be useful". http://web.mit.edu/newsoffice/2009/quantum-algorithm.html. Retrieved October 10, 2009.
- ↑ November 15, 2009 New Scientist. "First universal programmable quantum computer unveiled". https://www.newscientist.com/article/dn18154-first-universal-programmable-quantum-computer-unveiled.html. Retrieved November 16, 2009.
- ↑ November 20, 2009 ScienceBlog. "UCSB physicists move 1 step closer to quantum computing". Archived from the original on November 23, 2009. https://web.archive.org/web/20091123213145/http://www.scienceblog.com/cms/ucsb-physicists-move-1-step-closer-quantum-computing-27431.html. Retrieved November 23, 2009.
- ↑ December 11, 2009 Jeremy Hsu. "Google Demonstrates Quantum Algorithm Promising Superfast Search". http://www.popsci.com/technology/article/2009-12/google-algorithm-uses-quantum-computing-sort-images-faster-ever. Retrieved December 14, 2009.
- ↑ Harris, R; Brito, F; Berkley, A J; Johansson, J; Johnson, M W; Lanting, T; Bunyk, P; Ladizinsky, E et al. (2009). "Synchronization of multiple coupled rf-SQUID flux qubits". New Journal of Physics 11 (12): 123022. doi:10.1088/1367-2630/11/12/123022. Bibcode: 2009NJPh...11l3022H.
- ↑ Monz, T; Kim, K; Villar, A. S; Schindler, P; Chwalla, M; Riebe, M; Roos, C. F; Häffner, H et al. (2009). "Realization of Universal Ion Trap Quantum Computation with Decoherence Free Qubits". Physical Review Letters 103 (20): 200503. doi:10.1103/PhysRevLett.103.200503. PMID 20365970. Bibcode: 2009PhRvL.103t0503M.
- ↑ January 20, 2010 arXiv blog. "Making Light of Ion Traps". http://www.technologyreview.com/blog/arxiv/24685/?nlid=2678. Retrieved January 21, 2010.
- ↑ January 28, 2010 Charles Petit (January 28, 2010). "Quantum Computer Simulates Hydrogen Molecule Just Right". Wired. https://www.wired.com/wiredscience/2010/01/quantum-computer-hydrogen-simulation/. Retrieved February 5, 2010.
- ↑ February 4, 2010 Larry Hardesty. "First germanium laser brings us closer to 'optical computers'". Archived from the original on December 24, 2011. https://web.archive.org/web/20111224181702/http://www.physorg.com/news184493799.html. Retrieved February 4, 2010.
- ↑ February 6, 2010 Science Daily. "Quantum Computing Leap Forward: Altering a Lone Electron Without Disturbing Its Neighbors". https://www.sciencedaily.com/releases/2010/02/100205162953.htm. Retrieved February 6, 2010.
- ↑ March 18, 2010 Jason Palmer (March 17, 2010). "Team's quantum object is biggest by factor of billions". BBC News. http://news.bbc.co.uk/2/hi/sci/tech/8570836.stm. Retrieved March 20, 2010.
- ↑ University of Cambridge. "Cambridge discovery could pave the way for quantum computing". http://www.articleant.com/p/re/65605-cambridge-discovery-could-pave-the-way-for-quantum-computing.html. Retrieved March 20, 2010.[|permanent dead link|dead link}}]
- ↑ April 1, 2010 ScienceDaily. "Racetrack Ion Trap Is a Contender in Quantum Computing Quest". https://www.sciencedaily.com/releases/2010/04/100401130336.htm. Retrieved April 3, 2010.
- ↑ April 21, 2010 Rice University (April 21, 2010). "Bizarre matter could find use in quantum computers". https://phys.org/news/2010-04-bizarre-quantum-odd-electron-fault-tolerant.html. Retrieved August 29, 2018.
- ↑ May 27, 2010 E. Vetsch. "German physicists develop a quantum interface between light and atoms". Archived from the original on December 19, 2011. https://web.archive.org/web/20111219181729/http://www.physorg.com/news194169329.html. Retrieved April 22, 2010.
- ↑ June 3, 2010 Asavin Wattanajantra. "New form of LED brings quantum computing closer". http://www.theinquirer.net/inquirer/news/1652461/new-form-led-brings-quantum-computing-closer. Retrieved June 5, 2010.
- ↑ August 29, 2010 Munro, W. J; Harrison, K. A; Stephens, A. M; Devitt, S. J; Nemoto, K (2010). "From quantum multiplexing to high-performance quantum networking". Nature Photonics 4 (11): 792–796. doi:10.1038/nphoton.2010.213. Bibcode: 2010NaPho...4..792M.
- ↑ September 17, 2010 Kurzweil accelerating intelligence. "Two-photon optical chip enables more complex quantum computing". http://www.kurzweilai.net/two-photon-optical-chip-enables-more-complex-quantum-computing. Retrieved September 17, 2010.
- ↑ "Toward a Useful Quantum Computer: Researchers Design and test Microfabricated Planar Ion Traps". May 28, 2010. https://www.sciencedaily.com/releases/2010/05/100526091044.htm. Retrieved September 20, 2010.
- ↑ "Quantum Future: Designing and Testing Microfabricated Planar Ion Traps". Georgia Tech Research Institute. http://www.gtri.gatech.edu/casestudy/microfabricated-planar-ion-traps. Retrieved September 20, 2010.
