Biology:2018 in paleobotany
This article records new taxa of plants that are scheduled to be described during the year 2018, as well as other significant discoveries and events related to paleobotany that occurred in the year 2018.
Flowering plants
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Alloberberis axelrodii[1] |
Sp. nov |
Valid |
Doweld |
Miocene |
United States |
A member of the family Berberidaceae; a replacement name for the previously invalidly published Mahonia sinuata Axelrod (1985), lacking holotype designation when published. |
||
Alloberberis caeruleomontana[1] |
Nom. nov |
Valid |
Doweld |
Miocene |
United States |
A member of the family Berberidaceae; a replacement name for Ilex sinuata Chaney & Axelrod (1959). |
||
Anacolosidites eosenonicus[2] |
Sp. nov |
Valid |
Arai & Dias-Brito |
São Carlos Formation |
Brazil |
A pollen taxon, possibly a member of the family Loranthaceae. |
||
Aniba caucasica[3] |
Nom. nov |
Valid |
Doweld |
Pliocene |
A species of Aniba; a replacement name for Aniba longifolia Kolakovsky & Schakryl (1958). |
|||
Anisodromum upchurchii[4] |
Sp. nov |
Valid |
Wang & Dilcher |
Dakota Formation |
United States |
A rosid described on the basis of fossil leaves. |
||
Annona nepalensis[5] |
Sp. nov |
Valid |
Prasad et al. |
Miocene |
Churia Formation |
Nepal |
A species of Annona. |
|
Araliaephyllum popovii[6] |
Sp. nov |
Valid |
Golovneva |
Russia |
A member of Laurales described on the basis of fossil leaves. |
|||
Archeampelos betulifolia[7] |
Sp. nov |
Valid |
Moiseeva, Kodrul & Herman |
Zeya–Bureya Basin |
Russia |
A flowering plant described on the basis of fossil leaves, similar to leaves of members of the family Betulaceae. |
||
Austrovideira[8] |
Gen. et sp. nov |
Valid |
Rozefelds & Pace |
Early Oligocene |
Australia |
A member of Vitaceae. Genus includes new species A. dettmannae. |
||
Berberis miopannonica[1] |
Nom. nov |
Valid |
Doweld |
Miocene |
Romania |
A species of Berberis; a replacement name for Berberis lanceolata Givulescu (1985). |
||
Berberis notata[1] |
Nom. nov |
Valid |
Doweld |
Miocene |
Austria |
A species of Berberis; a replacement name for Ilex ambigua Unger (1847) and Berberis ambigua Kovar-Eder & Kvaček (2004). |
||
Berryoxylon[9] |
Gen. et sp. nov |
Valid |
Awasthi, Mehrotra & Shukla |
Late Miocene–early Pliocene |
Cuddalore Sandstone Formation |
India |
A fossil wood showing affinities with members of the genus Berrya. Genus includes new species B. cuddalorensis. |
|
Bignonioxylon[10] |
Gen. et sp. nov |
Valid |
Moya & Brea |
Late Pleistocene |
Arroyo Feliciano Formation |
Argentina |
A member of Bignoniaceae described on the basis of fossil wood. Genus includes new species B. americanum. |
|
Burretiodendron guangxiensis[11] |
Sp. nov |
Valid |
Dong & Sun in Dong et al. |
Ningming Formation |
China |
A species of Burretiodendron. |
||
Buxus pliosinica[12] |
Sp. nov |
Valid |
Huang, Su & Zhou |
Late Pliocene |
Sanying Formation |
China |
A species of Buxus. |
|
Canarium guangxiensis[13] |
Sp. nov |
Valid |
Han & Manchester in Han et al. |
Late Oligocene to late Miocene |
Erzitang Formation |
China |
A species of Canarium |
|
Carlquistoxylon australe[14] |
Sp. nov |
Valid |
Pujana et al. |
Early Cretaceous (late Albian) |
Argentina |
A flowering plant of uncertain phylogenetic placement, described on the basis of fossil wood. |
||
Castanopsis guangxiensis[15] |
Sp. nov |
Valid |
Huang et al. |
Late Oligocene |
Yongning Formation |
China |
A species of Castanopsis. |
|
Castanopsis nanningensis[15] |
Sp. nov |
Valid |
Huang et al. |
Late Oligocene |
Yongning Formation |
China |
A species of Castanopsis. |
|
Chenocybus[16] |
Gen. et sp. nov |
Valid |
Poinar |
Myanmar |
A flowering plant of uncertain phylogenetic placement. Genus includes new species C. allodapus. |
|||
Chisochetonoxylon vastanensis[17] |
Sp. nov |
Valid |
Shukla & Mehrota |
Early Eocene |
Cambay Shale Formation |
India |
A member of the family Meliaceae described on the basis of fossil wood. |
|
Cladium transdnestrovicum[18] |
Nom. nov |
Valid |
Doweld |
Miocene (Serravallian) |
Transnistria |
A species of Cladium; a replacement name for Cladium crassum Negru (1972), preoccupied by extant C. crassum (Thwaites) Kükenthal. |
||
Clerodendrum sarmatiacum[3] |
Nom. nov |
Valid |
Doweld |
Miocene |
A species of Clerodendrum; a replacement name for Clerodendrum ovalifolium Baikovskaja in Kryshtofovich & Baikovskaja (1965). |
|||
Cobbania pharao[19] |
Sp. nov |
Valid |
Coiffard & Mohr |
Egypt |
A member of the family Araceae belonging or related to the subfamily Aroideae. |
|||
Gen. et 2 sp. nov |
Valid |
Manchester, Pigg & Devore |
Early Eocene to Middle Miocene |
Little Butte Volcanic Series |
United States( Oregon) |
A Trochodendraceae genus. Type species C. kvacekii Manchester, Pigg & Devore (2018) from Oregon |
||
Craspedodromophyllum boguchanicum[7] |
Sp. nov |
Valid |
Moiseeva, Kodrul & Herman |
Zeya–Bureya Basin |
Russia |
A member of the family Betulaceae. |
||
Cretaceoxylon[23] |
Gen. et sp. nov |
Valid |
Pujana in Pujana et al. |
Antarctica |
A eudicot of uncertain phylogenetic placement, described on the basis of fossil wood. Genus includes new species C. heteropunctatum. |
|||
Cryptocaryoxylon lemnium[24] |
Sp. nov |
Valid |
Mantzouka |
Early Miocene |
Greece |
A member of the family Lauraceae. |
||
Cryptocaryoxylon lesbium[24] |
Sp. nov |
Valid |
Mantzouka |
Early Miocene |
Greece |
A member of the family Lauraceae. |
||
Cussoniophyllum[25] |
Nom. nov |
Valid |
Doweld |
Czech Republic |
A flowering plant described on the basis of fossil leaves; a replacement name for the invalidly published Cussoniphyllum Velenovský (1889). Genus includes "Cussonia" partita Velenovský (1882). |
|||
Cyperus maii[18] |
Nom. nov |
Valid |
Doweld |
Miocene |
Germany |
A species of Cyperus; a replacement name for Dichostylis macrocarpa Mai (1987). |
||
Cyperus waltheri[18] |
Nom. nov |
Valid |
Doweld |
Miocene |
Germany |
A species of Cyperus; a replacement name for Dichostylis minor Mai in Mai & Walther (1991). |
||
Gen. et comb. nov |
Valid |
Manchester et al. |
Cretaceous (late Albian to Cenomanian) |
Dakota Formation |
United States |
An early eudicot; a new genus for "Carpites" cordiformis Lesquereux (1892). |
||
Dalbergioxylon biseriatensis[27] |
Sp. nov |
Valid |
Cheng et al. |
Pliocene |
Yuanmou Basin |
China |
A member of the family Fabaceae described on the basis of fossil wood. |
|
Diaphoranthus[16] |
Gen. et sp. nov |
Junior homonym |
Poinar |
Myanmar |
A flowering plant of uncertain phylogenetic placement. Genus includes new species D. burmensis. The generic name is preoccupied by Diaphoranthus Meyen (1834); Poinar (2019) coined a replacement name Exalloanthum.[28] |
|||
Dicotylophyllum skogii[4] |
Sp. nov |
Valid |
Wang & Dilcher |
Dakota Formation |
United States |
A flowering plant of uncertain phylogenetic placement, described on the basis of fossil leaves. |
||
Dioscorites palauensis[29] |
Sp. nov |
Valid |
Guzmán-Vázquez, Calvillo-Canadell & Sánchez-Beristain |
Mexico |
A member of the family Dioscoreaceae. |
|||
Diplosophyllum[25] |
Nom. nov |
Valid |
Doweld |
Czech Republic |
A flowering plant described on the basis of fossil leaves; a replacement name for the preoccupied Diplophyllum Velenovský & Viniklář (1929). Genus includes "Inga" cottae Ettingshausen (1867), "Diplophyllum" cretaceum Velenovský & Viniklář (1929), "Hymenaea" elongata Velenovský (1884), "Hymenaea" inaequalis Velenovský (1884) and "Hymenaea" primigenia de Saporta in Velenovský (1884). |
|||
Dipterocarpuspollenites cretacea[30] |
Sp. nov |
Valid |
Prasad et al. |
India |
A pollen taxon belonging to the family Dipterocarpaceae. |
|||
Donlesia cheyennensis[31] |
Sp. nov |
Valid |
Wang & Dilcher |
Cheyenne Sandstone |
United States |
A member of the family Ceratophyllaceae. |
||
Ebenoxylon cuddalorensis[9] |
Sp. nov |
Valid |
Awasthi, Mehrotra & Shukla |
Late Miocene–early Pliocene |
Cuddalore Sandstone Formation |
India |
A fossil wood showing affinities with members of the family Ebenaceae. |
|
Edencarpa[32] |
Gen. et sp. nov |
Valid |
Atkinson, Stockey & Rothwell |
Late Cretaceous (early Coniacian) |
Canada |
A member of Cornales. Genus includes new species E. grandis. |
||
Endobeuthos[33] |
Gen. et sp. nov |
Valid |
Poinar & Chambers |
Myanmar |
A flowering plant of uncertain phylogenetic placement, possibly a relative of members of the family Dilleniaceae. Genus includes new species E. paleosum. |
|||
Eucalyptoxylon cuddalorensis[9] |
Sp. nov |
Valid |
Awasthi, Mehrotra & Shukla |
Late Miocene–early Pliocene |
Cuddalore Sandstone Formation |
India |
A fossil wood showing affinities with members of the genus Eucalyptus. |
|
Euphorbia pontiana[3] |
Nom. nov |
Valid |
Doweld |
Miocene |
Ukraine |
A species of Euphorbia; a replacement name for Euphorbia cylindrica Negru (1979). |
||
Eydeia vancouverensis[32] |
Sp. nov |
Valid |
Atkinson, Stockey & Rothwell |
Late Cretaceous (early Coniacian) |
Canada |
A member of Cornales. |
||
Ficophyllum angustifolium[34] |
Nom. nov |
Valid |
Doweld |
Germany |
A replacement name for Ficus angustifolia Hosius (1869). |
|||
Ficophyllum antiquum[34] |
Nom. nov |
Valid |
Doweld |
Germany |
A replacement name for Ficus crassinervis Hosius (1869). |
|||
Ficophyllum hosii[34] |
Nom. nov |
Valid |
Doweld |
Germany |
A replacement name for Ficus laurifolia Hosius & Marck (1880). |
|||
Ficophyllum magnolioides[34] |
Nom. nov |
Valid |
Doweld |
Dakota Formation |
United States |
A replacement name for Ficus magnoliifolia Lesquereux (1883). |
||
Ficophyllum marckii[34] |
Nom. nov |
Valid |
Doweld |
Germany |
A replacement name for Ficus elongata Hosius (1869). |
|||
Ficus aenigmatica[34] |
Nom. nov |
Valid |
Doweld |
United States |
A species of Ficus; a replacement name for Ficus schimperi Lesquereux (1868). |
|||
Ficus microtrivia[35] |
Sp. nov |
Valid |
Huang & Zhou in Huang et al. |
Miocene |
Wenshan Basin |
China |
A species of Ficus. |
|
Ficus myrtoides[34] |
Nom. nov |
Valid |
Doweld |
United States |
A species of Ficus; a replacement name for Ficus myrtifolius Berry (1916). |
|||
Ficus slovenica[34] |
Nom. nov |
Valid |
Doweld |
Slovenia |
A species of Ficus; a replacement name for Ficus pilosa Ettingshausen (1872). |
|||
Ficus venustoides[34] |
Nom. nov |
Valid |
Doweld |
France |
A species of Ficus; a replacement name for Ficus venusta Saporta (1861). |
|||
Ficus venustula[34] |
Nom. nov |
Valid |
Doweld |
Croatia |
A species of Ficus; a replacement name for Malpighiastrum venustum Unger (1860). |
|||
Ficus yellowstonica[34] |
Nom. nov |
Valid |
Doweld |
United States |
A species of Ficus; a replacement name for Ficus densifolia Knowlton (1899). |
|||
Fissistigma nanningense[36] |
Sp. nov |
Valid |
Li et al. |
Yongning Formation |
China |
A species of Fissistigma. |
||
Gardenia eocenicus[37] |
Sp. nov |
Valid |
Shukla, Mehrotra & Nawaz Ali |
Early Eocene |
Palana Formation |
India |
A species of Gardenia. |
|
Gastonispermum[38] |
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Portugal |
A flowering plant with affinities to Austrobaileyales or Nymphaeales. Genus includes new species G. portugallicum. |
|||
Gleditsioxylon jiangsuensis[39] |
Sp. nov |
Valid |
Cheng et al. |
Early Miocene |
China |
A member of Leguminosae described on the basis of fossil wood. |
||
Gmelina siwalika[40] |
Sp. nov |
Valid |
Khan, Bera & Bera in Khan et al.' |
Late Pliocene or early Pleistocene |
Kimin Formation |
India |
A species of Gmelina. |
|
Goniothalamus miocenicus[5] |
Sp. nov |
Valid |
Prasad et al. |
Late Miocene |
Middle Churia Formation |
Nepal |
A species of Goniothalamus. |
|
Gouania miocenica[41] |
Sp. nov |
Valid |
Hernandez-Hernández & Castañeda-Posadas |
Early Miocene |
Mexican amber |
Mexico |
A species of Gouania. |
|
Hederago[25] |
Nom. nov |
Valid |
Doweld |
Czech Republic |
A flowering plant described on the basis of fossil leaves; a replacement name for the invalidly published Hederophyllum Velenovský (1889). Genus includes "Hedera" credneriifolia Velenovský (1882) and "Hedera" primordialis de Saporta (1879). |
|||
Hemitrapa alpina[42] |
Sp. nov |
Valid |
Su & Zhou in Su et al. |
Early Oligocene |
China |
A member of the family Lythraceae. Originally described as a species of Hemitrapa, but subsequently transferred to the genus Primotrapa by Li et al. (2020).[43] |
