List of quantum processors: Difference between revisions
(url) |
(No difference)
|
Latest revision as of 20:53, 6 February 2024
This list contains quantum processors, also known as quantum processing units (QPUs). Some devices listed below have only been announced at press conferences so far, with no actual demonstrations or scientific publications characterizing the performance.
Quantum processors are difficult to compare due to the different architectures and approaches. Due to this, published qubit numbers do not reflect the performance levels of the processor. This is instead achieved through benchmarking metrics such as quantum volume, randomized benchmarking or circuit layer operations per second (CLOPS).[1]
Circuit-based quantum processors
These QPUs are based on the quantum circuit and quantum logic gate-based model of computing.
Manufacturer | Name/codename
designation |
Architecture | Layout | Fidelity (%) | Qubits (physical) | Release date | Quantum volume |
---|---|---|---|---|---|---|---|
Alpine Quantum Technologies | PINE System[2] | Trapped ion | 24[3] | June 7, 2021 | 128[4] | ||
Atom Computing | Phoenix | Neutral atoms in optical lattices | 100[5] | August 10, 2021 | |||
Atom Computing | N/A | Neutral atoms in optical lattices | 1180[6][7] | October 2023 | |||
N/A | Superconducting | N/A | 99.5[8] | 20 | 2017 | ||
N/A | Superconducting | 7×7 lattice | 99.7[8] | 49[9] | Q4 2017 (planned) | ||
Bristlecone | Superconducting transmon | 6×12 lattice | 99 (readout) 99.9 (1 qubit) 99.4 (2 qubits) |
72[10][11] | March 5, 2018 | ||
Sycamore | Superconducting transmon | 9×6 lattice | N/A | 53 effective (54 total) | 2019 | ||
IBM | IBM Q 5 Tenerife | Superconducting | bow tie | 99.897 (average gate) 98.64 (readout) |
5 | 2016[8] | |
IBM | IBM Q 5 Yorktown | Superconducting | bow tie | 99.545 (average gate) 94.2 (readout) |
5 | ||
IBM | IBM Q 14 Melbourne | Superconducting | N/A | 99.735 (average gate) 97.13 (readout) |
14 | ||
IBM | IBM Q 16 Rüschlikon | Superconducting | 2×8 lattice | 99.779 (average gate) 94.24 (readout) |
16[12] | May 17, 2017 (Retired: 26 September 2018)[13] |
|
IBM | IBM Q 17 | Superconducting | N/A | N/A | 17[12] | May 17, 2017 | |
IBM | IBM Q 20 Tokyo | Superconducting | 5×4 lattice | 99.812 (average gate) 93.21 (readout) |
20[14] | November 10, 2017 | |
IBM | IBM Q 20 Austin | Superconducting | 5×4 lattice | N/A | 20 | (Retired: 4 July 2018)[13] | |
IBM | IBM Q 50 prototype | Superconducting transmon | N/A | N/A | 50[14] | ||
IBM | IBM Q 53 | Superconducting | N/A | N/A | 53 | October 2019 | |
IBM | IBM Eagle | Superconducting | N/A | N/A | 127[15] | November 2021 | |
IBM | IBM Osprey[6][7] | Superconducting | N/A | N/A | 433[15] | November 2022 | |
IBM | IBM Condor[16][6] | Superconducting | N/A | N/A | 1121[15] | December 2023 | |
IBM | IBM Heron[16][6] | Superconducting | N/A | N/A | 133 | December 2023 | |
IBM | IBM Armonk[17] | Superconducting | Single Qubit | N/A | 1 | October 16, 2019 | |
IBM | IBM Ourense[17] | Superconducting | T | N/A | 5 | July 3, 2019 | |
IBM | IBM Vigo[17] | Superconducting | T | N/A | 5 | July 3, 2019 | |
IBM | IBM London[17] | Superconducting | T | N/A | 5 | September 13, 2019 | |
IBM | IBM Burlington[17] | Superconducting | T | N/A | 5 | September 13, 2019 | |
IBM | IBM Essex[17] | Superconducting | T | N/A | 5 | September 13, 2019 | |