- ↑ December 23, 2010 TU Delft. "TU scientists in Nature: Better control of building blocks for quantum computer". Archived from the original on December 24, 2010. https://web.archive.org/web/20101224162118/http://www.tudelft.nl/live/pagina.jsp?id=2136915a-f72a-441a-8783-b0b0e91cb48f&lang=en. Retrieved December 26, 2010.
- ↑ Simmons, Stephanie; Brown, Richard M; Riemann, Helge; Abrosimov, Nikolai V; Becker, Peter; Pohl, Hans-Joachim; Thewalt, Mike L. W; Itoh, Kohei M et al. (2011). "Entanglement in a solid-state spin ensemble". Nature 470 (7332): 69–72. doi:10.1038/nature09696. PMID 21248751. Bibcode: 2011Natur.470...69S.
- ↑ February 14, 2011 UC Santa Barbara Office of Public Affairs. "International Team of Scientists Says It's High 'Noon' for Microwave Photons". http://www.ia.ucsb.edu/pa/display.aspx?pkey=2428. Retrieved February 16, 2011.
- ↑ February 24, 2011 Kurzweil Accelerating Intelligence. "'Quantum antennas' enable exchange of quantum information between two memory cells". http://www.kurzweilai.net/quantum-antennas-enable-exchange-of-quantum-information-between-two-memory-cells. Retrieved February 24, 2011.
- ↑ Peruzzo, Alberto; Laing, Anthony; Politi, Alberto; Rudolph, Terry; O'Brien, Jeremy L (2011). "Multimode quantum interference of photons in multiport integrated devices". Nature Communications 2: 224. doi:10.1038/ncomms1228. PMID 21364563. Bibcode: 2011NatCo...2..224P.
- ↑ March 7, 2011 KFC. "New Magnetic Resonance Technique Could Revolutionise Quantum Computing". https://www.technologyreview.com/2011/03/07/196521/new-magnetic-resonance-technique-could-revolutionise-quantum-computing/. Retrieved June 1, 2020.
- ↑ March 17, 2011 Christof Weitenberg; Manuel Endres; Jacob F. Sherson; Marc Cheneau; Peter Schauß; Takeshi Fukuhara; Immanuel Bloch; Stefan Kuhr. "A Quantum Pen for Single Atoms". Archived from the original on March 18, 2011. https://web.archive.org/web/20110318143231/http://www.mpq.mpg.de/cms/mpq/en/news/press/11_03_17.html. Retrieved March 19, 2011.
- ↑ March 21, 2011 Cordisnews. "German research brings us one step closer to quantum computing". http://cordis.europa.eu/fetch?CALLER=EN_NEWS&ACTION=D&SESSION=&RCN=33212. Retrieved March 22, 2011.
- ↑ Monz, T; Schindler, P; Barreiro, J. T; Chwalla, M; Nigg, D; Coish, W. A; Harlander, M; Hänsel, W et al. (2011). "14-Qubit Entanglement: Creation and Coherence". Physical Review Letters 106 (13): 130506. doi:10.1103/PhysRevLett.106.130506. PMID 21517367. Bibcode: 2011PhRvL.106m0506M.
- ↑ May 12, 2011 Physicsworld.com. "Quantum-computing firm opens the box". http://physicsworld.com/cws/article/news/45960. Retrieved May 17, 2011.
- ↑ Physorg.com (May 26, 2011). "Repetitive error correction demonstrated in a quantum processor". physorg.com. Archived from the original on January 7, 2012. https://web.archive.org/web/20120107024333/http://www.physorg.com/news/2011-05-quantum-repetitive-error-processor.html. Retrieved May 26, 2011.
- ↑ June 27, 2011 UC Santa Barbara. "International Team Demonstrates Subatomic Quantum Memory in Diamond". http://www.ia.ucsb.edu/pa/display.aspx?pkey=2519. Retrieved June 29, 2011.
- ↑ July 15, 2011 Nanowerk News. "Quantum computing breakthrough in the creation of massive numbers of entangled qubits". http://www.nanowerk.com/news/newsid=22133.php. Retrieved July 18, 2011.
- ↑ July 20, 2011 Nanowerk News. "Scientists take the next major step toward quantum computing". http://www.nanowerk.com/news/newsid=22174.php. Retrieved July 20, 2011.
- ↑ August 2, 2011 nanowerk. "Dramatic simplification paves the way for building a quantum computer". http://www.nanowerk.com/news/newsid=22292.php. Retrieved August 3, 2011.
- ↑ Ospelkaus, C; Warring, U; Colombe, Y; Brown, K. R; Amini, J. M; Leibfried, D; Wineland, D. J (2011). "Microwave quantum logic gates for trapped ions". Nature 476 (7359): 181–184. doi:10.1038/nature10290. PMID 21833084. Bibcode: 2011Natur.476..181O.
- ↑ August 30, 2011 Laura Ost. "NIST Achieves Record-Low Error Rate for Quantum Information Processing with One Qubit". https://www.nist.gov/pml/div688/qubit-083011.cfm. Retrieved September 3, 2011.
- ↑ September 1, 2011 Mariantoni, M; Wang, H; Yamamoto, T; Neeley, M; Bialczak, R. C; Chen, Y; Lenander, M; Lucero, E et al. (2011). "Implementing the Quantum von Neumann Architecture with Superconducting Circuits". Science 334 (6052): 61–65. doi:10.1126/science.1208517. PMID 21885732. Bibcode: 2011Sci...334...61M.