||
Hibiscus sarmatiacus[3] |
Sp. nov |
Valid |
Doweld |
Miocene |
A species of Hibiscus; a replacement name for the invalidly named Hibiscus splendens Baikovskaja. |
|||
Holigarna palaeograhamii[37] |
Sp. nov |
Valid |
Shukla, Mehrotra & Nawaz Ali |
Early Eocene |
Palana Formation |
India |
A species of Holigarna. |
|
Hopenium tertiarum[9] |
Sp. nov |
Valid |
Awasthi, Mehrotra & Shukla |
Late Miocene–early Pliocene |
Cuddalore Sandstone Formation |
India |
A fossil wood showing affinities with members of the genus Hopea. |
|
Ipomoea meghalayensis[44] |
Sp. nov |
Valid |
Srivastava, Mehrotra & Dilcher |
India |
A species of Ipomoea. |
|||
Kirchheimeria[45] |
Gen. et comb. nov |
Valid |
Kowalski in Kowalski & Worobiec |
Oligocene to Pliocene |
Denmark |
A member of Ericaceae of uncertain phylogenetic placement. Genus includes "Elaeocarpus" globulus Menzel (1906). |
||
Kvacekispermum[46] |
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Figueira da Foz Formation |
Portugal |
A member of the family Chloranthaceae. Genus includes new species K. rugosum. |
||
Lachnociona camptostylus[47] |
Sp. nov |
Valid |
Poinar & Chambers |
Myanmar |
A flowering plant of uncertain phylogenetic placement, most similar to members of the families Brunelliaceae and Cunoniaceae. |
|||
Lacinipetalum[48] |
Gen. et sp. nov |
Valid |
Jud et al. |
Upper Salamanca Formation |
Argentina |
A member of Cunoniaceae. Genus includes new species L. spectabilum. |
||
Laurinoxylon rennerae[49] |
Sp. nov |
Valid |
Estrada-Ruiz et al. |
Late Cretaceous (late Campanian) |
United States |
A member of Lauraceae described on the basis of fossil wood. |
||
Laurus ficoides[34] |
Nom. nov |
Valid |
Doweld |
France |
A species of Laurus; a replacement name for Ficus reticulata Saporta (1863). |
|||
Lefipania[50] |
Gen. et sp. nov |
Valid |
Martínez, Gandolfo & Cúneo |
Argentina |
A flowering plant of uncertain phylogenetic placement, described on the basis of fossil leaves. Genus includes new species L. padillae. |
|||
Leguminocarpum oguruiensis[51] |
Sp. nov |
Valid |
Yabe & Nakagawa |
Miocene |
Shimo Formation |
Japan |
A fossil legume fruit. |
|
Ligustrum miovulgare[3] |
Sp. nov |
Valid |
Doweld |
Miocene |
A species of Ligustrum; a replacement name for the invalidly named Ligustrum vulgare var. fossilis Baikovskaja. |
|||
Lijinganthus[52] |
Gen. et sp. nov |
Valid |
Liu et al. |
Myanmar |
A member of Pentapetalae of uncertain phylogenetic placement. Genus includes new species L. revoluta. |
|||
Limnobiophyllum stockeyana[19] |
Sp. nov |
Valid |
Coiffard & Mohr |
Egypt |
A member of the family Araceae belonging to the subfamily Lemnoideae. |
|||
Liquidambar fujianensis[53] |
Sp. nov |
Valid |
Dong et al. |
Middle Miocene |
Fotan Group |
China |
A species of Liquidambar. |
|
Lithocarpoxylon microporosum[27] |
Sp. nov |
Valid |
Cheng et al. |
Pliocene |
Yuanmou Basin |
China |
A member of the family Fagaceae described on the basis of fossil wood. |
|
Lithocarpoxylon nanningensis[15] |
Sp. nov |
Valid |
Huang et al. |
Late Oligocene |
Yongning Formation |
China |
A member of Fagaceae described on the basis of fossil wood. |
|
Litseoxylon[54] |
Gen. et sp. nov |
Valid |
Huang et al. |
Late Oligocene |
Yongning Formation |
China |
A member of the family Lauraceae. Genus includes new species L. nanningensis. |
|
Luckowcarpa[55] |
Gen. et sp. nov |
Valid |
Martínez |
Late Eocene |
Esmeraldas Formation |
Colombia |
A member of Fabaceae belonging to the group Dalbergieae. Genus includes new species L. gunnii. |
|
Lusitanispermum[38] |
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Portugal |
A flowering plant with affinities to Austrobaileyales or Nymphaeales. Genus includes new species L. choffatii. |
|||
Lycopus europleistocenicus[3] |
Sp. nov |
Valid |
Doweld |
Belarus |
A species of Lycopus; a replacement name for the invalidly named Lycopus intermedius Dorofeev (1963). |
|||
Malus antiqua[3] |
Nom. nov |
Valid |
Doweld |
Miocene |
Romania |
A species of Malus; a replacement name for Malus pulcherrima Givulescu (1980). |
||
Maytenoxylon[56] |
Gen. et sp. nov |
Valid |
Franco |
Late Cenozoic |
Argentina |
A member of Celastraceae described on the basis of fossil wood. Genus includes new species M. perforatum. |
||
Mcraeoxylon[49] |
Gen. et sp. nov |
Valid |
Estrada-Ruiz et al. |
Late Cretaceous (late Campanian) |
United States |
A flowering plant described on the basis of fossil wood, with a suite of features seen in several families of Malpighiales, Myrtales and Oxalidales. Genus includes new species M. waddellii. |
||
Meliosma antiqua[3] |
Nom. nov |
Valid |
Doweld |
United Kingdom |
A species of Meliosma; a replacement name for Calvarinus reticulatus Reid & Reid (1910). |
|||
Menispermites calderensis[57] |
Sp. nov |
Valid |
Jud et al. |
Argentina |
A member of the family Menispermaceae described on the basis of fossil leaves. |
|||
Menispermites olmosensis[29] |
Sp. nov |
Valid |
Guzmán-Vázquez, Calvillo-Canadell & Sánchez-Beristain |
Mexico |
A member of the family Menispermaceae. |
|||
Nelumbo jiayinensis[58] |
Sp. nov |
Valid |
Liang et al. |
Yong'ancun Formation |
China |
A species of Nelumbo. |
||
Neofructus[59] |
Gen. et sp. nov |
Valid |
Liu & Wang |
China |
An early flowering plant. Genus includes new species N. lingyuanensis. |
|||
Nitaspermum[60] |
Gen. et 5 sp. nov |
Valid |
Friis, Crane & Pedersen |
Potomac Group |
United States |
A fossil seed with affinities to Austrobaileyales and Nymphaeales. Genus includes new species N. taylorii, N. hopewellense, N. crassum, N. virginiense and N. marylandense. |
||
Nyssa givulescui[3] |
Nom. nov |
Valid |
Doweld |
Romania |
A tupelo; a replacement name for Nyssa maxima Givulescu, Petrescu & Barbu (1997). |
|||
Obamacarpa[32] |
Gen. et sp. nov |
Valid |
Atkinson, Stockey & Rothwell |
Late Cretaceous (early Coniacian) |
Canada |
A member of Cornales. Genus includes new species O. edenensis. |
||
Ocotea undulatoides[3] |
Nom. nov |
Valid |
Doweld |
Miocene |
Germany |
A species of Ocotea; a replacement name for Laurophyllum undulatum Weyland & Kilpper (1963). |
||
Gen. et sp. nov |
Valid |
Friis, Mendes & Pedersen |
Early Cretaceous (late Barremian–early Albian) |
Almargem Formation |
Portugal |
An early eudicot. Genus includes new species P. pantoporata. |
||
Palaeocarya huashanensis[62] |
Sp. nov |
Valid |
Chen et al. |
Ningming Formation |
China |
A member of the family Juglandaceae. |
||
Paleoallium[63] |
Gen. et sp. nov |
Valid |
Pigg, Bryan & DeVore |
Okanagan Highlands |
United States |
A monocot similar to members of Amaryllidaceae. Genus includes new species P. billgenseli. |
||
Paliurus hirsuta[64] |
Sp. nov |
Valid |
Dong & Sun in Dong et al. |
Middle Miocene |
Fotan Group |
China |
A species of Paliurus. |
|
Sp. nov |
Valid |
Nour-El-Deen, El-Saadawi & Thomas |
Jebel Qatrani Formation |
Egypt |
||||
Sp. nov |
Valid |
Nour-El-Deen & Thomas in Nour-El-Deen, Thomas & El-Saadawi |
Jebel Qatrani Formation |
Egypt |
||||
Sp. nov |
Valid |
Nour-El-Deen, El-Saadawi & Thomas |
Jebel Qatrani Formation |
Egypt |
||||
Paraalbizioxylon sinica[27] |
Sp. nov |
Valid |
Cheng et al. |
Pliocene |
Yuanmou Basin |
China |
A member of the family Fabaceae described on the basis of fossil wood. |
|
Paraalbizioxylon yunnanensis[27] |
Sp. nov |
Valid |
Cheng et al. |
Pliocene |
Yuanmou Basin |
China |
A member of the family Fabaceae described on the basis of fossil wood. |
|
Parahancornioxylon[66] |
Gen. et comb. nov |
Valid |
Moya, Brea & Lutz |
Pliocene |
Andalhualá Formation |
Argentina |
A member of Apocynaceae described on the basis of fossil wood; a new genus for "Menendoxylon" piptadiensis Lutz (1987). |
|
Paraphyllanthoxylon antarcticum[23] |
Sp. nov |
Valid |
Pujana in Pujana et al. |
Antarctica |
A flowering plant of uncertain phylogenetic placement, described on the basis of fossil wood. |
|||
Pazlia[38] |
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Portugal |
A flowering plant with affinities to Austrobaileyales or Nymphaeales. Genus includes new species P. hilaris. |
|||
Pazliopsis[38] |
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Almargem Formation |
Portugal |
A flowering plant with affinities to Austrobaileyales or Nymphaeales. Genus includes new species P. reyi. |
||
Gen. et sp. nov |
Valid |
Manchester et al. |
Okanagan Highlands |
United States |
A member of the family Trochodendraceae. The type species is P. sternhartae. |
|||
Photinia sarmatiaca[3] |
Sp. nov |
Valid |
Doweld |
Miocene |
A species of Photinia; a replacement name for the invalidly named Photinia acuminata Baikovskaja in Kryshtofovich & Baikovskaja (1965). |
|||
Pistacia miolentiscus[3] |
Nom. nov |
Valid |
Doweld |
Miocene |
Hungary |
A species of Pistacia; a replacement name for Pistacia lentiscoides Andreánszky & Cziffery in Andreánszky (1959). |
||
Pistacia pliolentiscus[3] |
Nom. nov |
Valid |
Doweld |
Pliocene |
Netherlands |
A species of Pistacia; a replacement name for Pistacia acuminata Reid & Reid (1915). |
||
Pistacioxylon ufuki[67] |
Sp. nov |
Valid |
Akkemik & Poole in Akkemik et al. |
Early Miocene |
Haymana Basin |
Turkey |
A Pistacia-like plant described on the basis of fossil wood. |
|
Polyalthioxylon arunachalensis[68] |
Sp. nov |
Valid |
Srivastava, Mehrotra & Srikarni |
Late Pliocene–Early Pleistocene |
Kimin Formation |
India |
A member of the family Annonaceae described on the basis of fossil wood. |
|
Priscophyllum[25] |
Nom. nov |
Valid |
Doweld |
Czech Republic |
A flowering plant described on the basis of fossil leaves; a replacement name for the invalidly published Grevilleophyllum Velenovský (1889). Genus includes "Grevillea" constans Velenovský (1883). |
|||
Prunus hirsutipetala[69] |
Sp. nov |
Valid |
Sokoloff, Remizowa & Nuraliev in Sokoloff et al. |
Ukraine |
A species of Prunus. |
|||
Pseudoanacardium[70] |
Gen. et comb. nov |
Valid |
Manchester & Balmaki |
Early Oligocene |
Peru |
A fossil fruit of uncertain phylogenetic placement; a new genus for "Anacardium" peruvianum Berry (1924). |
||
Pseudolimnobiophyllum[19] |
Gen. et sp. nov |
Valid |
Coiffard & Mohr |
Egypt |
A member of the family Araceae belonging to the subfamily Lemnoideae. Genus includes new species P. simile. |
|||
Pseudowinterapollis agatdalensis[71] |
Sp. nov |
Valid |
Grímsson & Zetter in Grímsson et al. |
Agatdal Formation |
Greenland |
A pollen taxon, a member of the family Winteraceae. |
||
Pterocaryoxylon huxii[27] |
Sp. nov |
Valid |
Cheng et al. |
Pliocene |
Yuanmou Basin |
China |
A member of the family Juglandaceae described on the basis of fossil wood. |
|
Pterygota eocenica[37] |
Sp. nov |
Valid |
Shukla, Mehrotra & Nawaz Ali |
Early Eocene |
Palana Formation |
India |
A species of Pterygota. |
|
Ranunculus eoreptans[3] |
Nom. nov |
Valid |
Doweld |
Pliocene |
Belarus |
A species of Ranunculus; a replacement name for Ranunculus pusillus Dorofeev (1987). |
||
Retiacolpites pigafettaensis[30] |
Sp. nov |
Valid |
Prasad et al. |
India |
A pollen taxon resembling pollen of members of the genus Pigafetta. |
|||
Reyispermum[38] |
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Figueira da Foz Formation |
Portugal |
A flowering plant with affinities to Austrobaileyales or Nymphaeales. Genus includes new species R. parvum. |
||
Rhododendron maii[3] |
Nom. nov |
Valid |
Doweld |
Pliocene |
Germany |
A species of Rhododendron; a replacement name for Rhododendron germanicum Mai & Walther (1988). |
||
Rightcania[46] |
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Potomac Group |
United States |
A member of the family Chloranthaceae. Genus includes new species R. kvacekii. |
||
Ripogonum palaeozeylandiae[72] |
Sp. nov |
Valid |
Conran, Kennedy & Bannister |
Early Eocene |
New Zealand |
A species of Ripogonum. |
||
Ruprechtioxylon breae[56] |
Sp. nov |
Valid |
Franco |
Late Cenozoic |
Argentina |
A member of Polygonaceae described on the basis of fossil wood. |
||
Ryparosa churiaensis[5] |
Sp. nov |
Valid |
Prasad et al. |
Miocene |
Churia Formation |
Nepal |
A species of Ryparosa. |
|
Salacia lombardii[73] |
Sp. nov |
Valid |
Hernández-Damián, Gómez-Acevedo & Cevallos-Ferriz |
Miocene |
Mexico |
A species of Salacia. |
||
Sambucus sarmatiaca[3] |
Sp. nov |
Valid |
Doweld |
Miocene |