IBM | IBM Athens[18] | Superconducting | N/A | 5 | 32[19] | ||
IBM | IBM Belem[18] | Superconducting | Falcon r4T[20] | N/A | 5 | 16[20] | |
IBM | IBM Bogotá[18] | Superconducting | Falcon r4L[20] | N/A | 5 | 32[20] | |
IBM | IBM Casablanca[18] | Superconducting | Falcon r4H[20] | N/A | 7 | (Retired – March 2022) | 32[20] |
IBM | IBM Dublin[18] | Superconducting | N/A | 27 | 64 | ||
IBM | IBM Guadalupe[18] | Superconducting | Falcon r4P[20] | N/A | 16 | 32[20] | |
IBM | IBM Kolkata | Superconducting | N/A | 27 | 128 | ||
IBM | IBM Lima[18] | Superconducting | Falcon r4T[20] | N/A | 5 | 8[20] | |
IBM | IBM Manhattan[18] | Superconducting | N/A | 65 | 32[19] | ||
IBM | IBM Montreal[18] | Superconducting | Falcon r4[20] | N/A | 27 | 128[20] | |
IBM | IBM Mumbai[18] | Superconducting | Falcon r5.1[20] | N/A | 27 | 128[20] | |
IBM | IBM Paris[18] | Superconducting | N/A | 27 | 32[19] | ||
IBM | IBM Quito[18] | Superconducting | Falcon r4T[20] | N/A | 5 | 16[20] | |
IBM | IBM Rome[18] | Superconducting | N/A | 5 | 32[19] | ||
IBM | IBM Santiago[18] | Superconducting | N/A | 5 | 32[19] | ||
IBM | IBM Sydney[18] | Superconducting | Falcon r4[20] | N/A | 27 | 32[20] | |
IBM | IBM Toronto[18] | Superconducting | Falcon r4[20] | N/A | 27 | 32[20] | |
Intel | 17-Qubit Superconducting Test Chip | Superconducting | 40-pin cross gap | N/A | 17[21][22] | October 10, 2017 | |
Intel | Tangle Lake | Superconducting | 108-pin cross gap | N/A | 49[23] | January 9, 2018 | |
Intel | Tunnel Falls | Semiconductor spin qubits | 12[24] | June 15, 2023 | |||
IonQ | Harmony | Trapped ion | All-to-All[20] | 11[25] | 2022 | 8[20] | |
IonQ | Aria | Trapped ion | All-to-All[20] | 25[25] | 2022 | ||
IonQ | Forte | Trapped ion | 32x1 chain[26] All-to-All[20] | 99.98 (1 qubit) 98.5-99.3 (2 qubit)[26] |
32[25] | 2022 | |
IQM | - | Superconducting | Star | 99.91 (1 qubit) 99.14 (2 qubits) |
5[27] | November 30, 2021[28] | N/A |
IQM | - | Superconducting | Square lattice | 99.91 (1 qubit median) 99.944 (1 qubit max) 98.25 (2 qubits median) 99.1 (2 qubits max) |
20 | October 9, 2023[29] | 16[30] |
M Squared Lasers | Maxwell | Neutral atoms in optical lattices | 99.5 (3-qubit gate), 99.1 (4-qubit gate)[31] | 200[32] | November 2022 | ||
Oxford Quantum Circuits | Lucy[33] | Superconducting | 8 | 2022 | |||
Oxford Quantum Circuits | OQC Toshiko[34] | Superconducting | 32 | 2023 | |||
Quandela | Ascella | Photonics | N/A | 98.8 (1 qubit) 88.1 (2 qubits) 86.0 (3 qubits) |
6[35] | 2022[36] | |
QuTech at TU Delft | Spin-2 | Semiconductor spin qubits | 99 (average gate) 85(readout)[37] |
2 | 2020 | ||
QuTech at TU Delft | - | Semiconductor spin qubits | 6[38] | September 2022 | |||
QuTech at TU Delft | Starmon-5 | Superconducting | X configuration | 97 (readout)[39] | 5 | 2020 | |
Quantinuum | H2[40] | Trapped ion | Racetrack, All-to-All | 99.997 (1 qubit) 99.8 (2 qubit) |
32 | May 9, 2023 | 65,536[41] |
Quantinuum | H1-1[42] | Trapped ion | 15×15 (Circuit Size) | 99.996 (1 qubit) 99.8 (2 qubit) |
20 | 2022 | 524,288[43] |
Quantinuum | H1-2 [42] | Trapped ion | All-to-All[20] | 99.996 (1 qubit) 99.7 (2 qubit) |
12 | 2022 | 4096[44] |
Quantware | Soprano[45] | Superconducting | 99.9 (single-qubit gates) | 5 | July 2021 | ||
Quantware | Contralto[46] | Superconducting | 99.9 (single-qubit gates) | 25 | March 7, 2022[47] | ||