- ↑ Jablonski, Chris (October 4, 2011). "One step closer to quantum computers". ZDnet. https://www.zdnet.com/article/one-step-closer-to-quantum-computers/. Retrieved August 29, 2018.
- ↑ December 2, 2011 Clara Moskowitz; Ian Walmsley; Michael Sprague. "Two Diamonds Linked by Strange Quantum Entanglement". http://www.livescience.com/17264-quantum-entanglement-macroscopic-diamonds.html. Retrieved December 2, 2011.
- ↑ Bian, Z; Chudak, F; MacReady, W. G; Clark, L; Gaitan, F (2013). "Experimental determination of Ramsey numbers with quantum annealing". Physical Review Letters 111 (13): 130505. doi:10.1103/PhysRevLett.111.130505. PMID 24116761. Bibcode: 2013PhRvL.111m0505B.
- ↑ Fuechsle, M; Miwa, J. A; Mahapatra, S; Ryu, H; Lee, S; Warschkow, O; Hollenberg, L. C; Klimeck, G et al. (February 19, 2012). "A single-atom transistor". Nature Nanotechnology 7 (4): 242–246. doi:10.1038/nnano.2012.21. PMID 22343383. Bibcode: 2012NatNa...7..242F.
- ↑ John Markoff (February 19, 2012). "Physicists Create a Working Transistor From a Single Atom". The New York Times. https://www.nytimes.com/2012/02/20/science/physicists-create-a-working-transistor-from-a-single-atom.html?partner=rss&emc=rss. Retrieved February 19, 2012.
- ↑ Grotz, Bernhard; Hauf, Moritz V; Dankerl, Markus; Naydenov, Boris; Pezzagna, Sébastien; Meijer, Jan; Jelezko, Fedor; Wrachtrup, Jörg et al. (2012). "Charge state manipulation of qubits in diamond". Nature Communications 3: 729. doi:10.1038/ncomms1729. PMID 22395620. Bibcode: 2012NatCo...3..729G.
- ↑ Britton, J. W; Sawyer, B. C; Keith, A. C; Wang, C. C; Freericks, J. K; Uys, H; Biercuk, M. J; Bollinger, J. J (April 26, 2012). "Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins". Nature 484 (7395): 489–492. doi:10.1038/nature10981. PMID 22538611. Bibcode: 2012Natur.484..489B.
- ↑ Lucy Sherriff. "300 atom quantum simulator smashes qubit record". http://www.zdnet.com/article/300-atom-quantum-simulator-smashes-qubit-record/. Retrieved February 9, 2015.
- ↑ Yao, Xing-Can; Wang, Tian-Xiong; Chen, Hao-Ze; Gao, Wei-Bo; Fowler, Austin G; Raussendorf, Robert; Chen, Zeng-Bing; Liu, Nai-Le et al. (2012). "Experimental demonstration of topological error correction". Nature 482 (7386): 489–494. doi:10.1038/nature10770. PMID 22358838. Bibcode: 2012Natur.482..489Y.
- ↑ 1QBit. "1QBit Website". http://www.1qbit.com/.
- ↑ October 14, 2012 Munro, W. J; Stephens, A. M; Devitt, S. J; Harrison, K. A; Nemoto, K (2012). "Quantum communication without the necessity of quantum memories". Nature Photonics 6 (11): 777–781. doi:10.1038/nphoton.2012.243. Bibcode: 2012NaPho...6..777M.
- ↑ Maurer, P. C; Kucsko, G; Latta, C; Jiang, L; Yao, N. Y; Bennett, S. D; Pastawski, F; Hunger, D et al. (June 8, 2012). "Room-Temperature Quantum Bit Memory Exceeding One Second". Science 336 (6086): 1283–1286. doi:10.1126/science.1220513. PMID 22679092. Bibcode: 2012Sci...336.1283M. http://nrs.harvard.edu/urn-3:HUL.InstRepos:12132060.
- ↑ Peckham, Matt (July 6, 2012). "Quantum Computing at Room Temperature - Now a Reality". Magazine/Periodical. Time Magazine (Techland) Time Inc.: pp. 1. http://techland.time.com/2012/07/06/quantum-computing-at-room-temperature-now-a-reality/. Retrieved August 5, 2012.
- ↑ Koh, Dax Enshan; Hall, Michael J. W; Setiawan; Pope, James E; Marletto, Chiara; Kay, Alastair; Scarani, Valerio; Ekert, Artur (2012). "Effects of Reduced Measurement Independence on Bell-Based Randomness Expansion". Physical Review Letters 109 (16): 160404. doi:10.1103/PhysRevLett.109.160404. PMID 23350071. Bibcode: 2012PhRvL.109p0404K.
- ↑ December 7, 2012 Horsman, C; Fowler, A. G; Devitt, S. J; Van Meter, R (2012). "Surface code quantum computing by lattice surgery". New J. Phys. 14 (12): 123011. doi:10.1088/1367-2630/14/12/123011. Bibcode: 2012NJPh...14l3011H.