A species of Sambucus; a replacement name for the invalidly named Sambucus palaeoracemosa Baikovskaja in Kryshtofovich & Baikovskaja (1965). |
|||
Sp. nov |
Valid |
Wang & Dilcher |
Dakota Formation |
United States |
A member or a relative of the family Platanaceae described on the basis of fossil leaves. |
|||
Schoenoplectiella isolepioides[18] |
Sp. nov |
Valid |
Doweld |
Pliocene |
Germany |
A member of the family Cyperaceae; a replacement name for the invalidly named Scirpus (Schoenoplectus) isolepioides Mai & Walther (1988). |
||
Scirpus novorossicus[18] |
Nom. nov |
Valid |
Doweld |
Miocene (Tortonian) |
Ukraine |
A species of Scirpus; a replacement name for Scirpus leptocarpus Negru (1986), preoccupied by extant Scirpus leptocarpus Mueller (1855). |
||
Setitheca[74] |
Gen. et sp. nov |
Valid |
Poinar & Chambers |
Myanmar |
A member of Laurales of uncertain phylogenetic placement. Genus includes new species S. lativalva. |
|||
Silutanispermum[38] |
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Portugal |
A flowering plant with affinities to Austrobaileyales or Nymphaeales. Genus includes new species S. kvacekiorum. |
|||
Sloanea siwalika[75] |
Sp. nov |
Valid |
More et al. |
Pliocene |
Geabdat Sandstone Formation |
India |
A species of Sloanea. |
|
Soepadmoa[76] |
Gen. et sp. nov |
Valid |
Nixon, Crepet, Gandolfo & Grimaldi |
Raritan Formation |
United States |
A member of Fagales of uncertain phylogenetic placement. Genus includes new species S. cupulata. |
||
Staphylea spinosa[77] |
Sp. nov |
Valid |
Huang & Momohara in Huang, Momohara & Wang |
Shobudani Formation |
Japan |
A species of Staphylea. |
||
Stafylioxylon[8] |
Gen. et comb. nov |
Valid |
Rozefelds & Pace |
United Kingdom |
A member of Vitaceae; a new genus for "Vitaceoxylon" ramunculiformis Poole & Wilkinson (2000). |
|||
Stellatia[2] |
Gen. et comb. nov |
Valid |
Arai & Dias-Brito |
São Carlos Formation |
Brazil |
A phytoclast, possibly a member of Nymphaeaceae. Genus includes S. furcata (Duarte & Arai, 2010). |
||
Stephania auriformis[78] |
Comb nov |
valid |
(Hollick) Manchester & Han |
"King Salmon Lake flora" |
USA |
A moonseed species. |
||
Stephania jacquesii[78] |
Sp. nov |
Valid |
Han & Manchester in Han et al. |
Clarno Formation |
China |
A species of Stephania. |
||
Stephania psittaca[57] |
Sp. nov |
Valid |
Jud & Gandolfo in Jud et al. |
Argentina |
A species of Stephania. |
|||
Stephania wilfii[78] |
Sp. nov |
Valid |
Han & Manchester in Han et al. |
United States |
A species of Stephania. |
|||
Sterculia acerina[3] |
Nom. nov |
Valid |
Doweld |
Czech Republic |
A species of Sterculia; a replacement name for Acer crassinervium Ettingshausen (1869). |
|||
Symplocos hitchcockii[80] |
Sp. nov |
Valid |
Tiffney, Manchester & Fritsch |
Early Miocene |
Brandon Lignite |
United States |
A species of Symplocos. |
|
Syzygium christophelii[81] |
Sp. nov |
Valid |
Tarran et al. |
Early Miocene |
Australia |
A species of Syzygium. |
||
Syzygium gurhaensis[37] |
Sp. nov |
Valid |
Shukla, Mehrotra & Nawaz Ali |
Early Eocene |
Palana Formation |
India |
A species of Syzygium. |
|
Tanispermum[82] |
Gen. et 4 sp. nov |
Valid |
Friis, Crane & Pedersen |
Early Cretaceous (early Aptian to early to middle Albian) |
Potomac Group |
United States |
A flowering plant with affinities to Austrobaileyales or Nymphaeales. Genus includes new species T. hopewellense, T. marylandense, T. drewriense and T. antiquum. |
|
Teuschestanthes[83] |
Gen. et sp. nov |
Valid |
Crepet, Nixon & Weeks |
Lower Magothy Formation |
United States |
A member of Ericales of uncertain phylogenetic placement. Genus includes new species T. squamata. |
||
Trichomites[2] |
Gen. et 3 sp. nov |
Valid |
Arai & Dias-Brito |
São Carlos Formation |
Brazil |
A phytoclast. Genus includes new species T. brevifurcatus (probably a member of Campanulaceae), T. duplihelicoidus (affinity unknown) and T. simplex (a dicotyledon of uncertain affinity). |
||
Tricolpites joelcastroi[2] |
Sp. nov |
Valid |
Arai & Dias-Brito |
São Carlos Formation |
Brazil |
A pollen taxon, an indeterminate dicotyledon. |
||
Trochodendroides sittensis[84] |
Sp. nov |
Valid |
Golovneva in Golovneva & Zolina |
Russia |
Taxon described on the basis of fossil leaves resembling leaves of members of the family Cercidiphyllaceae. |
|||
Sp. nov |
Valid |
Manchester, Pigg & Devore |
Middle Miocene |
Little Butte Volcanic Series |
United States |
A species of Trochodendron. |
||
Sp. nov |
Valid |
Manchester, Pigg & Devore |
Middle Miocene |
Little Butte Volcanic Series |
United States |
A species of Trochodendron. |
||
Turneroxylon[49] |
Gen. et sp. nov |
Valid |
Estrada-Ruiz et al. |
Late Cretaceous (late Campanian) |
United States |
A eudicot with similarities to members of Dilleniaceae, described on the basis of fossil wood. Genus includes new species T. newmexicoense. |
||
Ulmus maguanensis[85] |
Sp. nov |
Valid |
Zhang & Xing in Zhang et al. |
Miocene |
Huazhige Formation |
China |
An elm. |
|
Ulmus prelanceaefolia[85] |
Sp. nov |
Valid |
Zhang & Xing in Zhang et al. |
Miocene |
Huazhige Formation |
China |
An elm. |
|
Ulmus priamurica[86] |
Sp. nov |
Valid |
Blokhina & Bondarenko |
Miocene |
Sazanka Formation |
An elm. |
||
Unona miocenica[5] |
Sp. nov |
Valid |
Prasad et al. |
Miocene |
Churia Formation |
Nepal |
A member of the family Annonaceae. |
|
Viburnum pliolantana[3] |
Nom. nov |
Valid |
Doweld |
Pliocene |
Russia |
A species of Viburnum; a replacement name for Viburnum lantanoides Dorofeev (1977). |
||
Weinmannioxylon trichospermoides[23] |
Sp. nov |
Valid |
Pujana in Pujana et al. |
Antarctica |
A member of Cunoniaceae described on the basis of fossil wood. |
|||
Wilkinsoniphyllum[57] |
Gen. et sp. nov |
Valid |
Jud et al. |
Argentina |
A member of the family Menispermaceae described on the basis of fossil leaves. Genus includes new species W. menispermoides. |
|||
Wingia[4] |
Gen. et comb. nov |
Valid |
Wang & Dilcher |
Dakota Formation |
United States |
A flowering plant of uncertain phylogenetic placement, described on the basis of fossil leaves. Genus includes "Dicotylophyllum" expansolobum Upchurch & Dilcher (1990). |
||
Zanthoxylum pilari[3] |
Nom. nov |
Valid |
Doweld |
Miocene |
Croatia |
A species of Zanthoxylum; a replacement name for Zanthoxylum affine Pilar (1883). |
||
Zanthoxylum tethyca[3] |
Nom. nov |
Valid |
Doweld |
United Kingdom |
A species of Zanthoxylum; a replacement name for Rutaspermum rugosum Chandler (1964). |
|||
Zelkovoxylon yesimae[67] |
Sp. nov |
Valid |
Akkemik & Poole in Akkemik et al. |
Early Miocene |
Haymana Basin |
Turkey |
A Zelkova-like plant described on the basis of fossil wood. |
|
Zygogynum poratus[87] |
Sp. nov |
Valid |
Liang & Zhou in Liang et al. |
Middle Miocene |
China |
A species of Zygogynum. |
Pinales
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Agathis immortalis[88] |
Sp. nov |
Valid |
Escapa et al. |
Argentina |
A species of Agathis. |
|||
Agathoxylon crasseradiatum[89] |
Sp. nov |
Valid |
Lignier ex Philippe et al. |
Early Cretaceous (late Aptian-Albian) |
France |
A member of Araucariaceae described on the basis of fossil wood. |
||
Agathoxylon holbavicum[90] |
Sp. nov |
Valid |
Iamandei, Iamandei & Grădinaru |
Early Jurassic |
Romania |
|||
Agathoxylon santacruzense[91] |
Sp. nov |
Valid |
Kloster & Gnaedinger |
Middle Jurassic |
Argentina |
|||
Araucaria lefipanensis[92] |
Sp. nov |
Valid |
Andruchow‐Colombo et al. |
Argentina |
A species of Araucaria. |
|||
Atlanticoxylon ibiratinum[93] |
Sp. nov |
Valid |
Faria et al. |
Brazil |
A conifer described on the basis of fossil wood. |
|||
Brachyoxylon cristianicum[90] |
Sp. nov |
Valid |
Iamandei, Iamandei & Grădinaru |
Early Jurassic |
Romania |
|||
Brachyoxylon holbavicum[90] |
Sp. nov |
Valid |
Iamandei, Iamandei & Grădinaru |
Early Jurassic |
Romania |
|||
Brachyoxylon zhejiangense[94] |
Sp. nov |
Valid |
Tian, Zhu & Wang in Tian et al. |
Guantou Formation |
China |
A coniferous wood. |
||
Chimaerostrobus[95] |
Gen. et sp. nov |
Valid |
Atkinson et al. |
Early Jurassic(Pliensbachian-Toarcian) |
A conifer pollen cone. Genus includes new species C. minutus. |
|||
Cryptomeria yunnanensis[96] |
Sp. nov |
Valid |
Ding & Zhou in Ding et al. |
Lühe Basin |
China |
A member of Cupressaceae, a species of Cryptomeria. |
||
Cunninghamia shangcunica[97] |
Sp. nov |
Valid |
Kodrul et al. |
Early Oligocene |
Shangcun Formation |
China |
A species of Cunninghamia. |
|
Cyclusphaera annularis[98] |
Sp. nov |
Valid |
Perez Loinaze & Llorens |
Argentina |
A pollen taxon with affinities with the family Araucariaceae. |
|||
Cyclusphaera punnulosa[98] |
Sp. nov |
Valid |
Perez Loinaze & Llorens |
Argentina |
A pollen taxon with affinities with the family Araucariaceae. |
|||
Elatides laiyangensis[99] |
Sp. nov |
Valid |
Jin & Sun in Jin et al. |
Laiyang Formation |
China |
A conifer. |
||
Hirandubia[100] |
Gen. et sp. nov |
Valid |
Ghosh et al. |
Rajmahal Basin |
India |
A member of Cupressaceae. Genus includes new species H. cupressoides. |
||
Kirketapel salamanquensis[101] |
Sp. nov |
Valid |
Andruchow-Colombo et al. |
Salamanca Formation |
Argentina |
The oldest member of a scale-leaved clade of Podocarpaceae. |
||
Marskea heeriana[102] |
Sp. nov |
Valid |
Nosova & Kiritchkova |
Middle Jurassic |
Irkutsk Coal Basin |
Russia |
||
Morinostrobus[103] |
Gen. et sp. nov |
Valid |
Stockey et al. |
Canada |
A member of Cupressaceae described on the basis of pollen cones. Genus includes new species M. holbergensis. |
|||
Pinus daflaensis[104] |
Nom. nov |
Valid |
Khan & Bera |
Miocene |
Dafla Formation |
India |
A pine; a replacement name for Pinus arunachalensis Khan & Bera (2017) (preoccupied by Pinus arunachalensis Srivastava, 2017). |
|
Pinus enochii[105] |
Sp. nov |
Valid |
Huerta Vergara & Cevallos-Ferriz |
Late Cretaceous (late Campanian) |
Lutita Packard Formation |
Mexico |
A pine. |
|
Pinus leiophylloides[106] |
Nom. nov |
Valid |
Doweld |
France |
A pine; a replacement name for Pinus pseudotaeda Saporta (1865). |
|||
Pinus microstrobus[106] |
Nom. nov |
Valid |
Doweld |
France |
A pine; a replacement name for Pinus microcarpa Saporta (1865). |
|||
Pinus notata[106] |
Nom. nov |
Valid |
Doweld |
France |
A pine; a replacement name for Pinus divaricata Saporta (1865). |
|||
Pinus pentaphylloides[106] |
Nom. nov |
Valid |
Doweld |
Japan |
A pine; a replacement name for Pinus hokkaidoensis Stockey & Ueda (1986). |
|||
Pinus tetraphylloides[106] |
Nom. nov |
Valid |
Doweld |
France |
A pine; a replacement name for Pinus deflexa Saporta (1865). |
|||
Pinus uxui[105] |
Sp. nov |
Valid |
Huerta Vergara & Cevallos-Ferriz |
Late Cretaceous (late Campanian) |
Lutita Packard Formation |
Mexico |
A pine. |
|
Platycladus preorientalis[107] |
Sp. nov |
Valid |
He et al. |
Early Miocene |
China |
A species of Platycladus. |
||
Podocarpospermum podocarpoides[100] |
Sp. nov |
Valid |
Ghosh et al. |
Rajmahal Basin |
India |
A member of Podocarpaceae. |
||
Protocedroxylon zhalantunense[108] |
Sp. nov |
Valid |
Zhang, Tian & Wang in Zhang et al. |
Middle Jurassic |
Wanbao Formation |
China |
A member of the family Pinaceae. |
|
Protocedroxylon zhangii[108] |
Sp. nov |
Valid |
Zhang, Tian & Wang in Zhang et al. |
Middle Jurassic |
Wanbao Formation |
China |
A member of the family Pinaceae. |
|
Protophyllocladoxylon holbavicum[90] |
Sp. nov |
Valid |
Iamandei, Iamandei & Grădinaru |
Early Jurassic |
Romania |
|||
Pseudofrenelopsis salesii[109] |
Sp. nov |
Valid |
Batista et al. |
Romualdo Member |
Brazil |
A member of Cheirolepidiaceae. |
||
Rabagostrobus[110] |
Gen. et sp. nov |
Valid |
Kvaček et al. |
Spain |
An araucarian pollen cone. Genus includes new species R. hispanicus. |
|||
Sequoioxylon carneyvillense[111] |
Sp. nov |
Valid |
Li, Jin & Manchester |
United States |
Fossil wood resembling Sequoia. |
|||
Sequoioxylon zhangii[112] |
Sp. nov |
Valid |
Tian et al. |
China |
A member of Sequoioideae described on the basis of fossil wood. |
|||
Taxocladus czeremchoviensis[113] |
Sp. nov |
Valid |
Frolov & Mashchuk |
Early Jurassic |
Czeremkhovskaya Formation |
Russia |
Possibly a member of the family Taxaceae. |
|
Yanliaoa daohugouensis[114] |
Sp. nov |
Valid |
Tan et al. |
Middle Jurassic |
Daohugou Beds |
China |
A member of Cupressaceae sensu lato. |
Other seed plants