Quantware | Tenor[48] | Superconducting | 64 | February 23, 2023 | |||
Rigetti | Agave | Superconducting | N/A | 96 (Single-qubit gates)
87 (Two-qubit gates) |
8 | June 4, 2018[49] | |
Rigetti | Acorn | Superconducting transmon | N/A | 98.63 (Single-qubit gates)
87.5 (Two-qubit gates) |
19[50] | December 17, 2017 | |
Rigetti | Aspen-1 | Superconducting | N/A | 93.23 (Single-qubit gates)
90.84 (Two-qubit gates) |
16 | November 30, 2018[49] | |
Rigetti | Aspen-4 | Superconducting | 99.88 (Single-qubit gates)
94.42 (Two-qubit gates) |
13 | March 10, 2019 | ||
Rigetti | Aspen-7 | Superconducting | 99.23 (Single-qubit gates)
95.2 (Two-qubit gates) |
28 | November 15, 2019 | ||
Rigetti | Aspen-8 | Superconducting | 99.22 (Single-qubit gates)
94.34 (Two-qubit gates) |
31 | May 5, 2020 | ||
Rigetti | Aspen-9 | Superconducting | 99.39 (Single-qubit gates)
94.28 (Two-qubit gates) |
32 | February 6, 2021 | ||
Rigetti | Aspen-10 | Superconducting | 99.37 (Single-qubit gates)
94.66 (Two-qubit gates) |
32 | November 4, 2021 | ||
Rigetti | Aspen-11 | Superconducting | Octagonal[20] | 99.8 (Single-qubit gates) 92.7 (Two-qubit gates CZ) 91.0 (Two-qubit gates XY) | 40 | December 15, 2021 | |
Rigetti | Aspen-M-1 | Superconducting transmon | Octagonal[20] | 99.8 (Single-qubit gates) 93.7 (Two-qubit gates CZ) 94.6 (Two-qubit gates XY) | 80 | February 15, 2022 | 8[20] |
Rigetti | Aspen-M-2 | Superconducting transmon | 99.8 (Single-qubit gates) 91.3 (Two-qubit gates CZ) 90.0 (Two-qubit gates XY) | 80 | August 1, 2022 | ||
Rigetti | Aspen-M-3 | Superconducting transmon | N/A | 99.9 (Single-qubit gates) 94.7 (Two-qubit gates CZ) 95.1 (Two-qubit gates XY) | 80[51] | December 2, 2022 | |
Rigetti | Ankaa-2 | Superconducting transmon | N/A | 98 (Two-qubit gates) | 84[52] | December 20, 2023 | |
RIKEN | RIKEN[53] | Superconducting | N/A | N/A | 53 effective (64 total)[54][55] | March 27, 2023 | N/A |
SpinQ | Triangulum | Nuclear magnetic resonance | 3[56] | September 2021 | |||
USTC | Jiuzhang | Photonics | N/A | N/A | 76[57][58] | 2020 | |
USTC | Zuchongzhi | Superconducting | N/A | N/A | 62[59] | 2020 | |
USTC | Zuchongzhi 2.1 | Superconducting | lattice[60] | 99.86 (Single-qubit gates) 99.41 (Two-qubit gates) 95.48 (Readout) | 66[61] | 2021 | |
Xanadu | Borealis[62] | Photonics | N/A | N/A | 216[62] | 2022[62] | |
Xanadu | X8 [63] | Photonics | N/A | N/A | 8 | 2020 | |
Xanadu | X12 | Photonics | N/A | N/A | 12 | 2020[63] | |
Xanadu | X24 | Photonics | N/A | N/A | 24 | 2020[63] |
Annealing quantum processors
These QPUs are based on quantum annealing, not to be confused with digital annealing.[64]
Manufacturer | Name/Codename
/Designation |
Architecture | Layout | Fidelity (%) | Qubits | Release date |
---|---|---|---|---|---|---|
D-Wave | D-Wave One (Rainier) | Superconducting | C4 = Chimera(4,4,4)[65] = 4×4 K4,4 | N/A | 128 | May 11, 2011 |
D-Wave | D-Wave Two | Superconducting | C8 = Chimera(8,8,4)[65] = 8×8 K4,4 | N/A | 512 | 2013 |
D-Wave | D-Wave 2X | Superconducting | C12 = Chimera(12,12,4)[65] = 12×12 K4,4 | N/A | 1152 | 2015 |
D-Wave | D-Wave 2000Q | Superconducting | C16 = Chimera(16,16,4)[65] = 16×16 K4,4 | N/A | 2048 | 2017 |
D-Wave | D-Wave Advantage | Superconducting | Pegasus P16[66] | N/A | 5760 | 2020 |
Analog quantum processors
These QPUs are based on analog Hamiltonian simulation.