- ↑ Kastrenakes, Jacob (November 14, 2013). "Researchers smash through quantum computer storage record". The Verge. https://www.theverge.com/2013/11/14/5104668/qubits-stored-for-39-minutes-quantum-computer-new-record. Retrieved November 20, 2013.
- ↑ "Quantum Computer Breakthrough 2013". November 24, 2013. http://welldonestuff.com/quantum-computer-breakthrough-2013/.
- ↑ October 10, 2013 Devitt, S. J; Stephens, A. M; Munro, W. J; Nemoto, K (2013). "Requirements for fault-tolerant factoring on an atom-optics quantum computer". Nature Communications 4: 2524. doi:10.1038/ncomms3524. PMID 24088785. Bibcode: 2013NatCo...4.2524D.
- ↑ Penetrating Hard Targets project
- ↑ NSA seeks to develop quantum computer to crack nearly every kind of encryption -- KurzweilAI.net January 3, 2014
- ↑ NSA seeks to build quantum computer that could crack most types of encryption -- Washington Post
- ↑ The NSA Is Building a Computer to Crack Almost Any Code - Time.com
- ↑ August 4, 2014 Nemoto, K.; Trupke, M.; Devitt, S. J; Stephens, A. M; Scharfenberger, B; Buczak, K; Nobauer, T; Everitt, M. S et al. (2014). "Photonic architecture for scalable quantum information processing in diamond". Physical Review X 4 (3): 031022. doi:10.1103/PhysRevX.4.031022. Bibcode: 2014PhRvX...4c1022N.
- ↑ Nigg, D; Müller, M; Martinez, M. A; Schindler, P; Hennrich, M; Monz, T; Martin-Delgado, M. A; Blatt, R (July 18, 2014). "Quantum computations on a topologically encoded qubit". Science 345 (6194): 302–305. doi:10.1126/science.1253742. PMID 24925911. Bibcode: 2014Sci...345..302N.
- ↑ Markoff, John (May 29, 2014). "Scientists Report Finding Reliable Way to Teleport Data". New York Times. https://www.nytimes.com/2014/05/30/science/scientists-report-finding-reliable-way-to-teleport-data.html. Retrieved May 29, 2014.
- ↑ Pfaff, W; Hensen, B. J; Bernien, H; Van Dam, S. B; Blok, M. S; Taminiau, T. H; Tiggelman, M. J; Schouten, R. N et al. (May 29, 2014). "Unconditional quantum teleportation between distant solid-state quantum bits". Science 345 (6196): 532–535. doi:10.1126/science.1253512. PMID 25082696. Bibcode: 2014Sci...345..532P.
- ↑ November 28, 2014 "New largest number factored on a quantum device is 56,153". http://phys.org/news/2014-11-largest-factored-quantum-device.html. Retrieved January 7, 2015.
- ↑ December 2, 2014 "The Mathematical Trick That Helped Smash The Record For The Largest Number Ever Factorised By A Quantum Computer: 56153=233 x 241". https://medium.com/the-physics-arxiv-blog/the-mathematical-trick-that-helped-smash-the-record-for-the-largest-number-ever-factorised-by-a-77fde88499. Retrieved January 7, 2015.
- ↑ Zhong, Manjin; Hedges, Morgan P; Ahlefeldt, Rose L; Bartholomew, John G; Beavan, Sarah E; Wittig, Sven M; Longdell, Jevon J; Sellars, Matthew J (2015). "Optically addressable nuclear spins in a solid with a six-hour coherence time". Nature 517 (7533): 177–180. doi:10.1038/nature14025. PMID 25567283. Bibcode: 2015Natur.517..177Z.
- ↑ April 13, 2015 "Breakthrough opens door to affordable quantum computers". http://newsroom.unsw.edu.au/news/science-tech/breakthrough-opens-door-affordable-quantum-computers. Retrieved April 16, 2015.
- ↑ Córcoles, A.D; Magesan, Easwar; Srinivasan, Srikanth J; Cross, Andrew W; Steffen, M; Gambetta, Jay M; Chow, Jerry M (2015). "Demonstration of a quantum error detection code using a square lattice of four superconducting qubits". Nature Communications 6: 6979. doi:10.1038/ncomms7979. PMID 25923200. Bibcode: 2015NatCo...6.6979C.
- ↑ June 22, 2015 "D-Wave Systems Inc., the world's first quantum computing company, today announced that it has broken the 1000 qubit barrier". http://www.dwavesys.com/press-releases/d-wave-systems-breaks-1000-qubit-quantum-computing-barrier. Retrieved June 22, 2015.
- ↑ October 6, 2015 "Crucial hurdle overcome in quantum computing". http://www.newsroom.unsw.edu.au/news/science-tech/crucial-hurdle-overcome-quantum-computing. Retrieved October 6, 2015.
- ↑ "Quantum computer emulated by a classical system". https://phys.org/news/2015-05-quantum-emulated-classical.html.
- ↑ Monz, T; Nigg, D; Martinez, E. A; Brandl, M. F; Schindler, P; Rines, R; Wang, S. X; Chuang, I. L et al. (March 4, 2016). "Realization of a scalable Shor algorithm". Science 351 (6277): 1068–1070. doi:10.1126/science.aad9480. PMID 26941315. Bibcode: 2016Sci...351.1068M.
- ↑ September 29, 2016 Devitt, S. J (2016). "Performing quantum computing experiments in the cloud". Physical Review A 94 (3): 032329. doi:10.1103/PhysRevA.94.032329. Bibcode: 2016PhRvA..94c2329D.