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Frolov in Frolov & Mashchuk |
Early Jurassic |
Prisayanskaya Formation |
Russia |
A member of Ginkgoales. |
||
Calycosperma[115] |
Gen. et sp. nov |
Valid |
Liu et al. |
Late Devonian |
Wutong Formation |
China |
An early seed plant. Genus includes new species C. qii. |
|
Carpolithes kurminensis[113] |
Sp. nov |
Valid |
Frolov in Frolov & Mashchuk |
Middle Jurassic |
Taltsy Formation |
Russia |
Seed of a gymnosperm of uncertain affinities. |
|
Sp. nov |
Valid |
Šimůnek |
Carboniferous (early Westphalian D) |
Staunton Formation |
United States |
|||
Sp. nov |
Valid |
Šimůnek |
Carboniferous (Stephanian B) |
Atrasado Formation |
United States |
|||
Sp. nov |
Valid |
Šimůnek |
Carboniferous (Bolsovian) |
Brazil Formation |
United States |
|||
Sp. nov |
Valid |
Šimůnek |
Carboniferous (late Pennsylvanian) |
Mattoon Formation |
United States |
|||
Cycadolepis ferrugineus[117] |
Sp. nov |
Valid |
McLoughlin, Pott & Sobbe |
Jurassic (Pliensbachian–Aalenian) |
Australia |
A member of Bennettitales belonging to the family Williamsoniaceae. |
||
Cycadopites grossus[98] |
Sp. nov |
Valid |
Perez Loinaze & Llorens |
Argentina |
A pollen taxon, similar to many of the modern cycad pollen types. |
|||
Czekanowskia ottenii[118] |
Sp. nov |
Valid |
Kiritchkova, Kostina & Nosova |
Russia |
||||
Eamesia[119] |
Gen. et sp. nov |
Valid |
Yang et al. |
China |
A member of Ephedraceae. Genus includes new species E. chinensis. |
|||
Eretmophyllum neimengguensis[120] |
Sp. nov |
Valid |
Li et al. |
Middle Jurassic |
Yan’an Formation |
China |
A member of Ginkgoales. |
|
Eretmophyllum odintsovae[113] |
Sp. nov |
Valid |
Frolov & Mashchuk |
Middle Jurassic |
Taltsy Formation |
Russia |
A member of Ginkgoales. |
|
Eretmophyllum olchaense[118] |
Sp. nov |
Valid |
Kiritchkova, Kostina & Nosova |
Russia |
||||
Ginkgo cuneifolia[121] |
Sp. nov |
Valid |
Tan, Dilcher, Wang & Sun in Sun et al. |
Middle Jurassic |
Jiulongshan Formation |
China |
A species of Ginkgo. |
|
Ginkgo daohugouensis[121] |
Sp. nov |
Valid |
Tan, Dilcher, Wang & Sun in Sun et al. |
Middle Jurassic |
Jiulongshan Formation |
China |
A species of Ginkgo. |
|
Sp. nov |
Valid |
Frolov & Mashchuk |
Early Jurassic |
Czeremkhovskaya Formation |
Russia |
Originally described as a species of Ginkgo, but subsequently transferred to the genus Ginkgoites.[122] |
||
Ginkgo parvifolia[121] |
Sp. nov |
Valid |
Tan, Dilcher, Wang & Sun in Sun et al. |
Middle Jurassic |
Jiulongshan Formation |
China |
A species of Ginkgo. |
|
Ginkgophyllum rhipidomorphum[123] |
Sp. nov |
Valid |
Gomankov |
Late Permian |
Russia |
|||
Hexianthus[124] |
Gen. et sp. nov |
Valid |
Wang & Sun in Wang et al. |
Early Permian |
Taiyuan Formation |
China |
A cone fossil belonging to the group Cordaitopsida and the family Cordaitaceae. Genus includes new species H. shenii. |
|
Jugasporites vellicoites[125] |
Sp. nov |
Valid |
Zavattieri, Gutiérrez & Ezpeleta |
La Veteada Formation |
Argentina |
A member of Voltziales described on the basis of fossil pollen grains. |
||
Gen. et sp. nov |
Valid |
Fu et al. |
Early Jurassic |
South Xiangshan Formation |
China |
A seed plant of uncertain phylogenetic placement. Interpreted as an early fossil flower by Fu et al. (2018);[126] Coiro, Doyle & Hilton (2019) considered known specimens of this plant to be more similar to conifer cones.[127] Genus includes new species N. dendrostyla. |
||
Sp. nov |
Valid |
Zhao & Deng in Zhao et al. |
Middle Jurassic |
Xishanyao Formation |
China |
A member of Bennettitales. |
||
Sp. nov |
Valid |
Zhao & Deng in Zhao et al. |
Middle Jurassic |
Xishanyao Formation |
China |
A member of Bennettitales. |
||
Nom. nov |
Valid |
Zhao & Deng in Zhao et al. |
Early and Middle Jurassic |
Hongqi Formation |
China |
A member of Bennettitales; a replacement name for Nilssoniopteris angustifolia Wang (1984), preoccupied by Nilssoniopteris angustifolia Doludenko and Svanidze (1969). |
||
Sp. nov |
Valid |
Herrera et al. |
Khukhteeg Formation |
Mongolia |
A member of Bennettitales. |
|||
Sp. nov |
Valid |
Herrera et al. |
Tevshiingovi Formation |
Mongolia |
A member of Bennettitales. |
|||
Sp. nov |
Valid |
Yamada, Legrand & Nishida |
Sasayama Group |
Japan |
||||
Ovalocarpus[132] |
Gen. et sp. nov |
Valid |
Naugolnykh |
Early Permian |
Russia |
A member of Ginkgoales belonging to the family Cheirocladaceae. Genus includes new species O. ovoides. |
||
Pachytestopsis[133] |
Gen. et sp. nov |
Valid |
McLoughlin, Bomfleur & Drinnan |
Fort Cooper Coal Measures |
Australia |
A member of Glossopteridales. Genus includes new species P. tayloriorum. |
||
Phoenicopsis kurminensis[134] |
Sp. nov |
Valid |
Frolov in Frolov & Mashchuk |
Middle Jurassic |
Irkutsk Basin |
Russia |
A member of Leptostrobales (= Czekanowskiales). |
|
Sp. nov |
Valid |
Shi et al. |
Tevshiin Govi Formation |
Mongolia |
A conifer belonging to the family Podozamitaceae, described on the basis of leaves. |
|||
Pseudotorellia kiensis[136] |
Sp. nov |
Valid |
Nosova & Golovneva |
Russia |
A member of Ginkgoales, described on the basis of leaves. |
|||
Pseudotorellia palustris[135] |
Sp. nov |
Valid |
Shi et al. |
Tevshiin Govi Formation |
Mongolia |
A member of Ginkgoales, described on the basis of leaves. |
||
Pseudotorellia parvifolia[136] |
Sp. nov |
Valid |
Nosova & Golovneva |
Russia |
A member of Ginkgoales, described on the basis of leaves. |
|||
Pseudotorellia resinosa[135] |
Sp. nov |
Valid |
Shi et al. |
Tevshiin Govi Formation |
Mongolia |
A member of Ginkgoales, described on the basis of leaves. |
||
Pterophyllum philippoviae[137] |
Sp. nov |
Valid |
Gnilovskaya & Golovneva |
A member of Bennettitales. |
||||
Pterophyllum terechoviae[137] |
Sp. nov |
Valid |
Gnilovskaya & Golovneva |
A member of Bennettitales. |
||||
Ptilozamites longifolia[138] |
Sp. nov |
Valid |
Cariglino, Monti & Zavattieri |
Quebrada de los Fósiles Formation |
Argentina |
A seed fern. |
||
Rufloria glabra[139] |
Sp. nov |
Valid |
Gomankov |
Russia |
A member of Pinopsida belonging to the group Cordaitanthales and to the family Rufloriaceae. |
|||
Sp. nov |
Valid |
Wang & Sun in Wang et al. |
Early Permian |
Taiyuan Formation |
China |
A seed fossil belonging to the group Cordaitopsida and the family Cordaitaceae. |
||
Solenites haojiagouensis[140] |
Sp. nov |
Valid |
Yang et al. |
Haojiagou Formation |
China |
A member of Czekanowskiales. |
||
Sp. nov |
Valid |
Forte & Kerp in Forte et al. |
Tregiovo Formation |
Italy |
A fern-like plant, probably a seed fern. |
|||
Trisquama[142] |
Gen. et sp. nov |
Valid |
Gordenko & Broushkin |
Middle Jurassic (Bathonian) |
A gymnosperm of uncertain phylogenetic placement, belonging to the new order Trisquamales. Genus includes new species T. valentinii. |
|||
Sp. nov |
Valid |
McLoughlin, Pott & Sobbe |
Jurassic (Pliensbachian–Aalenian) |
Australia |
A member of Bennettitales belonging to the family Williamsoniaceae. |
|||
Sp. nov |
Valid |
McLoughlin, Pott & Sobbe |
Esk Formation |
Australia |
A member of Bennettitales belonging to the family Williamsoniaceae. |
|||
Sp. nov |
Valid |
McLoughlin, Pott & Sobbe |
Lees Sandstone |
Australia |
A member of Bennettitales belonging to the family Williamsoniaceae. |
|||
Sp. nov |
Valid |
McLoughlin, Pott & Sobbe |
Late Triassic (Carnian or earliest Norian) |
Blackstone Formation |
Australia |
A member of Bennettitales belonging to the family Williamsoniaceae. |
||
Sp. nov |
Valid |
McLoughlin, Pott & Sobbe |
Middle Jurassic (Aalenian–Bajocian) |
Australia |
A member of Bennettitales belonging to the family Williamsoniaceae. |
|||
Wintucycas beatrizae[143] |
Sp. nov |
Valid |
Martínez, Ottone & Artabe |
Pichaihue Limestone |
Argentina |
A cycad belonging to the group Encephalartoideae. |
||
Zamia nelliae[144] |
Sp. nov |
Valid |
Erdei & Calonje in Erdei et al. |
Late Eocene |
Panama |
Other plants
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Acitheca murphyi[145] |
Sp. nov |
Valid |
Correia et al. |
Carboniferous (Gzhelian) |
Douro Basin |
Portugal |
A marattialean fern. |
|
Sp. nov |
Valid |
Edwards & Li |
Early Devonian |
Pingyipu Group |
China |
|||
Apiculatasporites ruptus[147] |
Sp. nov |
Valid |
Noetinger, di Pasquo & Starck |
Argentina |
||||
Aptychellites[148] |
Gen. et sp. nov |
Valid |
Schäfer-Verwimp, Hedenäs, Ignatov & Heinrichs in Kaasalainen et al. |
Miocene |
Dominican Republic |
A moss resembling members of the extant genus Aptychella of the family Pylaisiadelphaceae. Genus includes new species A. fossilis. |
||
Sp. nov |
Valid |
Chen et al. |
Wutonggou Formation |
China |
A member of Calamitaceae. |
|||
Asinisetum plaatkopensis[150] |
Sp. nov |
Valid |
Anderson & Anderson |
Late Triassic (Carnian) |
South Africa |
A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae. |
||
Azolla coloniensis[151] |
Sp. nov |
Valid |
De Benedetti et al. |
Argentina |
A species of Azolla. |
|||
Balenosetum[150] |
Gen. et sp. nov |
Valid |
Anderson & Anderson |
Late Triassic (Carnian) |
South Africa |
A member of Equisetopsida belonging to the group Echinostachyales. Genus includes new species B. candlewaxia. |
||
Baoyinia[152] |
Gen. et sp. nov |
Valid |
Edwards & Li |
Early Devonian |
Pingyipu Group |
China |
A zosterophyll. Genus includes new species B. sichuanensis. |
|
Calamospora fissurata[153] |
Sp. nov |
Valid |
Gutiérrez & Balarino |
Carboniferous (Pennsylvanian) |
Ordóñez Formation |
Argentina |
A spore taxon. |
|
Cetistachys[150] |
Gen. et sp. nov |
Valid |
Anderson & Anderson |
Late Triassic (Carnian) |
South Africa |
A member of Equisetopsida belonging to the group Echinostachyales. Genus includes new species C. cetenis. |
||
Cheilolejeunea lamyi[154] |
Sp. nov |
Valid |
Heinrichs et al. |
Miocene |
Dominican Republic |
A member of Lejeuneaceae. |
||
Sp. nov |
Valid |
Frolov in Frolov & Mashchuk |
Middle Jurassic |
Taltsy Formation |
Russia |
A fern of uncertain affinities. |
||
Cladophlebis odintsovае[113] |
Sp. nov |
Valid |
Frolov & Mashchuk |
Middle Jurassic |
Prisayanskaya Formation |
Russia |
A fern of uncertain affinities. |
|
Sp. nov |
Valid |
Libertín et al. |
Motol Formation |
Czech Republic |
||||
Coptospora santacrucensis[98] |
Sp. nov |
Valid |
Perez Loinaze & Llorens |
Argentina |
A spore taxon similar to spores of extant members of the families Sphaerocarpaceae, Ricciaceae and Riellaceae. |
|||
Crybelosporites corrugatus[98] |
Sp. nov |
Valid |
Perez Loinaze & Llorens |
Argentina |
A spore taxon related to the family Marsileaceae. |
|||
Culcita remberi[156] |
Sp. nov |
Valid |
Pinson, Manchester & Sessa |
Miocene |
Clarkia fossil beds |
United States |
A species of Culcita. |
|
Cymatiosphaera robusta[147] |
Sp. nov |
Valid |
Noetinger, di Pasquo & Starck |
Argentina |
A prasinophyte. |
|||
Densoisporites patagonicus[98] |
Sp. nov |
Valid |
Perez Loinaze & Llorens |
Argentina |
A spore taxon with affinities with the Lycopsida. |
|||
Dictyophyllum menendezii[157] |
Sp. nov |
Valid |
Bodnar et al. |
Middle Triassic (Ladinian) |
Cortaderita Formation |
Argentina |
A fern belonging to the family Dipteridaceae. |
|
Digitopteris[158] |
Gen. et sp. nov |
Valid |
Pott & Bomfleur in Pott et al. |
Late Triassic (Carnian) |
Austria |
A fern belonging to the family Dipteridaceae. Genus includes new species D. repanda. |
||
Echinostachys tinensis[150] |
Sp. nov |
Valid |
Anderson & Anderson |
Late Triassic (Carnian) |
South Africa |
A member of Equisetopsida belonging to the group Echinostachyales and the family Echinostachyaceae. |
||
Eddianna[159] |
Gen. et sp. nov |
Valid |
Pfeiler & Tomescu |
Battery Point Formation |
Canada |
A member of Rhyniopsida. Genus includes new species E. gaspiana |
||
Electorotheca[160] |
Gen. et sp. nov |
Valid |
Morris, Edwards & Pedersen |
Freshwater West Formation |
United Kingdom |
A plant of uncertain phylogenetic placement. Genus includes new species E. enigmatica. |
||
Emphanisporites genselae[161] |
Sp. nov |
Valid |
Wellman |
Val d'Amour Formation |
Canada |
A plant described on the basis of fossil spores. |
||
Emphanisporites morrisae[161] |
Sp. nov |
Valid |
Wellman |
Campbellton Formation |
Canada |
A plant described on the basis of fossil spores. |
||
Emphanisporites? tenuis[162] |
Sp. nov |
Valid |
García Muro, Rubinstein & Steemans |
Los Espejos Formation |
Argentina |