Manufacturer | Name/Codename/Designation | Architecture | Layout | Fidelity (%) | Qubits | Release date |
---|---|---|---|---|---|---|
QuEra | Aquila | Neutral atoms | N/A | N/A | 256[67] | November 2022 |
See also
References
- ↑ Wack, Andrew; Paik, Hanhee; Javadi-Abhari, Ali; Jurcevic, Petar; Faro, Ismael; Gambetta, Jay M.; Johnson, Blake R. (29 Oct 2021). "A practical heuristic for finding graph minors". arXiv:2110.14108 [quant-ph].
- ↑ "THE SYSTEM IS THE FIRST COMMERCIAL 19-INCH RACK-MOUNTED ROOM-TEMPERATURE QUANTUM COMPUTER". https://www.aqt.eu/pine-system-19-rack-mounted-quantum-computer/.
- ↑ Pogorelov, I.; Feldker, T.; Et, al. (2021-06-07). "Compact Ion-Trap Quantum Computing Demonstrator". PRX Quantum 2 (2): 020343. doi:10.1103/PRXQuantum.2.020343. Bibcode: 2021PRXQ....2b0343P.
- ↑ "STATE OF QUANTUM COMPUTING IN EUROPE: AQT PUSHING PERFORMANCE WITH A QUANTUM VOLUME OF 128". 8 February 2023. https://www.aqt.eu/aqt-pushing-performance-with-a-quantum-volume-of-128/.
- ↑ Barnes, Katrina; Battaglino, Peter; Et, al. (2022). "Assembly and coherent control of a register of nuclear spin qubits". Nature Communications 13 (1): 2779. doi:10.1038/s41467-022-29977-z. PMID 35589685. Bibcode: 2022NatCo..13.2779B.
- ↑ 6.0 6.1 6.2 6.3 Padavic-Callaghan, Karmela (December 9, 2023). "IBM unveils 1000-qubit computer" (in en). New Scientist: pp. 13.
- ↑ 7.0 7.1 Wilkins, Alex (October 24, 2023). "Record-breaking quantum computer has more than 1000 qubits" (in en-US). https://www.newscientist.com/article/2399246-record-breaking-quantum-computer-has-more-than-1000-qubits/.
- ↑ 8.0 8.1 8.2 Lant, Karla (2017-06-23). "Google is Closer Than Ever to a Quantum Computer Breakthrough". Futurism. https://futurism.com/google-is-closer-than-ever-to-a-quantum-computer-breakthrough/. Retrieved 2017-10-18.
- ↑ Simonite, Tom (2017-04-21). "Google's New Chip Is a Stepping Stone to Quantum Computing Supremacy". MIT Technology Review. https://www.technologyreview.com/s/604242/googles-new-chip-is-a-stepping-stone-to-quantum-computing-supremacy/. Retrieved 2017-10-18.
- ↑ "A Preview of Bristlecone, Google's New Quantum Processor", Research (Google), March 2018, https://research.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html.
- ↑ Greene, Tristan (2018-03-06). "Google reclaims quantum computer crown with 72 qubit processor". The Next Web. https://thenextweb.com/artificial-intelligence/2018/03/06/google-reclaims-quantum-computer-crown-with-72-qubit-processor/. Retrieved 2018-06-27.