- ↑ Alsina, D; Latorre, J. I (2016). "Experimental test of Mermin inequalities on a five-qubit quantum computer". Physical Review A 94 (1): 012314. doi:10.1103/PhysRevA.94.012314. Bibcode: 2016PhRvA..94a2314A.
- ↑ o'Malley, P. J. J; Babbush, R; Kivlichan, I. D; Romero, J; McClean, J. R; Barends, R; Kelly, J; Roushan, P et al. (July 18, 2016). "Scalable Quantum Simulation of Molecular Energies". Physical Review X 6 (3): 031007. doi:10.1103/PhysRevX.6.031007. Bibcode: 2016PhRvX...6c1007O.
- ↑ November 2, 2016 Devitt, S. J; Greentree, A. D; Stephens, A. M; Van Meter, R (2016). "High-speed quantum networking by ship". Scientific Reports 6: 36163. doi:10.1038/srep36163. PMID 27805001. Bibcode: 2016NatSR...636163D.
- ↑ "D-Wave Announces D-Wave 2000Q Quantum Computer and First System Order | D-Wave Systems". http://www.dwavesys.com/press-releases/d-wave%C2%A0announces%C2%A0d-wave-2000q-quantum-computer-and-first-system-order.
- ↑ Lekitsch, B; Weidt, S; Fowler, A. G; Mølmer, K; Devitt, S. J; Wunderlich, C; Hensinger, W. K (February 1, 2017). "Blueprint for a microwave trapped ion quantum computer". Science Advances 3 (2): e1601540. doi:10.1126/sciadv.1601540. PMID 28164154. Bibcode: 2017SciA....3E1540L.
- ↑ Meredith Rutland Bauer (May 17, 2017). "IBM Just Made a 17 Qubit Quantum Processor, Its Most Powerful One Yet". Motherboard. https://motherboard.vice.com/en_us/article/wnwk5w/ibm-17-qubit-quantum-processor-computer-google.
- ↑ "Qudits: The Real Future of Quantum Computing?". June 28, 2017. https://spectrum.ieee.org/tech-talk/computing/hardware/qudits-the-real-future-of-quantum-computing.
- ↑ "Microsoft makes play for next wave of computing with quantum computing toolkit". September 25, 2017. https://arstechnica.com/gadgets/2017/09/microsoft-quantum-toolkit/.
- ↑ Knight, Will (October 10, 2017). "Quantum Inside: Intel Manufactures an Exotic New Chip". MIT Technology Review. https://www.technologyreview.com/s/609094/quantum-inside-intel-manufactures-an-exotic-new-chip/. Retrieved July 5, 2018.
- ↑ "IBM Raises the Bar with a 50-Qubit Quantum Computer". https://www.technologyreview.com/s/609451/ibm-raises-the-bar-with-a-50-qubit-quantum-computer/.
- ↑ Hignett, Katherine (February 16, 2018). "Physics Creates New Form Of Light That Could Drive The Quantum Computing Revolution". http://www.newsweek.com/photons-light-physics-808862. Retrieved February 17, 2018.
- ↑ Liang, Q. Y; Venkatramani, A. V; Cantu, S. H; Nicholson, T. L; Gullans, M. J; Gorshkov, A. V; Thompson, J. D; Chin, C et al. (February 16, 2018). "Observation of three-photon bound states in a quantum nonlinear medium". Science 359 (6377): 783–786. doi:10.1126/science.aao7293. PMID 29449489. Bibcode: 2018Sci...359..783L.
- ↑ "Scientists make major quantum computing breakthrough". March 2018. https://www.independent.co.uk/life-style/gadgets-and-tech/news/quantum-computing-logic-gates-oxford-university-breakthrough-latest-discovery-a8235281.html.
- ↑ Giles, Martin (February 15, 2018). "Old-fashioned silicon might be the key to building ubiquitous quantum computers". MIT Technology Review. https://www.technologyreview.com/s/610273/old-fashioned-silicon-might-be-the-key-to-building-ubiquitous-quantum-computers/. Retrieved July 5, 2018.
- ↑ Emily Conover (March 5, 2018). "Google moves toward quantum supremacy with 72-qubit computer". https://www.sciencenews.org/article/google-moves-toward-quantum-supremacy-72-qubit-computer.
- ↑ Forrest, Conner (June 12, 2018). "Why Intel's smallest spin qubit chip could be a turning point in quantum computing". TechRepublic. https://www.techrepublic.com/article/why-intels-smallest-spin-qubit-chip-could-be-a-turning-point-in-quantum-computing/. Retrieved July 12, 2018.
- ↑ Hsu, Jeremy (January 9, 2018). "CES 2018: Intel's 49-Qubit Chip Shoots for Quantum Supremacy". Institute of Electrical and Electronics Engineers. https://spectrum.ieee.org/tech-talk/computing/hardware/intels-49qubit-chip-aims-for-quantum-supremacy. Retrieved July 5, 2018.
- ↑ Nagata, K; Kuramitani, K; Sekiguchi, Y; Kosaka, H (August 13, 2018). "Universal holonomic quantum gates over geometric spin qubits with polarised microwaves". Nature Communications 9 (3227): 3227. doi:10.1038/s41467-018-05664-w. PMID 30104616. Bibcode: 2018NatCo...9.3227N.