A plant described on the basis of fossil spores. |
||
Endosporites menendezi[153] |
Nom. nov |
Valid |
Gutiérrez & Balarino |
Carboniferous (Pennsylvanian) |
Agua Colorada Formation |
Argentina |
A spore taxon; a replacement name for Endosporites parvus Menéndez (1965). |
|
Sp. nov |
Valid |
Frolov in Frolov & Mashchuk |
Middle Jurassic |
Prisayanskaya Formation |
Russia |
A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae. |
||
Sp. nov |
Valid |
Anderson & Anderson |
Late Triassic (Carnian) |
South Africa |
A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae. |
|||
Sp. nov |
Valid |
Anderson & Anderson |
Late Triassic (Carnian) |
South Africa |
A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae. |
|||
Sp. nov |
Valid |
Anderson & Anderson |
Late Triassic (Carnian) |
South Africa |
A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae. |
|||
Sp. nov |
Valid |
Anderson & Anderson |
Late Triassic (Carnian) |
South Africa |
A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae. |
|||
Sp. nov |
Valid |
Anderson & Anderson |
Late Triassic (Carnian) |
South Africa |
A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae. |
|||
Sp. nov |
Valid |
Anderson & Anderson |
Late Triassic (Carnian) |
South Africa |
A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae. |
|||
Equisetostachys boesmansensis[150] |
Sp. nov |
Valid |
Anderson & Anderson |
Late Triassic (Carnian) |
South Africa |
A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae. |
||
Equisetostachys calensis[150] |
Sp. nov |
Valid |
Anderson & Anderson |
Late Triassic (Carnian) |
South Africa |
A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae. |
||
Equisetostachys cervensis[150] |
Sp. nov |
Valid |
Anderson & Anderson |
Late Triassic (Carnian) |
South Africa |
A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae. |
||
Equisetostachys jaarensis[150] |
Sp. nov |
Valid |
Anderson & Anderson |
Late Triassic (Carnian) |
South Africa |
A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae. |
||
Equisetostachys kroonensis[150] |
Sp. nov |
Valid |
Anderson & Anderson |
Late Triassic (Carnian) |
South Africa |
A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae. |
||
Equisetostachys laggensis[150] |
Sp. nov |
Valid |
Anderson & Anderson |
Late Triassic (Carnian) |
South Africa |
A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae. |
||
Equisetostachys luziensis[150] |
Sp. nov |
Valid |
Anderson & Anderson |
Late Triassic (Carnian) |
South Africa |
A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae. |
||
Equisetostachys penensis[150] |
Sp. nov |
Valid |
Anderson & Anderson |
Late Triassic (Carnian) |
South Africa |
A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae. |
||
Equisetostachys pokensis[150] |
Sp. nov |
Valid |
Anderson & Anderson |
Late Triassic (Carnian) |
South Africa |
A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae. |
||
Escapia[163] |
Gen. et sp. nov |
Valid |
Rothwell, Millay & Stockey |
Canada |
A member of Marattiales. Genus includes new species E. christensenioides. |
|||
Frederica kurdistanensis[164] |
Sp. nov |
Valid |
Bucur et al. |
Khurmala Formation |
Iraq |
A green alga belonging to the group Dasycladales. |
||
Frullania grabenhorstii[165] |
Sp. nov |
Valid |
Feldberg et al. |
Bitterfeld amber |
Germany |
|||
Frullania zerovii[166] |
Sp. nov |
Valid |
Mamontov, Ignatov & Perkovsky |
Ukraine |
||||
Geocalyx heinrichsii[167] |
Sp. nov |
Valid |
Katagiri |
Europe (Baltic Sea region) |
A liverwort. |
|||
Gleicheniorachis sinensis[168] |
Sp. nov |
Valid |
Tian et al. |
Late Jurassic |
Manketouebo Formation |
China |
A fern belonging to the family Gleicheniaceae. |
|
Groenlandia pescheri[169] |
Sp. nov |
Valid |
Uhl & Poschmann |
Enspel Formation |
Germany |
A species of Groenlandia. |
||
Heilongjiangcaulis[170] |
Gen. et sp. nov |
Valid |
Cheng & Yang |
Cretaceous |
Songliao Basin |
China |
A tree fern. Genus includes new species H. keshanensis. |
|
Holttumopteris[171] |
Gen. et sp. nov |
Valid |
Regalado et al. |
Myanmar |
A eupolypod fern. Genus includes new species H. burmensis. |
|||
Horriditriletes chacoparanensis[153] |
Sp. nov |
Valid |
Gutiérrez & Balarino |
Carboniferous (Pennsylvanian) |
Ordóñez Formation |
Argentina |
A spore taxon. |
|
Hypnites lycopodioides[172] |
Nom. nov |
Valid |
Ignatov & Váňa in Winterscheid et al. |
Late Oligocene |
Rott Formation |
Germany |
A member of Hypnales of uncertain phylogenetic placement; a replacement name for Hypnum lycopodioides Weber in Wessel & Weber. |
|
Jaffrezocodium[173] |
Gen. et sp. nov |
Valid |
Granier |
France |
A green alga belonging to the group Bryopsidales. Genus includes new species J. bipennatus. |
|||
Jiangyounia[152] |
Gen. et sp. nov |
Valid |
Edwards & Li |
Early Devonian |
Pingyipu Group |
China |
A rhyniophyte. Genus includes new species J. gengi. |
|
Knorripteris taylorii[174] |
Sp. nov |
Valid |
Galtier et al. |
Germany |
A pteridophyte of uncertain phylogenetic placement. |
|||
Gen. et sp. nov |
Valid |
Gess & Prestianni |
Witpoort Formation |
South Africa |
A lycopsid. Genus includes new species K. alveoformis. |
|||
Kraaiostachys[150] |
Gen. et sp. nov |
Valid |
Anderson & Anderson |
Late Triassic (Carnian) |
Molteno Formation |
Mexico |
A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae. Genus includes new species K. plaatkopensis. |
|
Sp. nov |
Valid |
Arai & Dias-Brito |
São Carlos Formation |
Brazil |
An acritarch, probably a prasinophyte. |
|||
Leiotriletes malanzanensis[153] |
Nom. nov |
Valid |
Gutiérrez & Balarino |
Carboniferous (Pennsylvanian) |
Malanzán Formation |
Argentina |
A spore taxon; a replacement name for Leiotriletes tenuis Azcuy (1975). |
|
Lejeunea miocenica[148] |
Sp. nov |
Valid |
Heinrichs, Schäfer-Verwimp, Renner & Lee in Kaasalainen et al. |
Miocene |
Dominican Republic |
|||
Lilingostrobus[176] |
Gen. et sp. nov |
Valid |
Gerrienne et al. |
Xikuangshan Formation |
China |
A member of Lycopsida of uncertain phylogenetic placement. Genus includes new species L. chaloneri. |
||
Marsilea mascogos[177] |
Sp. nov |
Valid |
Estrada-Ruiz et al. |
Late Cretaceous (late Campanian) |
Mexico |
A species of Marsilea. |
||
Molaspora aspera[178] |
Sp. nov |
Valid |
Zavialova & Batten |
France |
A member of Marsileaceae described on the basis of megaspores. |
|||
Moltenomites[150] |
Gen. et 2 sp. nov |
Valid |
Anderson & Anderson |
Late Triassic (Carnian) |
South Africa |
A member of Equisetopsida belonging to the group Echinostachyales. Genus includes new species M. linearifolia and M. attenuatifolia. |
||
Naybandoporella[179] |
Gen. et sp. et comb. nov |
Valid |
Senowbari-Daryan |
Late Triassic (Rhaetian) |
Nayband Formation |
Greece |
A green alga belonging to the group Dasycladales, possibly a member of the family Triploporellaceae. Genus includes new species N. rhaetica, as well as "Probolocupsis" sarmeikensis Senowbari-Daryan (2014). |
|
Oleandra bangmaii[180] |
Sp. nov |
Valid |
Xie et al. |
Late Miocene |
China |
A species of Oleandra. |
||
Ornicephalum[146] |
Gen. et comb. nov |
Valid |
Edwards & Li |
Early Devonian |
Pingyipu Group |
China |
A member of Lycophytina; a new genus for "Zosterophyllum" sichuanensis Geng (1992). |
|
?Osmunda weylandii[172] |
Sp. nov |
Valid |
Kvaček & Winterscheid in Winterscheid et al. |
Late Oligocene |
Rott Formation |
Germany |
||
Osmundopsis zunigai[181] |
Sp. nov |
Valid |
Coturel et al. |
Late Triassic (Carnian) |
Potrerillos Formation |
Argentina |
A fern belonging to the family Osmundaceae. |
|
Paraschizoneura fredensis[150] |
Sp. nov |
Valid |
Anderson & Anderson |
Late Triassic (Carnian) |
South Africa |
A member of Equisetopsida belonging to the group Echinostachyales and the family Echinostachyaceae. |
||
Paraschizoneura quadripenensis[150] |
Sp. nov |
Valid |
Anderson & Anderson |
Late Triassic (Carnian) |
South Africa |
A member of Equisetopsida belonging to the group Echinostachyales and the family Echinostachyaceae. |
||
Paraschizoneura rooipoortensis[150] |
Sp. nov |
Valid |
Anderson & Anderson |
Late Triassic (Carnian) |
South Africa |
A member of Equisetopsida belonging to the group Echinostachyales and the family Echinostachyaceae. |
||
Paraschizoneura telensis[150] |
Sp. nov |
Valid |
Anderson & Anderson |
Late Triassic (Carnian) |
South Africa |
A member of Equisetopsida belonging to the group Echinostachyales and the family Echinostachyaceae. |
||
Peromonolites globosum[98] |
Sp. nov |
Valid |
Perez Loinaze & Llorens |
Argentina |
A spore taxon with affinities with the Filicales. |
|||
Pleurorhizoxylon[182] |
Gen. et sp. nov |
Valid |
Zhang et al. |
Late Devonian |
China |
An early euphyllophyte. Genus includes new species P. yixingense. |
||
Polycladophyton[152] |
Gen. et sp. nov |
Valid |
Edwards & Li |
Early Devonian |
Pingyipu Group |
China |
A rhyniophyte. Genus includes new species P. gracilis. |
|
Pterospermella simplex[147] |
Sp. nov |
Valid |
Noetinger, di Pasquo & Starck |
Argentina |
A prasinophyte. |
|||
Radula intecta[148] |
Sp. nov |
Valid |
Renner, Schäfer-Verwimp & Heinrichs in Kaasalainen et al. |
Miocene |
Dominican Republic |
A species of Radula |
||
Rafaherbstia[183] |
Ge. et sp. nov |
Valid |
Vera & Césari |
Cerro Negro Formation |
Antarctica |
A cyathealean tree fern. Genus includes new species R. nishidai. |
||
Retitriletes ornatus[98] |
Sp. nov |
Valid |
Perez Loinaze & Llorens |
Argentina |
A spore taxon with affinities with the Lycopodiales. |
|||
Retusotriletes archangelskyi[153] |
Sp. nov |
Valid |
Gutiérrez & Balarino |
Carboniferous (Pennsylvanian) |
Ordóñez Formation |
Argentina |
A spore taxon. |
|
Schizoneura cucumis[150] |
Sp. nov |
Valid |
Anderson & Anderson |
Late Triassic (Carnian) |
South Africa |
A member of Equisetopsida belonging to the group Echinostachyales and the family Echinostachyaceae. |
||
Schizoneura koningensis[150] |
Sp. nov |
Valid |
Anderson & Anderson |
Late Triassic (Carnian) |
South Africa |
A member of Equisetopsida belonging to the group Echinostachyales and the family Echinostachyaceae. |
||
Scleropteris iljiniana[118] |
Sp. nov |
Valid |
Kiritchkova, Kostina & Nosova |
Russia |
||||
Sichuania[152] |
Gen. et sp. nov |
Valid |
Edwards & Li |
Early Devonian |
Pingyipu Group |
China |
A zosterophyll. Genus includes new species S. uskielloides. |
|
Sp. nov |
Valid |
Huang et al. |
Late Devonian |
Wutong Formation |
China |
|||
Suppiluliumaella tarburensis[185] |
Sp. nov |
Valid |
Rashidi & Schlagintweit |
Tarbur Formation |
Iran |
A green alga belonging to the group Dasycladales. |
||
Tauridium elongatum[186] |
Sp. nov |
Valid |
Jia & Song |
Late Permian |
Changxing Formation |
China |
A member of Gymnocodiaceae. |
|
Taurocusporites inaequalis[98] |
Sp. nov |
Valid |
Perez Loinaze & Llorens |
Argentina |
A spore taxon with affinities with the Bryophyta sensu lato. |
|||
Sp. nov |
Valid |
Xiaonan, Fengxiang & Yeming |
China |
|||||
Tiaomaphyton[188] |
Gen. et sp. nov |
Valid |
Xu, Fu & Wang |
Middle Devonian |
Tiaomachian Formation |
China |
A Colpodexylon-like lycopsid. Genus includes new species T. fui. |
|
Townroviamites multifoliata[150] |
Sp. nov |
Valid |
Anderson & Anderson |
Late Triassic (Carnian) |
South Africa |
A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae. |
||
Townroviamites petfredae[150] |
Sp. nov |
Valid |
Anderson & Anderson |
Late Triassic (Carnian) |
South Africa |
A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae. |
||
Townroviamites stellata[150] |
Sp. nov |
Valid |
Anderson & Anderson |
Late Triassic (Carnian) |
South Africa |
A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae. |
||
Tricarinella[189] |
Gen. et sp. nov |
Valid |
Savoretti et al. |
Canada |
A moss belonging to the family Grimmiaceae. Genus includes new species T. crassiphylla. |
|||
Viridistachys[150] |
Gen. et 2 sp. nov |
Valid |
Anderson & Anderson |
Late Triassic (Carnian) |
South Africa |
A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae. Genus includes new species V. moltenensis and V. gypsensis. |
||
Zonulamites annumensis[150] |
Sp. nov |
Valid |
Anderson & Anderson |
Late Triassic (Carnian) |
South Africa |
A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae. |
||
Zonulamites collensis[150] |
Sp. nov |
Valid |
Anderson & Anderson |
Late Triassic (Carnian) |
South Africa |