- ↑ 12.0 12.1 "IBM Builds Its Most Powerful Universal Quantum Computing Processors". IBM. 2017-05-17. https://www-03.ibm.com/press/us/en/pressrelease/52403.wss. Retrieved 2017-10-18.
- ↑ 13.0 13.1 "Quantum devices & simulators" (in en-US). 2018-06-05. https://www.research.ibm.com/ibm-q/technology/devices/.
- ↑ 14.0 14.1 "IBM Announces Advances to IBM Quantum Systems & Ecosystem". 10 November 2017. https://www-03.ibm.com/press/us/en/pressrelease/53374.wss. Retrieved 10 November 2017.
- ↑ 15.0 15.1 15.2 Brooks, Michael (January–February 2024). "Bring on the noise". MIT Technology Review (Cambridge, Massachusetts) 127 (1): p. 50.
- ↑ 16.0 16.1 "IBM’s 'Condor' quantum computer has more than 1000 qubits" (in en-US). https://www.newscientist.com/article/2405789-ibms-condor-quantum-computer-has-more-than-1000-qubits/.
- ↑ 17.0 17.1 17.2 17.3 17.4 17.5 "IBM Q Experience" (in en). https://quantum-computing.ibm.com/.
- ↑ 18.00 18.01 18.02 18.03 18.04 18.05 18.06 18.07 18.08 18.09 18.10 18.11 18.12 18.13 18.14 18.15 "IBM Quantum" (in en). https://quantum-computing.ibm.com/.
- ↑ 19.0 19.1 19.2 19.3 19.4 "IBM Blog" (in en-US). https://admin01.prod.blogs.cis.ibm.net/blog/.
- ↑ 20.00 20.01 20.02 20.03 20.04 20.05 20.06 20.07 20.08 20.09 20.10 20.11 20.12 20.13 20.14 20.15 20.16 20.17 20.18 20.19 20.20 20.21 20.22 20.23 20.24 20.25 20.26 20.27 Pelofske, Elijah; Bärtschi, Andreas; Eidenbenz, Stephan (2022). "Quantum Volume in Practice: What Users Can Expect from NISQ Devices". IEEE Transactions on Quantum Engineering 3: 1–19. doi:10.1109/TQE.2022.3184764. ISSN 2689-1808.
- ↑ "Intel Delivers 17-Qubit Superconducting Chip with Advanced Packaging to QuTech". 2017-10-10. https://newsroom.intel.com/news/intel-delivers-17-qubit-superconducting-chip-advanced-packaging-qutech/. Retrieved 2017-10-18.
- ↑ Novet, Jordan (2017-10-10). "Intel shows off its latest chip for quantum computing as it looks past Moore's Law". CNBC. https://www.cnbc.com/2017/10/10/intel-delivers-17-qubit-quantum-computing-chip-to-qutech.html. Retrieved 2017-10-18.
- ↑ "CES 2018: Intel's 49-Qubit Chip Shoots for Quantum Supremacy". 2018-01-09. https://spectrum.ieee.org/tech-talk/computing/hardware/intels-49qubit-chip-aims-for-quantum-supremacy. Retrieved 2018-01-14.
- ↑ "Intel's New Chip to Advance Silicon Spin Qubit Research for Quantum Computing". https://www.intel.com/content/www/us/en/newsroom/news/quantum-computing-chip-to-advance-research.html.
- ↑ 25.0 25.1 25.2 "IonQ | Trapped Ion Quantum Computing" (in en). https://ionq.com/.
- ↑ 26.0 26.1 Egan, Laird; Debroy, Dripto M.; Noel, Crystal; Risinger, Andrew; Zhu, Daiwei; Biswas, Debopriyo; Newman, Michael; Li, Muyuan; Brown, Kenneth R. (2021-01-07), Fault-Tolerant Operation of a Quantum Error-Correction Code, doi:10.48550/arXiv.2009.11482, retrieved 2024-01-25.
- ↑ "The Power of Co-Design, Hermanni Heimonen, IQM". 2022-12-08. https://www.youtube.com/watch?v=dLlUIkIsFig.
- ↑ "Finland's first 5-qubit quantum computer is now operational". 2022-12-08. https://www.vttresearch.com/en/news-and-ideas/finlands-first-5-qubit-quantum-computer-now-operational.