- ↑ Lenzini, Francesco (December 7, 2018). "Integrated photonic platform for quantum information with continuous variables". Science Advances 4 (12): eaat9331. doi:10.1126/sciadv.aat9331. PMID 30539143. Bibcode: 2018SciA....4.9331L.
- ↑ Ion-based commercial quantum computer is a first – Physics World
- ↑ "IonQ". https://ionq.com/.
- ↑ 115th Congress (2018) (June 26, 2018). "H.R. 6227 (115th)". Legislation. GovTrack.us. https://www.govtrack.us/congress/bills/115/hr6227. Retrieved February 11, 2019. "National Quantum Initiative Act"
- ↑ "President Trump has signed a $1.2 billon law to boost US quantum tech". https://www.technologyreview.com/the-download/612679/president-trump-has-signed-a-12-billon-law-to-boost-us-quantum-tech/.
- ↑ "US National Quantum Initiative Act passed unanimously". December 18, 2018. https://thestack.com/data-centre/2018/12/18/us-national-quantum-initiative-act/.
- ↑ Aron, Jacob (January 8, 2019). "IBM unveils its first commercial quantum computer". https://www.newscientist.com/article/2189909-ibm-unveils-its-first-commercial-quantum-computer/.
- ↑ "IBM unveils its first commercial quantum computer". http://social.techcrunch.com/2019/01/08/ibm-unveils-its-first-commercial-quantum-computer/.
- ↑ Dattani, Nike; Szalay, Szilard; Chancellor, Nicholas (January 22, 2019). "Pegasus: The second connectivity graph for large-scale quantum annealing hardware". arXiv:1901.07636 [quant-ph].
- ↑ Dattani, Nike; Chancellor, Nicholas (January 23, 2019). "Embedding quadratization gadgets on Chimera and Pegasus graphs". arXiv:1901.07676 [quant-ph].
- ↑ Kokail, C; Maier, C; Van Bijnen, R; Brydges, T; Joshi, M. K; Jurcevic, P; Muschik, C. A; Silvi, P et al. (May 15, 2019). "Self-verifying variational quantum simulation of lattice models". Science 569 (7756): 355–360. doi:10.1038/s41586-019-1177-4. PMID 31092942. Bibcode: 2019Natur.569..355K.
- ↑ "Google may have taken a step towards quantum computing 'supremacy' (updated)". https://www.engadget.com/2019/09/23/google-quantum-supremacy/.
- ↑ Porter, Jon (September 23, 2019). "Google may have just ushered in an era of 'quantum supremacy'". https://www.theverge.com/2019/9/23/20879485/google-quantum-supremacy-qubits-nasa.
- ↑ Murgia, Waters, Madhumita, Richard (September 20, 2019). "Google claims to have reached quantum supremacy". https://www.ft.com/content/b9bb4e54-dbc1-11e9-8f9b-77216ebe1f17. Retrieved September 24, 2019.
- ↑ Shankland, Stephen. "IBM's biggest-yet 53-qubit quantum computer will come online in October" (in en). https://www.cnet.com/news/ibm-new-53-qubit-quantum-computer-is-its-biggest-yet/.
- ↑ "Quantum researchers able to split one photon into three" (in en-us). https://phys.org/news/2020-02-quantum-photon.html. Retrieved 9 March 2020.
- ↑ Chang, C. W. Sandbo; Sabín, Carlos; Forn-Díaz, P.; Quijandría, Fernando; Vadiraj, A. M.; Nsanzineza, I.; Johansson, G.; Wilson, C. M. (16 January 2020). "Observation of Three-Photon Spontaneous Parametric Down-Conversion in a Superconducting Parametric Cavity". Physical Review X 10 (1): 011011. doi:10.1103/PhysRevX.10.011011. Bibcode: 2020PhRvX..10a1011C.
- ↑ "Artificial atoms create stable qubits for quantum computing" (in en-us). https://phys.org/news/2020-02-artificial-atoms-stable-qubits-quantum.html. Retrieved 9 March 2020.
- ↑ Leon, R. C. C.; Yang, C. H.; Hwang, J. C. C.; Lemyre, J. Camirand; Tanttu, T.; Huang, W.; Chan, K. W.; Tan, K. Y. et al. (11 February 2020). "Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot" (in en). Nature Communications 11 (1): 797. doi:10.1038/s41467-019-14053-w. ISSN 2041-1723. PMID 32047151. Bibcode: 2020NatCo..11..797L.
- ↑ "Producing single photons from a stream of single electrons" (in en-us). https://phys.org/news/2020-02-photons-stream-electrons.html. Retrieved 8 March 2020.
- ↑ Hsiao, Tzu-Kan; Rubino, Antonio; Chung, Yousun; Son, Seok-Kyun; Hou, Hangtian; Pedrós, Jorge; Nasir, Ateeq; Éthier-Majcher, Gabriel et al. (14 February 2020). "Single-photon emission from single-electron transport in a SAW-driven lateral light-emitting diode" (in en). Nature Communications 11 (1): 917. doi:10.1038/s41467-020-14560-1. ISSN 2041-1723. PMID 32060278. Bibcode: 2020NatCo..11..917H.
- ↑ "Scientists 'film' a quantum measurement" (in en-us). https://phys.org/news/2020-02-scientists-quantum.html. Retrieved 9 March 2020.