A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae. |
||
Zonulamites elandensis[150] |
Sp. nov |
Valid |
Anderson & Anderson |
Late Triassic (Carnian) |
South Africa |
A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae. |
||
Zonulamites viridensis[150] |
Sp. nov |
Valid |
Anderson & Anderson |
Late Triassic (Carnian) |
South Africa |
A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae. |
||
Sp. nov |
Valid |
Edwards & Li |
Early Devonian |
Pingyipu Group |
China |
General research
- A study attempting to establish a timescale of early land plant evolution is published by Morris et al. (2018).[190][191][192]
- Assemblage of putative Ordovician (Hirnantian) land plants is described from the Zbrza locality in the southern Świętokrzyskie Mountains (Poland ) by Salamon et al. (2018).[193]
- A study on the structure and variation of areolation patterns in leaves of Paleozoic protosphagnalean mosses is published by Ivanov, Maslova & Ignatov (2018).[194]
- A study on the phylogenetic relationships of the Cretaceous mosses Meantoinea alophosioides and Eopolytrichum antiquum within Polytrichaceae is published by Bippus, Escapa & Tomescu (2018).[195]
- Meristems of rooting axes belonging to Asteroxylon mackiei are described from the Rhynie chert (United Kingdom ) by Hetherington & Dolan (2018).[196]
- A study re-examining the evidence on the speed of growth and life cycle of the tree-like lycophytes from the Carboniferous (Pennsylvanian) coal swamps, and in particular addressing an earlier study by Boyce & DiMichele (2016),[197] is published by Thomas & Cleal (2018).[198][199]
- A study on the impact of increased ultraviolet irradation (caused by volcanism-induced ozone shield deterioration) on plants during the Permian–Triassic extinction event is published by Benca, Duijnstee & Looy (2018).[200]
- A study on the composition of the Late Triassic flora of the American Southwest, based on palynological data from the Chinle Formation, and indicative of a floral turnover occurring in the middle Norian, is published by Baranyi et al. (2018).[201]
- A study on the Middle Jurassic flora from Yorkshire (United Kingdom ) as indicated by pollen and spores, and on the possible dinosaur-plant interactions in the area is published by Slater et al. (2018).[202]
- Occurrence of the characean genus Tolypella is reported from the Lower Cretaceous of the Garraf Massif (Catalonia, Spain ) by Martín-Closas et al. (2018), representing the oldest known record of the genus reported so far.[203]
- A study on the spore wall structure and development in Psilophyton dawsonii is published by Noetinger, Strayer & Tomescu (2018).[204]
- Lycopsid megaspores preserved with fossil starch, probably used to attract and reward animals for megaspore dispersal, are described from the Permian of north China by Liu et al. (2018).[205]
- A study on the phylogenetic relationships of extant and fossil members of Equisetales is published by Elgorriaga et al. (2018).[206]
- A study on the anatomy of the Devonian fern-like plant Shougangia bella is published by Wang et al. (2018).[207]
- A study on the phylogenetic relationships of a putative Triassic fern Pekinopteris, based on evaluation of specimens preserving fertile pinnae, is published by Axsmith, Skog & Pott (2018).[208]
- A study on the anatomical structure of Coniopteris hymenophylloides (a fossil fern belonging to the family Dicksoniaceae) based on well-preserved materials from the Middle Jurassic Yaojie Formation (China ), including sterile and fertile pinnae, sporangia and in situ spores, epidermal cuticles and stomatal complexes, is published by Xin et al. (2018).[209]
- A study on the phylogenetic relationships of extant and fossil marattialean ferns is published by Rothwell, Millay & Stockey (2018).[210]
- A study on the phylogenetic relationships of members of Dipteridaceae based on data from extant and fossil taxa is published by Choo & Escapa (2018).[211]
- A study on the phylogenetic relationships of early seed plants, aneurophytalean progymnosperms, Stenokoleales and several Devonian plants of uncertain affinities is published by Toledo, Bippus & Tomescu (2018).[212]
- Plant fossils representing the genera Glossopteris, Vertebraria, Samaropsis, Paracalamites, Sphenophyllum and Dichotomopteris are described from the Permian strata in the Tabbowa Basin of Sri Lanka by Edirisooriya, Dharmagunawardhane & McLoughlin (2018), thus being the first representatives of the distinctive Permian Glossopteris flora reported from that country.[213]
- Fossils of member of the genus Glossopteris related to the species Glossopteris communis from India are described from the Permian deposits of southeastern Gobi (Mongolia) by Naugolnykh & Uranbileg (2018).[214]
- A study on the fossils of glossopterids from the Permian (Lopingian) Buckley Formation (Antarctica) will be published by DeWitt et al. (2018), who present evidence of glossopterids shedding their pollen organs during a different time of the season than Glossopteris leaves.[215]
- Blomenkemper et al. (2018) report the discovery of mixed plant-fossil assemblages in Late Permian deposits on the margins of the Dead Sea in Jordan, including fossils of seed ferns, members of Bennettitales and the earliest records of conifers reported so far.[216]
- A study on the phylogeny of conifers, comparing the inferred phylogenetic relationships and estimated divergence ages with the paleobotanical record, is published by Leslie et al. (2018).[217]
- A study on the atmospheric carbon dioxide concentration levels in the Early Cretaceous based on data from specimens of the fossil conifer species Pseudofrenelopsis papillosa is published by Jing & Bainian (2018).[218]
- A study on the phylogenetic relationships of members of Pinaceae based on data from extant and fossil taxa is published by Gernandt et al. (2018).[219]
- A study on the epidermis of the leaves of the fossil pine Pinus mikii and on the phylogenetic relationships of the species is published by Yamada & Yamada (2018).[220]
- A study on the anatomy and phylogenetic relationships of Austrohamia acanthobractea, based on data from leafy twigs with attached pollen cones and seed cones from the Middle Jurassic Daohugou Lagerstätte (China ), is published by Dong et al. (2018).[221]
- Rediscovery of the holotype specimen of Weltrichia fabrei is reported by Moreau & Thévenard (2018).[222]
- Revision of gymnosperm species known from the Eocene Baltic amber is published by Alekseev (2018).[223]
- A study on the phylogenetic relationships of the vascular plants and the timescale of their evolution, attempting to establish when the flowering plants originated, is published by Barba-Montoya et al. (2018).[224]
- A study on the early evolution of Chloranthaceae, focusing on the phylogenetic relationships of the Cretaceous taxa Canrightiopsis and Pseudoasterophyllites, is published by Doyle & Endress (2018).[225]
- Fossil assemblage including plant and vertebrate remains is described from the Turonian Ferron Sandstone Member of the Mancos Shale Formation (Utah, United States ) by Jud et al. (2018), who report turtle and crocodilian remains and an ornithopod sacrum, as well as a large silicified log assigned to the genus Paraphyllanthoxylon, representing the largest known pre-Campanian flowering plant reported so far and the earliest documented occurrence of an angiosperm tree more than 1.0 m in diameter.[226]
- A study on the phylogenetic relationships of extant and fossil members of Zingiberales is published by Smith et al. (2018).[227]
- A study on the phylogenetic relationships of Cornales based on data from extant and fossil taxa is published by Atkinson (2018).[228]
- A study on the microstructure of the fossils assigned to the genus Operculifructus, and on its implications for inferring the phylogenetic relationships of this genus, is published by Hayes et al. (2018).[229]
- A study on the phylogenetic relationships of the flowering plants and Gnetales, as indicated by morphological data from extant and fossil taxa, is published by Coiro, Chomicki & Doyle (2018).[230]
- Revision of the taxonomy of the Cretaceous monocot genus Viracarpon is published by Matsunaga et al. (2018), who transfer the species Coahuilocarpon phytolaccoides known from the Campanian Cerro del Pueblo Formation (Mexico) to the genus Viracarpon, thus rejecting the hypothesis that Viracarpon was endemic to India .[231]
- Microfossil remains of early grasses extracted from a specimen of the Early Cretaceous dinosaur species Equijubus normani from China are described by Wu, You & Li (2018).[232]
- Cantisolanum daturoides from the Eocene London Clay Formation, previously suggested to be a member of the family Solanaceae, is reinterpreted as more likely to be a commelinid monocot by Särkinen et al. (2018).[233]
- A study on the lower threshold of extant palm temperature tolerance, as well as on the potential of using the presence of palm fossils to infer past climate, is published by Reichgelt, West & Greenwood (2018).[234]
- A study on the human use of rainforest plant resources of prehistoric Sri Lanka, as indicated by data from phytoliths from the Fahien Rock Shelter sediments, is published by Premathilake & Hunt (2018).[235]
- A study on the occurrence of bananas in the archaeological sequence at Fahien Rock Shelter (south‐west Sri Lanka), as indicated by seed and leaf phytolith evidence, is published by Premathilake & Hunt (2018).[236]
- A study on the macroevolutionary dynamics of extinction and adaptation of palms with megafaunal fruits in the late Cenozoic is published by Onstein et al. (2018), who interpret their findings as indicating that progressive loss of megafaunal frugivores during the late Cenozoic likely resulted in increased extinction rates of palms with megafaunal fruits.[237]
- A study on the floral and fruit morphology of the early eudicot species Ranunculaecarpus quinquecarpellatus is published by Manchester et al. (2018).[238]
- A study on the principal morphological characters distinguishing shade and sun leaves in modern species of Liquidambar, and on their implications for identifying leaf polymorphisms in fossil members of this genus that could otherwise be used to establish unwarranted new species, is published by Maslova et al. (2018).[239]
- A study on fossil pollen of members of the group Ericales from five Eocene localities in the United Kingdom , Austria, Germany and China , aiming to describe fossil pollen types and compare them with the most similar looking pollen of modern species, is published by Hofmann (2018).[240]
- A new fossil Loranthaceae pollen type (the first representative of this family in the fossil record of Africa) is described from the earliest Miocene of Saldanha Bay (South Africa ) by Grímsson et al. (2018).[241]
- A study on the types of fossil oak pollen grains from the Last Glacial Maximum sediments from the northern South China Sea, and on their implications for inferring regional climatic conditions in this area during the Last Glacial Maximum, is published by Dai, Hao & Mao (2018).[242]
- A pistillate partial inflorescence of a member of the genus Castanopsis is described from Baltic amber by Sadowski, Hammel & Denk (2018), representing the first record of this genus from Baltic amber and the first pistillate inflorescence of Fagaceae from Eurasia reported so far.[243]
- A study on factors which influenced the diversification processes and diversity dynamics of Cenozoic woody flowering plants is published by Shiono et al. (2018).[244]
- Description of plant remains and palynomorphs preserved in the coprolites produced by large dicynodonts from the Triassic Chañares Formation (Argentina ), and a study on the affinities of the plants preserved in those coprolites, is published by Perez Loinaze et al. (2018).[245]
- A study on the nutritional value of plants grown under elevated CO2 levels, evaluating the hypothesis that constraints on sauropod diet quality were driven by Mesozoic CO2 concentration, is published by Gill et al. (2018).[246]
- A study on the diversity, frequency and representation of insect damage of fossil plant specimens from the Permian La Golondrina Formation (Argentina ) is published by Cariglino (2018).[247]
