Physics:List of equations in fluid mechanics

From HandWiki
Short description: None

This article summarizes equations in the theory of fluid mechanics.

Definitions

Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface. Right: The reduction in flux passing through a surface can be visualized by reduction in F or dS equivalently (resolved into components, θ is angle to normal n). F•dS is the component of flux passing through the surface, multiplied by the area of the surface (see dot product). For this reason flux represents physically a flow per unit area.

Here [math]\displaystyle{ \mathbf{\hat{t}} \,\! }[/math] is a unit vector in the direction of the flow/current/flux.

Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension
Flow velocity vector field u [math]\displaystyle{ \mathbf{u}=\mathbf{u}\left ( \mathbf{r},t \right ) \,\! }[/math] m s−1 [L][T]−1
Velocity pseudovector field ω [math]\displaystyle{ \boldsymbol{\omega} = \nabla\times\mathbf{v} }[/math] s−1 [T]−1
Volume velocity, volume flux φV (no standard symbol) [math]\displaystyle{ \phi_V = \int_S \mathbf{u} \cdot \mathrm{d}\mathbf{A}\,\! }[/math] m3 s−1 [L]3 [T]−1
Mass current per unit volume s (no standard symbol) [math]\displaystyle{ s = \mathrm{d}\rho / \mathrm{d}t \,\! }[/math] kg m−3 s−1 [M] [L]−3 [T]−1
Mass current, mass flow rate Im [math]\displaystyle{ I_\mathrm{m} = \mathrm{d} m/\mathrm{d} t \,\! }[/math] kg s−1 [M][T]−1
Mass current density jm [math]\displaystyle{ I_\mathrm{m} = \iint \mathbf{j}_\mathrm{m} \cdot \mathrm{d}\mathbf{S} \,\! }[/math] kg m−2 s−1 [M][L]−2[T]−1
Momentum current Ip [math]\displaystyle{ I_\mathrm{p} = \mathrm{d} \left | \mathbf{p} \right |/\mathrm{d} t \,\! }[/math] kg m s−2 [M][L][T]−2
Momentum current density jp [math]\displaystyle{ I_\mathrm{p} =\iint \mathbf{j}_\mathrm{p} \cdot \mathrm{d}\mathbf{S} }[/math] kg m s−2 [M][L][T]−2

Equations

Physical situation Nomenclature Equations
Fluid statics,
pressure gradient
  • r = Position
  • ρ = ρ(r) = Fluid density at gravitational equipotential containing r
  • g = g(r) = Gravitational field strength at point r
  • P = Pressure gradient
[math]\displaystyle{ \nabla P = \rho \mathbf{g}\,\! }[/math]
Buoyancy equations
  • ρf = Mass density of the fluid
  • Vimm = Immersed volume of body in fluid
  • Fb = Buoyant force
  • Fg = Gravitational force
  • Wapp = Apparent weight of immersed body
  • W = Actual weight of immersed body
Buoyant force

[math]\displaystyle{ \mathbf{F}_\mathrm{b} = - \rho_f V_\mathrm{imm} \mathbf{g} = - \mathbf{F}_\mathrm{g}\,\! }[/math]

Apparent weight
[math]\displaystyle{ \mathbf{W}_\mathrm{app} = \mathbf{W} - \mathbf{F}_\mathrm{b}\,\! }[/math]

Bernoulli's equation pconstant is the total pressure at a point on a streamline [math]\displaystyle{ p + \rho u^2/2 + \rho gy = p_\mathrm{constant}\,\! }[/math]
Euler equations
[math]\displaystyle{ \frac{\partial\rho}{\partial t}+\nabla\cdot(\rho\mathbf{u})=0\,\! }[/math]

[math]\displaystyle{ \frac{\partial\rho{\mathbf{u}}}{\partial t} + \nabla \cdot \left ( \mathbf{u}\otimes \left ( \rho \mathbf{u} \right ) \right )+\nabla p=0\,\! }[/math]
[math]\displaystyle{ \frac{\partial E}{\partial t}+\nabla\cdot\left ( \mathbf u \left ( E+p \right ) \right ) = 0 \,\! }[/math]
[math]\displaystyle{ E = \rho \left ( U + \frac{1}{2} \mathbf{u}^2 \right ) \,\! }[/math]

Convective acceleration [math]\displaystyle{ \mathbf{a} = \left ( \mathbf{u} \cdot \nabla \right ) \mathbf{u} }[/math]
Navier–Stokes equations
  • TD = Deviatoric stress tensor
  • [math]\displaystyle{ \mathbf{f} }[/math] = volume density of the body forces acting on the fluid
  • [math]\displaystyle{ \nabla }[/math] here is the del operator.
[math]\displaystyle{ \rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \nabla \cdot\mathbf{T}_\mathrm{D} + \mathbf{f} }[/math]

See also

Sources

Further reading