- ↑ Pokorny, Fabian; Zhang, Chi; Higgins, Gerard; Cabello, Adán; Kleinmann, Matthias; Hennrich, Markus (25 February 2020). "Tracking the Dynamics of an Ideal Quantum Measurement". Physical Review Letters 124 (8): 080401. doi:10.1103/PhysRevLett.124.080401. PMID 32167322. Bibcode: 2020PhRvL.124h0401P.
- ↑ "Scientists measure electron spin qubit without demolishing it" (in en-us). phys.org. https://phys.org/news/2020-03-scientists-electron-qubit-demolishing.html. Retrieved 5 April 2020.
- ↑ Yoneda, J.; Takeda, K.; Noiri, A.; Nakajima, T.; Li, S.; Kamioka, J.; Kodera, T.; Tarucha, S. (2 March 2020). "Quantum non-demolition readout of an electron spin in silicon" (in en). Nature Communications 11 (1): 1144. doi:10.1038/s41467-020-14818-8. ISSN 2041-1723. PMID 32123167. Bibcode: 2020NatCo..11.1144Y.
- ↑ "Engineers crack 58-year-old puzzle on way to quantum breakthrough" (in en-us). phys.org. https://phys.org/news/2020-03-year-old-puzzle-quantum-breakthrough.html. Retrieved 5 April 2020.
- ↑ Asaad, Serwan; Mourik, Vincent; Joecker, Benjamin; Johnson, Mark A. I.; Baczewski, Andrew D.; Firgau, Hannes R.; Mądzik, Mateusz T.; Schmitt, Vivien et al. (March 2020). "Coherent electrical control of a single high-spin nucleus in silicon". Nature 579 (7798): 205–209. doi:10.1038/s41586-020-2057-7. PMID 32161384. Bibcode: 2020Natur.579..205A.
- ↑ Scientists create quantum sensor that covers entire radio frequency spectrum, Phys.org/United States Army Research Laboratory, 2020-03-19
- ↑ Meyer, David H; Castillo, Zachary A; Cox, Kevin C; Kunz, Paul D (10 January 2020). "Assessment of Rydberg atoms for wideband electric field sensing". Journal of Physics B: Atomic, Molecular and Optical Physics 53 (3): 034001. doi:10.1088/1361-6455/ab6051. ISSN 0953-4075. Bibcode: 2020JPhB...53c4001M.
- ↑ "Researchers demonstrate the missing link for a quantum internet" (in en-us). phys.org. https://phys.org/news/2020-03-link-quantum-internet.html. Retrieved 7 April 2020.
- ↑ Bhaskar, M. K.; Riedinger, R.; Machielse, B.; Levonian, D. S.; Nguyen, C. T.; Knall, E. N.; Park, H.; Englund, D. et al. (April 2020). "Experimental demonstration of memory-enhanced quantum communication". Nature 580 (7801): 60–64. doi:10.1038/s41586-020-2103-5. PMID 32238931. Bibcode: 2020Natur.580...60B.
- ↑ Anderton, Kevin. "The Largest Roadblock In Quantum Computing Has Been Passed [Infographic"] (in en). Forbes. https://www.forbes.com/sites/kevinanderton/2020/04/20/the-largest-roadblock-in-quantum-computing-has-been-passed-infographic/. Retrieved 16 May 2020.
- ↑ Crane, Leah. "Quantum computer chips demonstrated at the highest temperatures ever". New Scientist. https://www.newscientist.com/article/2240539-quantum-computer-chips-demonstrated-at-the-highest-temperatures-ever/. Retrieved 16 May 2020.
- ↑ Delbert, Caroline (17 April 2020). "Hot Qubits Could Deliver a Quantum Computing Breakthrough". Popular Mechanics. https://www.popularmechanics.com/science/a32170397/hot-qubits-quantum-computing-breakthrough/. Retrieved 16 May 2020.
- ↑ "'Hot' qubits crack quantum computing temperature barrier - ABC News" (in en-AU). www.abc.net.au. 15 April 2020. https://www.abc.net.au/news/science/2020-04-16/hot-qubits-crack-quantum-computing-temperature-barrier/12132400. Retrieved 16 May 2020.
- ↑ "Hot qubits break one of the biggest constraints to practical quantum computers" (in en). phys.org. https://phys.org/news/2020-04-hot-qubits-biggest-constraints-quantum.html. Retrieved 16 May 2020.
- ↑ Yang, C. H.; Leon, R. C. C.; Hwang, J. C. C.; Saraiva, A.; Tanttu, T.; Huang, W.; Camirand Lemyre, J.; Chan, K. W. et al. (April 2020). "Operation of a silicon quantum processor unit cell above one kelvin". Nature 580 (7803): 350–354. doi:10.1038/s41586-020-2171-6. PMID 32296190.
- ↑ "New discovery settles long-standing debate about photovoltaic materials" (in en). phys.org. https://phys.org/news/2020-04-discovery-long-standing-debate-photovoltaic-materials.html. Retrieved 17 May 2020.