- A study on the insect herbivory on fossil ginkgoalean and bennettitalean leaves from the Middle Jurassic Daohugou Beds (China ), and on defenses of these plants against insect herbivory, is published by Na et al. (2018).[248]
- Diverse gymnosperm and angiosperm fossils, displaying affinities with the flora of the Araripe Basin (Santana Formation) as well as those identified in deposits from the North America (Potomac Group), are described from the Lower Cretaceous Codó Formation (Brazil ) by Lindoso et al. (2018).[249]
- A study on the impact of the Cenomanian-Turonian boundary event on the continental flora, as indicated by spore-pollen fossil record, is published by Heimhofer et al. (2018).[250]
- Insect and plant inclusions are reported from amber from the uppermost Campanian Kabaw Formation of Tilin (Myanmar) by Zheng et al. (2018).[251]
- Grimaldi et al. (2018) report biological inclusions (fungi, plants, arachnids and insects) in amber from the Paleogene Chickaloon Formation of Alaska, representing the northernmost deposit of fossiliferous amber from the Cenozoic.[252]
- Organically preserved plant fossils, including leaves with cuticular preservation, are described from the Paleogene Ligorio Márquez Formation (Argentina ) by Carpenter, Iglesias & Wilf (2018).[253]
- A study on changes in Eocene plant diversity and floristic composition at Messel (Germany ) is published by Lenz & Wilde (2018).[254]
- An amber layer is reported from the lower part of the Dingqing Formation (late Oligocene) in Lunpola of central Tibet (representing the first record of amber from Tibet) by Wang et al. (2018), who interpret this amber as derived from dipterocarp trees, and who interpret the amber layer as remains of the northernmost dipterocarp forest discovered so far.[255]
- A study on CO2 concentrations during the early Miocene, as indicated by stomatal characteristics of fossil leaves from a late early Miocene assemblage from Panama and a leaf gas‐exchange model, is published by Londoño et al. (2018).[256]
- A study evaluating when the plants using the C4 photosynthetic pathway initially expanded on the Australian continent, as indicated by carbon isotope ratios of plant waxes from scientific ocean drilling sediments off north‐western Australia, is published by Andrae et al. (2018).[257]
- A study on the role of fire during the expansion of C4 grassland ecosystems in the Mio-Pliocene, based on data from molecular proxies from paleosol samples of the Siwalik Group (Pakistan ), is published by Karp, Behrensmeyer & Freeman (2018).[258]
- A study on the macroevolutionary responses of noctuid moths from the group Sesamiina and their associated host-grasses to environmental changes during the Neogene is published by Kergoat et al. (2018).[259]
- A study on the abundance of the C3 and C4 grasses in the central interior of southern Africa in the Early Pleistocene, as indicated by enamel stable carbon and oxygen isotope data, associated faunal abundance and phytolith evidence from the site of Wonderwerk Cave (South Africa ), is published by Ecker et al. (2018).[260]
- A study on the changes of vegetation in the temperate zone of Asia during an interval containing the Mid-Pleistocene Transition, ~1.2–0.7 million years ago, as indicated by pollen data from a drilling core from the North China Plain, as well as on their effect on the large mammal fauna is published by Xinying et al. (2018).[261]
- A study on the use of plants by early modern humans during the Middle Stone Age as indicated by analyses of phytoliths from the Pinnacle Point locality (South Africa ) is published by Esteban et al. (2018).[262]
- A study on the distance of seed dispersal by extant and extinct mammalian frugivores and on the impact of the extinction of Pleistocene megafauna on seed dispersal is published by Pires et al. (2018).[263]
- A study evaluating how mega‐herbivore animal species controlled plant community composition and nutrient cycling, relative to other factors during and after the Late Quaternary extinction event in Great Britain and Ireland, is published by Jeffers et al. (2018).[264]
- A study on the seeds preserved in moa coprolites is published by Carpenter et al. (2018), who question the hypothesis that some of the largest-seeded plants of New Zealand were dispersed by moas.[265]
- A study on the plant–insect interactions in the European forest plant communities in the Upper Pliocene Lagerstätte of Willershausen (Lower Saxony, Germany ), the Upper Pliocene locality of Berga (Thuringia, Germany) and the Pleistocene locality of Bernasso (France ) is published by Adroit et al. (2018).[266]
- A study on pollen recovered from hyaena coprolites from Vanguard Cave (Gibraltar), and on its implications for reconstructing the vegetation landscapes in the environment inhabited by southern Iberian Neanderthals during the MIS 3, is published by Carrión et al. (2018).[267]
- A study on the inner structure of cuticles and carbonaceous compressions of Early Jurassic plants from Argentinian Patagonia, using Focused Ion Beam Scanning Electron Microscopy, is published by Sender et al. (2018).[268]
- A study on the changing ecology of woodland vegetation of southern mainland Greece during the late Pleistocene and the early-mid Holocene, and on the ecological context of the first introduction of crop domesticates in the southern Greek mainland, as indicated by data from carbonized fuel wood waste from the Franchthi Cave, is published by Asouti, Ntinou & Kabukcu (2018).[269]
- Evidence of plant domestication and food production from the early and middle Holocene site of Teotonio (southwestern Amazonia, Brazil ) is presented by Watling et al. (2018).[270]
- A study on changes in plant pathogen communities (fungi and oomycetes) in response to changing climate during late Quaternary, as indicated by data from solidified deposits of rodent coprolites and nesting material from the central Atacama Desert spanning the last ca. 49,000 years, is published by Wood et al. (2018).[271]
- A study on the timing of the origination of the East Asian flora (including Sino-Japanese Flora Metasequoia Flora and Sino-Himalayan Rhododendron Flora), as indicated by molecular and fossil data, is published by Chen et al. (2018).[272]
References
- ↑ 1.0 1.1 1.2 1.3 Alexander B. Doweld (2018). "New names of fossil Berberidaceae". Phytotaxa 351 (1): 72–80. doi:10.11646/hytotaxa.351.1.6.
- ↑ 2.0 2.1 2.2 2.3 2.4 Mitsuru Arai; Dimas Dias-Brito (2018). "The Ibaté paleolake in SE Brazil: Record of an exceptional late Santonian palynoflora with multiple significance (chronostratigraphy, paleoecology and paleophytogeography)". Cretaceous Research 84: 264–285. doi:10.1016/j.cretres.2017.11.014. Bibcode: 2018CrRes..84..264A.
- ↑ 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 Alexander B. Doweld (2018). "Palaeoflora Europaea: Notulae Systematicae ad Palaeofloram Europaeam spectantes I. New names of fossil magnoliophytes of the European Tertiary. I. Miscellaneous families". Phytotaxa 379 (1): 78–94. doi:10.11646/phytotaxa.379.1.8.
- ↑ 4.0 4.1 4.2 4.3 Hongshan Wang; David L. Dilcher (2018). "Early Cretaceous angiosperm leaves from the Dakota Formation, Hoisington III locality, Kansas, USA". Palaeontologia Electronica 21 (3): Article number 21.3.34A. doi:10.26879/841.
- ↑ 5.0 5.1 5.2 5.3 Mahesh Prasad; Somlata Gautam; Nupur Bhowmik; Sanjeev Kumar; Sanjai Kumar Singh (2018). "New fossil leaves of Annonaceae and Achariaceae from Churia Group of Nepal and their phytogeographical implications". The Palaeobotanist 67 (1): 47–66. doi:10.54991/jop.2018.47.
- ↑ Lina B. Golovneva (2018). "Diversity of palmately lobed leaves in the early–middle Albian of eastern Russia". Cretaceous Research 84: 18–31. doi:10.1016/j.cretres.2017.11.005. Bibcode: 2018CrRes..84...18G.
- ↑ 7.0 7.1 Maria G. Moiseeva; Tatiana M. Kodrul; Alexei B. Herman (2018). "Early Paleogene Boguchan flora of the Amur Region (Russian Far East): Composition, age and palaeoclimatic implications". Review of Palaeobotany and Palynology 253: 15–36. doi:10.1016/j.revpalbo.2018.03.003. Bibcode: 2018RPaPa.253...15M.
- ↑ 8.0 8.1 Andrew C. Rozefelds; Marcelo R. Pace (2018). "The first record of fossil Vitaceae wood from the Southern Hemisphere, a new combination for Vitaceoxylon ramunculiformis, and reappraisal of the fossil record of the grape family (Vitaceae) from the Cenozoic of Australia". Journal of Systematics and Evolution 56 (4): 283–296. doi:10.1111/jse.12300.
- ↑ 9.0 9.1 9.2 9.3 N. Awasthi; R.C. Mehrotra; A. Shukla (2018). "Some new fossil woods from the Cuddalore Sandstone of south India". The Palaeobotanist 67 (1): 33–46. doi:10.54991/jop.2018.46.
- ↑ Eliana Moya; Mariana Brea (2018). "First Pleistocene record of fossil wood of Bignoniaceae in the Americas and a comparison with the extant Tabebuia alliance and Tecomeae". Botanical Journal of the Linnean Society 187 (2): 303–318. doi:10.1093/botlinnean/boy019.
- ↑ Jun-Ling Dong; Bai-Nian Sun; Teng Mao; Chun-Hui Liu; Xue-Lian Wang; Ming-Xuan Sun; Fu-Jun Ma; Qiu-Jun Wang (2018). "The occurrence of Burretiodendron from the Oligocene of South China and its geographic analysis". Palaeogeography, Palaeoclimatology, Palaeoecology 512: 95–105. doi:10.1016/j.palaeo.2017.07.004. Bibcode: 2018PPP...512...95D.
- ↑ Hua-Sheng Huang; Tao Su; Zhe-Kun Zhou (2018). "Fossil leaves of Buxus (Buxaceae) from the Upper Pliocene of Yunnan, SW China". Palaeoworld 27 (2): 271–281. doi:10.1016/j.palwor.2017.12.003.
- ↑ Meng Han; Steven R. Manchester; Yan Wu; Jianhua Jin; Cheng Quan (2018). "Fossil fruits of Canarium (Burseraceae) from Eastern Asia and their implications for phytogeographical history". Journal of Systematic Palaeontology 16 (10): 841–852. doi:10.1080/14772019.2017.1349624.
- ↑ Cristina I. Nunes; Roberto R. Pujana; Ignacio H. Escapa; María A. Gandolfo; N. Rubén Cúneo (2018). "A new species of Carlquistoxylon from the Early Cretaceous of Patagonia (Chubut province, Argentina): the oldest record of angiosperm wood from South America". IAWA Journal 39 (4): 406–426. doi:10.1163/22941932-20170206.
- ↑ 15.0 15.1 15.2 Luliang Huang; Jianhua Jin; Cheng Quan; Alexei A. Oskolski (2018). "Mummified fossil woods of Fagaceae from the upper Oligocene of Guangxi, South China". Journal of Asian Earth Sciences 152: 39–51. doi:10.1016/j.jseaes.2017.11.029. Bibcode: 2018JAESc.152...39H.
- ↑ 16.0 16.1 George Poinar, Jr. (2018). "Mid-Cretaceous angiosperm flowers in Myanmar amber". Recent advances in plant research. Nova Science Publishers, Incorporated. pp. 187–218. ISBN 978-1-53614-170-2.
- ↑ Anumeha Shukla; R.C. Mehrotra (2018). "A new fossil wood from the highly diverse early Eocene equatorial forest of Gujarat (western India)". Palaeoworld 27 (3): 392–398. doi:10.1016/j.palwor.2018.01.003.
- ↑ 18.0 18.1 18.2 18.3 18.4 Alexander B. Doweld (2018). "New names of fossil Cyperaceae of Northern Eurasia". Phytotaxa 356 (2): 131–144. doi:10.11646/phytotaxa.356.2.3.
- ↑ 19.0 19.1 19.2 Clément Coiffard; Barbara A. R. Mohr (2018). "Cretaceous tropical Alismatales in Africa: diversity, climate and evolution". Botanical Journal of the Linnean Society 188 (2): 117–131. doi:10.1093/botlinnean/boy045.
- ↑ 20.0 20.1 20.2 Steven Manchester; Kathleen B. Pigg; Melanie L. Devore (2018). "Trochodendraceous fruits and foliage in the Miocene of western North America". Fossil Imprint 74 (1–2): 45–54. doi:10.2478/if-2018-0004. http://fi.nm.cz/wp-content/uploads/2018/08/4_-Manchester_45-54.pdf.
- ↑ 21.0 21.1 Steven Manchester; Kathleen B. Pigg; Zlatko Kvaček; Melanie L. Devore; Richard M. Dillhoff (2018). "Newly recognized diversity in Trochodendraceae from the Eocene of western North America". International Journal of Plant Sciences 179 (8): 663–676. doi:10.1086/699282.
- ↑ Steven R. Manchester; Zlatko Kvaček; Walter S. Judd (2020). "Morphology, anatomy, phylogenetics and distribution of fossil and extant Trochodendraceae in the Northern Hemisphere". Botanical Journal of the Linnean Society 195 (3): 467–484. doi:10.1093/botlinnean/boaa046.
- ↑ 23.0 23.1 23.2 R.R. Pujana; A. Iglesias; M.E. Raffi; E.B. Olivero (2018). "Angiosperm fossil woods from the Upper Cretaceous of Western Antarctica (Santa Marta Formation)". Cretaceous Research 90: 349–362. doi:10.1016/j.cretres.2018.06.009. Bibcode: 2018CrRes..90..349P.