- ↑ "Finland launches a 20-qubit quantum computer – development towards more powerful quantum computers continues". 2023-10-09. https://meetiqm.com/resources/press-releases/finland-launches-a-20-qubit-quantum-computer/.
- ↑ "Finland Unveils Second Quantum Computer with 20 Qubits, Aims for 50-Qubit Device by 2024". 2023-10-10. https://quantumzeitgeist.com/finland-unveils-second-quantum-computer-with-20-qubits-aims-for-50-qubit-device-by-2024/.
- ↑ Pelegrí, G.; Daley, A. J.; Pritchard, J. D. (2022). "High-fidelity multiqubit Rydberg gates via two-photon adiabatic rapid passage". Quantum Science and Technology 7 (4): 045020. doi:10.1088/2058-9565/ac823a. Bibcode: 2022QS&T....7d5020P.
- ↑ "MAXWELL: NEUTRAL ATOM QUANTUM PROCESSOR". https://www.m2lasers.com/quantum-datasheet.html?file=Maxwell_Explainer.pdf.
- ↑ "Lucy". 30 November 2021. https://oxfordquantumcircuits.com/oqc-on-aws.
- ↑ "OQC Toshiko". 24 November 2023. https://oxfordquantumcircuits.com/toshiko-the-worlds-first-enterprise-ready-quantum-platform.
- ↑ Pont, M.; Corrielli, G.; Fyrillas, A.; et, al. (2022-11-29). "High-fidelity generation of four-photon GHZ states on-chip". arXiv:2211.15626 [quant-ph].
- ↑ "La puissance d'un ordinateur quantique testée en ligne (The power of a quantum computer tested online)". Le Monde.fr (Le Monde). 22 November 2022. https://www.lemonde.fr/sciences/article/2022/11/22/la-puissance-d-un-ordinateur-quantique-testee-en-ligne_6151063_1650684.html.
- ↑ "Spin-2". https://www.quantum-inspire.com/backends/spin-2/.
- ↑ "Six-qubit silicon quantum processor sets a record". 19 October 2022. https://physicsworld.com/a/six-qubit-silicon-quantum-processor-sets-a-record/.
- ↑ "Starmon-5". https://www.quantum-inspire.com/backends/starmon-5.
- ↑ "Quantinuum H2 Product Data Sheet". https://assets.website-files.com/62b9d45fb3f64842a96c9686/6459acc9b999bb7fb526c4bf_Quantinuum%20H2%20Product%20Data%20Sheet.pdf.
- ↑ "Quantinuum | Hardware | System Model H2" (in en). https://www.quantinuum.com/hardware/h2.
- ↑ 42.0 42.1 "Quantinuum System Model H1 Product Data Sheet". https://assets.website-files.com/62b9d45fb3f64842a96c9686/648c742dd3e744dfeeb7cd06_Quantinuum%20H1%20Product%20Data%20Sheet%20v5.4%2015Jun23.pdf.
- ↑ "Quantinuum H-Series quantum computer accelerates through 3 more performance records for quantum volume: 217, 218, and 219". https://www.quantinuum.com/news/quantinuum-h-series-quantum-computer-accelerates-through-3-more-performance-records-for-quantum-volume-217-218-and-219.
- ↑ "Quantinuum Announces Quantum Volume 4096 Achievement". https://www.quantinuum.com/news/quantum-volume-reaches-5-digits-for-the-first-time-5-perspectives-on-what-it-means-for-quantum-computing.
- ↑ "Soprano specs". https://www.quantware.eu/product/soprano.
- ↑ "Contralto specs". https://www.quantware.eu/product/contralto.
- ↑ "QUANTWARE RELEASES 25-QUBIT CONTRALTO QPU". https://www.quantware.eu/press/quantware-releases-25-qubit-contralto-qpu.
- ↑ "Tenor specs". https://www.quantware.eu/product/tenor.
- ↑ 49.0 49.1 "QPU". https://rigetti.com/qpu.
- ↑ "Unsupervised Machine Learning on Rigetti 19Q with Forest 1.2". 2017-12-18. https://medium.com/rigetti/unsupervised-machine-learning-on-rigetti-19q-with-forest-1-2-39021339699. Retrieved 2018-03-21.
- ↑ "Aspen-M-3 Quantum Processor". https://qcs.rigetti.com/qpus. Retrieved 2023-02-20.