- ↑ Liu, Z.; Vaswani, C.; Yang, X.; Zhao, X.; Yao, Y.; Song, Z.; Cheng, D.; Shi, Y. et al.. Ultrafast Control of Excitonic Rashba Fine Structure by Phonon Coherence in the Metal Halide Perovskite ${\mathrm{CH._{3}{\mathrm{NH}}_{3}{\mathrm{PbI}}_{3}$ |journal=Physical Review Letters |date=16 April 2020 |volume=124 |issue=15 |pages=157401 |doi=10.1103/PhysRevLett.124.157401 }}
- ↑ "Scientists demonstrate quantum radar prototype" (in en). phys.org. https://phys.org/news/2020-05-scientists-quantum-radar-prototype.html. Retrieved 12 June 2020.
- ↑ ""Quantum radar" uses entangled photons to detect objects". New Atlas. 12 May 2020. https://newatlas.com/physics/quantum-radar-entangled-photons/. Retrieved 12 June 2020.
- ↑ Barzanjeh, S.; Pirandola, S.; Vitali, D.; Fink, J. M. (1 May 2020). "Microwave quantum illumination using a digital receiver". Science Advances 6 (19): eabb0451. doi:10.1126/sciadv.abb0451.
- ↑ "Scientists break the link between a quantum material's spin and orbital states" (in en). phys.org. https://phys.org/news/2020-05-scientists-link-quantum-material-orbital.html. Retrieved 12 June 2020.
- ↑ Shen, L.; Mack, S. A.; Dakovski, G.; Coslovich, G.; Krupin, O.; Hoffmann, M.; Huang, S.-W.; Chuang, Y-D. et al. (12 May 2020). "Decoupling spin-orbital correlations in a layered manganite amidst ultrafast hybridized charge-transfer band excitation". Physical Review B 101 (20): 201103. doi:10.1103/PhysRevB.101.201103.
- ↑ "Photon discovery is a major step toward large-scale quantum technologies" (in en). phys.org. https://phys.org/news/2020-05-photon-discovery-major-large-scale-quantum.html. Retrieved 14 June 2020.
- ↑ "Physicists develop integrated photon source for macro quantum-photonics". https://optics.org/news/11/5/44. Retrieved 14 June 2020.
- ↑ "Researchers Discover Near-Ideal Photon Sources in Silicon Quantum Photonics". 22 May 2020. https://syncedreview.com/2020/05/22/researchers-discover-near-ideal-photon-sources-in-silicon-quantum-photonics/. Retrieved 14 June 2020.
- ↑ Paesani, S.; Borghi, M.; Signorini, S.; Maïnos, A.; Pavesi, L.; Laing, A. (19 May 2020). "Near-ideal spontaneous photon sources in silicon quantum photonics". Nature Communications 11 (1): 1–6. doi:10.1038/s41467-020-16187-8.
- ↑ Lachmann, Maike D.; Rasel, Ernst M. (11 June 2020). "Quantum matter orbits Earth". Nature 582 (7811): 186–187. doi:10.1038/d41586-020-01653-6.
- ↑ "Quantum 'fifth state of matter' observed in space for first time" (in en). phys.org. https://phys.org/news/2020-06-quantum-state-space.html. Retrieved 4 July 2020.
- ↑ Aveline, David C.; Williams, Jason R.; Elliott, Ethan R.; Dutenhoffer, Chelsea; Kellogg, James R.; Kohel, James M.; Lay, Norman E.; Oudrhiri, Kamal et al. (June 2020). "Observation of Bose–Einstein condensates in an Earth-orbiting research lab". Nature 582 (7811): 193–197. doi:10.1038/s41586-020-2346-1.
- ↑ "The smallest motor in the world" (in en). phys.org. https://phys.org/news/2020-06-smallest-motor-world.html. Retrieved 4 July 2020.
- ↑ "Nano-motor of just 16 atoms runs at the boundary of quantum physics". New Atlas. 17 June 2020. https://newatlas.com/physics/nano-motor-quantum-physics/. Retrieved 4 July 2020.
- ↑ Stolz, Samuel; Gröning, Oliver; Prinz, Jan; Brune, Harald; Widmer, Roland (2020-06-15). "Molecular motor crossing the frontier of classical to quantum tunneling motion" (in en). Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1918654117. ISSN 0027-8424. PMID 32541061. https://www.pnas.org/content/early/2020/06/12/1918654117.
- ↑ "New techniques improve quantum communication, entangle phonons" (in en). phys.org. https://phys.org/news/2020-06-techniques-quantum-entangle-phonons.html. Retrieved 5 July 2020.
- ↑ Schirber, Michael (12 June 2020). "Quantum Erasing with Phonons" (in en). Physics. https://physics.aps.org/articles/v13/95. Retrieved 5 July 2020.
- ↑ Chang, H.-S.; Zhong, Y. P.; Bienfait, A.; Chou, M.-H.; Conner, C. R.; Dumur, É.; Grebel, J.; Peairs, G. A. et al. (17 June 2020). "Remote Entanglement via Adiabatic Passage Using a Tunably Dissipative Quantum Communication System". Physical Review Letters 124 (24): 240502. doi:10.1103/PhysRevLett.124.240502.
- ↑ Bienfait, A.; Zhong, Y. P.; Chang, H.-S.; Chou, M.-H.; Conner, C. R.; Dumur, É.; Grebel, J.; Peairs, G. A. et al. (12 June 2020). "Quantum Erasure Using Entangled Surface Acoustic Phonons". Physical Review X 10 (2): 021055. doi:10.1103/PhysRevX.10.021055.