- ↑ Rigetti & Company LLC (2024-01-04). "Rigetti Announces Public Availability of Ankaa-2 System with a 2.5x Performance Improvement Compared to Previous QPUs" (in en). https://www.globenewswire.com/news-release/2024/01/04/2804006/0/en/Rigetti-Announces-Public-Availability-of-Ankaa-2-System-with-a-2-5x-Performance-Improvement-Compared-to-Previous-QPUs.html.
- ↑ "Japan’s first homemade quantum computer goes online" (in en). https://www.riken.jp/en/news_pubs/news/2023/20230921_3/index.html.
- ↑ "Japanese joint research group launches quantum computing cloud service" (in en). https://www.fujitsu.com/global/about/resources/news/press-releases/2023/0324-01.html.
- ↑ "RIKEN and Fujitsu develop 64-qubit quantum computer" (in en). https://www.riken.jp/en/news_pubs/news/2023/20231005_2/index.html.
- ↑ "Triangulum3 qubits desktop NMR quantum computer". https://www.spinquanta.com/products-solutions/Triangulum.
- ↑ Ball, Philip (2020-12-03). "Physicists in China challenge Google's 'quantum advantage'" (in en). Nature 588 (7838): 380. doi:10.1038/d41586-020-03434-7. PMID 33273711. Bibcode: 2020Natur.588..380B.
- ↑ Letzter, Rafi – Staff Writer 07 (7 December 2020). "China claims fastest quantum computer in the world" (in en). https://www.livescience.com/china-quantum-supremacy.html.
- ↑ Ball, Philip (2020-12-03). "Strong Quantum Computational Advantage Using a Superconducting Quantum Processor". Physical Review Letters 127 (18): 180501. doi:10.1103/PhysRevLett.127.180501. PMID 34767433. Bibcode: 2021PhRvL.127r0501W.
- ↑ Zhu, Qingling et al. (2021). "Quantum Computational Advantage via 60-Qubit 24-Cycle Random Circuit Sampling". Science Bulletin 67 (3): 240–245. doi:10.1016/j.scib.2021.10.017. PMID 36546072.
- ↑ Wu, Yulin; Bao, Wan-Su; Cao, Sirui; Chen, Fusheng; Chen, Ming-Cheng; Chen, Xiawei; Chung, Tung-Hsun; Deng, Hui et al. (2021-10-25). "Strong Quantum Computational Advantage Using a Superconducting Quantum Processor" (in en). Physical Review Letters 127 (18): 180501. doi:10.1103/PhysRevLett.127.180501. ISSN 0031-9007. PMID 34767433. Bibcode: 2021PhRvL.127r0501W. https://link.aps.org/doi/10.1103/PhysRevLett.127.180501.
- ↑ 62.0 62.1 62.2 Madsen, Lars S.; Laudenbach, Fabian; Askarani, Mohsen Falamarzi; Rortais, Fabien; Vincent, Trevor; Bulmer, Jacob F. F.; Miatto, Filippo M.; Neuhaus, Leonhard et al. (June 2022). "Quantum computational advantage with a programmable photonic processor" (in en). Nature 606 (7912): 75–81. doi:10.1038/s41586-022-04725-x. ISSN 1476-4687. PMID 35650354. Bibcode: 2022Natur.606...75M.
- ↑ 63.0 63.1 63.2 "A new kind of quantum". https://spie.org/news/photonics-focus/novdec-2020/a-new-kind-of-quantum.
- ↑ "Digital Annealer – Quantum Computing Technology". https://www.fujitsu.com/global/services/business-services/digital-annealer/.
- ↑ 65.0 65.1 65.2 65.3 Cai, Jun; Macready, Bill; Roy, Aidan (10 Jun 2014). "A practical heuristic for finding graph minors". arXiv:1406.2741 [quant-ph].
- ↑ Boothby, Kelly; Bunyk, Paul; Raymond, Jack; Roy, Aidan (29 Feb 2020). "Next-Generation Topology of D-Wave Quantum Processors". arXiv:2003.00133 [quant-ph].
- ↑ Lee, Jane (2 November 2022). "Boston-based quantum computer QuEra joins Amazon's cloud for public access". Reuters.
Original source: https://en.wikipedia.org/wiki/List of quantum processors.
Read more |