- ↑ 24.0 24.1 Dimitra Mantzouka (2018). "The first report of Cryptocaryoxylon from the Neogene (early Miocene) of Eurasia (Eastern Mediterranean: Lesbos and Lemnos Islands, Greece)". Fossil Imprint 74 (1–2): 29–36. doi:10.2478/if-2018-0002. http://fi.nm.cz/wp-content/uploads/2018/08/2_Mantzouka_29-36.pdf.
- ↑ 25.0 25.1 25.2 25.3 Alexander B. Doweld (2018). "Cussoniophyllum, Diplosophyllum, Hederago and Priscophyllum, new generic names for Upper Cretaceous plants of Europe". Annales Botanici Fennici 55 (1–3): 93–98. doi:10.5735/085.055.0111.
- ↑ Steven R. Manchester; David L. Dilcher; Walter S. Judd; Brandon Corder; James F. Basinger (2018). "Early Eudicot flower and fruit: Dakotanthus gen. nov. from the Cretaceous Dakota Formation of Kansas and Nebraska, USA". Acta Palaeobotanica 58 (1): 27–40. doi:10.2478/acpa-2018-0006.
- ↑ 27.0 27.1 27.2 27.3 27.4 Ye-Ming Cheng; Yu-Fei Wang; Feng-Xiang Liu; Yue-Gao Jin; R.C. Mehrotra; Xiao-Mei Jiang; Cheng-Sen Li (2018). "The Neogene wood flora of Yuanmou, Yunnan, southwest China". IAWA Journal 39 (4): 427–474. doi:10.1163/22941932-20170214.
- ↑ George O. Poinar, Jr (2019). "Exalloanthum, a new name for a fossil angiosperm flower in Myanmar amber". Journal of the Botanical Research Institute of Texas 13 (2): 475–476. doi:10.17348/jbrit.v13.i2.800.
- ↑ 29.0 29.1 Itzel Guzmán-Vázquez; Laura Calvillo-Canadell; Francisco Sánchez-Beristain (2018). "Leaves of Menispermaceae and Dioscoreaceae from the Olmos Formation (Upper Cretaceous) from the state of Coahuila, Northern Mexico". Review of Palaeobotany and Palynology 258: 73–82. doi:10.1016/j.revpalbo.2018.06.014. Bibcode: 2018RPaPa.258...73G.
- ↑ 30.0 30.1 Vandana Prasad; Anjum Farooqui; Srikanta Murthy; Omprakash S. Sarate; Sunil Bajpai (2018). "Palynological assemblage from the Deccan Volcanic Province, central India: Insights into early history of angiosperms and the terminal Cretaceous paleogeography of peninsular India". Cretaceous Research 86: 186–198. doi:10.1016/j.cretres.2018.03.004. Bibcode: 2018CrRes..86..186P.
- ↑ Hongshan Wang; David L. Dilcher (2018). "A new species of Donlesia (Ceratophyllaceae) from the Early Cretaceous of Kansas, USA". Review of Palaeobotany and Palynology 252: 20–28. doi:10.1016/j.revpalbo.2018.02.002. Bibcode: 2018RPaPa.252...20W.
- ↑ 32.0 32.1 32.2 Brian A. Atkinson; Ruth A. Stockey; Gar W. Rothwell (2018). "Tracking the initial diversification of asterids: anatomically preserved cornalean fruits from the early Coniacian (Late Cretaceous) of western North America". International Journal of Plant Sciences 179 (1): 21–35. doi:10.1086/695339.
- ↑ George O. Poinar Jr.; Kenton L. Chambers (2018). "Endobeuthos paleosum gen. et sp. nov., fossil flowers of uncertain affinity from mid-Cretaceous Myanmar amber". Journal of the Botanical Research Institute of Texas 12 (1): 133–139. doi:10.17348/jbrit.v12.i1.923.
- ↑ 34.00 34.01 34.02 34.03 34.04 34.05 34.06 34.07 34.08 34.09 34.10 34.11 Alexander B. Doweld (2018). "New names in Ficus (Moraceae) and Ficophyllum, living and fossil". Kew Bulletin 73 (4): Article 48. doi:10.1007/s12225-018-9769-y.
- ↑ Jian Huang; Tao Su; Lin-Bo Jia; Zhe-Kun Zhou (2018). "A fossil fig from the Miocene of southwestern China: Indication of persistent deep time karst vegetation". Review of Palaeobotany and Palynology 258: 133–145. doi:10.1016/j.revpalbo.2018.07.005. Bibcode: 2018RPaPa.258..133H.
- ↑ Qijia Li; Yusheng (Christopher) Liu; Jianhua Jin; Cheng Quan (2018). "Late Oligocene Fissistigma (Annonaceae) leaves from Guangxi, low-latitude China and its paleoecological implications". Review of Palaeobotany and Palynology 259: 39–47. doi:10.1016/j.revpalbo.2018.09.005. Bibcode: 2018RPaPa.259...39L.
- ↑ 37.0 37.1 37.2 37.3 Anumeha Shukla; R.C. Mehrotra; Sheikh Nawaz Ali (2018). "Early Eocene leaves of northwestern India and their response to climate change". Journal of Asian Earth Sciences 166: 152–161. doi:10.1016/j.jseaes.2018.07.035. Bibcode: 2018JAESc.166..152S.
- ↑ 38.0 38.1 38.2 38.3 38.4 38.5 Else Marie Friis; Peter R. Crane; Kaj Raunsgaard Pedersen (2018). "Extinct taxa of exotestal seeds close to Austrobaileyales and Nymphaeales from the Early Cretaceous of Portugal". Fossil Imprint 74 (1–2): 135–158. doi:10.2478/if-2018-0010. http://fi.nm.cz/wp-content/uploads/2018/08/10_Friis_135158.pdf.
- ↑ Ye-Ming Cheng; Xiao-Nan Yang; Zhe-Feng He; Bing Mao; Ya-Fang Yin (2018). "Early Miocene angiosperm woods from Sihong in the Jiangsu Province, Eastern China". IAWA Journal 39 (1): 125–142. doi:10.1163/22941932-20170189.
- ↑ Mahasin Ali Khan; Meghma Bera; Robert A.Spicer; Teresa E.V. Spicer; Subir Bera (2018). "Evidence of simultaneous occurrence of tylosis formation and fungal interaction in a late Cenozoic angiosperm from the eastern Himalaya". Review of Palaeobotany and Palynology 259: 171–184. doi:10.1016/j.revpalbo.2018.10.004. Bibcode: 2018RPaPa.259..171K.
- ↑ Maria de Jesus Hernandez-Hernández; Carlos Castañeda-Posadas (2018). "Gouania miocenica sp. nov. (Rhamnaceae), a Miocene fossil from Chiapas, México and paleobiological involvement". Journal of South American Earth Sciences 85: 1–5. doi:10.1016/j.jsames.2018.04.018. Bibcode: 2018JSAES..85....1H.
- ↑ Tao Su; Shu-Feng Li; He Tang; Yong-Jiang Huang; Shi-Hu Li; Cheng-Long Deng; Zhe-Kun Zhou (2018). "Hemitrapa Miki (Lythraceae) from the earliest Oligocene of southeastern Qinghai-Tibetan Plateau and its phytogeographic implications". Review of Palaeobotany and Palynology 257: 57–63. doi:10.1016/j.revpalbo.2018.06.001. Bibcode: 2018RPaPa.257...57S.
- ↑ Ya Li; Yi-Ming Cui; Carole T. Gee; Xiao-Qing Liang; Cheng-Sen Li (2020). "Primotrapa gen. nov., an extinct transitional genus bridging the evolutionary gap between Lythraceae and Trapoideae, from the early Miocene of North China". BMC Evolutionary Biology 20 (1): 150. doi:10.1186/s12862-020-01697-2. PMID 33183234.
- ↑ Gaurav Srivastava; Rakesh C. Mehrotra; David L. Dilcher (2018). "Paleocene Ipomoea (Convolvulaceae) from India with implications for an East Gondwana origin of Convolvulaceae". Proceedings of the National Academy of Sciences of the United States of America 115 (23): 6028–6033. doi:10.1073/pnas.1800626115. PMID 29784796. Bibcode: 2018PNAS..115.6028S.
- ↑ Rafał Kowalski; Elżbieta Worobiec (2018). "Revision of Comarostaphylis globula (Ericaceae) from Cenozoic of Central Europe". Review of Palaeobotany and Palynology 254: 20–32. doi:10.1016/j.revpalbo.2018.04.009. Bibcode: 2018RPaPa.254...20K.
- ↑ 46.0 46.1 Else Marie Friis; Peter R. Crane; Kaj Raunsgaard Pedersen (2018). "Rightcania and Kvacekispermum: Early Cretaceous seeds from eastern North America and Portugal provide further evidence of the early chloranthoid diversification". Fossil Imprint 74 (1–2): 65–76. doi:10.2478/if-2018-0006. http://fi.nm.cz/wp-content/uploads/2018/08/6_Friis_65-76.pdf.
- ↑ George O. Poinar Jr.; Kenton L. Chambers (2018). "Fossil flowers of Lachnociona camptostylus sp. nov., a second record for the genus in mid-Cretaceous Myanmar amber". Journal of the Botanical Research Institute of Texas 12 (2): 655–666. doi:10.17348/jbrit.v12.i2.966.
- ↑ Nathan A. Jud; Maria A. Gandolfo; Ari Iglesias; Peter Wilf (2018). "Fossil flowers from the early Palaeocene of Patagonia, Argentina, with affinity to Schizomerieae (Cunoniaceae)". Annals of Botany 121 (3): 431–442. doi:10.1093/aob/mcx173. PMID 29309506.
- ↑ 49.0 49.1 49.2 Emilio Estrada-Ruiz; Elisabeth A. Wheeler; Garland R. Upchurch Jr.; Greg H. Mack (2018). "Late Cretaceous angiosperm woods from the McRae Formation, south-central New Mexico, USA: Part 2". International Journal of Plant Sciences 179 (2): 136–150. doi:10.1086/695503.
- ↑ Camila Martínez; María A. Gandolfo; N. Rubén Cúneo (2018). "Angiosperm leaves and cuticles from the uppermost Cretaceous of Patagonia, biogeographic implications and atmospheric paleo-CO2 estimates". Cretaceous Research 89: 107–118. doi:10.1016/j.cretres.2018.03.015. Bibcode: 2018CrRes..89..107M.
- ↑ Atsushi Yabe; Tomio Nakagawa (2018). "A new legume fruit species from the mid-Miocene Climatic Optimum in Japan". Review of Palaeobotany and Palynology 257: 35–42. doi:10.1016/j.revpalbo.2018.06.006. Bibcode: 2018RPaPa.257...35Y.
- ↑ Zhong-Jian Liu; Diying Huang; Chenyang Cai; Xin Wang (2018). "The core eudicot boom registered in Myanmar amber". Scientific Reports 8 (1): Article number 16765. doi:10.1038/s41598-018-35100-4. PMID 30425298. Bibcode: 2018NatSR...816765L.
- ↑ Junling Dong; Bainian Sun; Teng Mao; Defei Yan; Chunhui Liu; Zixi Wang; Peihong Jin (2018). "Liquidambar (Altingiaceae) and associated insect herbivory from the Miocene of southeastern China". Palaeogeography, Palaeoclimatology, Palaeoecology 497: 11–24. doi:10.1016/j.palaeo.2018.02.001. Bibcode: 2018PPP...497...11D.
- ↑ Lu-Liang Huang; Jin Sun; Jian-Hua Jin; Cheng Quan; Alexei A. Oskolski (2018). "Litseoxylon gen. nov. (Lauraceae): The most ancient fossil angiosperm wood with helical thickenings from southeastern Asia". Review of Palaeobotany and Palynology 258: 223–233. doi:10.1016/j.revpalbo.2018.08.006. Bibcode: 2018RPaPa.258..223H.
- ↑ Camila Martínez (2018). "Dalbergieae (Fabaceae) samara fruits from the Late Eocene of Colombia". International Journal of Plant Sciences 179 (7): 541–553. doi:10.1086/698937.
- ↑ 56.0 56.1 María Jimena Franco (2018). "Small Celastraceae and Polygonaceae twigs from the Upper Cenozoic (Ituzaingó Formation) of the La Plata Basin, Argentina". Historical Biology: An International Journal of Paleobiology 30 (5): 646–660. doi:10.1080/08912963.2017.1313840.
- ↑ 57.0 57.1 57.2 Nathan A. Jud; Ari Iglesias; Peter Wilf; Maria A. Gandolfo (2018). "Fossil moonseeds from the Paleogene of West Gondwana (Patagonia, Argentina)". American Journal of Botany 105 (5): 927–942. doi:10.1002/ajb2.1092. PMID 29882954.
- ↑ Fei Liang; Ge Sun; Tao Yang; Shuchong Bai (2018). "Nelumbo jiayinensis sp. nov. from the Upper Cretaceous Yong'ancun Formation, Heilongjiang, Northeast China". Cretaceous Research 84: 134–140. doi:10.1016/j.cretres.2017.11.007.
- ↑ Zhongjian Liu; Xin Wang (2018). "A novel angiosperm from the Early Cretaceous and its implications for carpel-deriving". Acta Geologica Sinica (English Edition) 92 (4): 1293–1298. doi:10.1111/1755-6724.13627. http://www.geojournals.cn/dzxben/ch/reader/view_abstract.aspx?file_no=2018endzxb04001&flag=1.
- ↑ Else Marie Friis; Peter R. Crane; Kaj R. Pedersen (2018). "Fossil seeds with affinities to Austrobaileyales and Nymphaeales from the Early Cretaceous (early to middle Albian) of Virginia and Maryland, USA: new evidence for extensive extinction near the base of the angiosperm tree". Transformative paleobotany. Papers to commemorate the life and legacy of Thomas N. Taylor. Academic Press. pp. 417–435. doi:10.1016/B978-0-12-813012-4.00017-6. ISBN 978-01-281-3012-4.
- ↑ Else Marie Friis; Mário Miguel Mendes; Kaj Raunsgaard Pedersen (2018). "Paisia, an Early Cretaceous eudicot angiosperm flower with pantoporate pollen from Portugal". Grana 57 (1–2): 1–15. doi:10.1080/00173134.2017.1310292.
- ↑ Yunfa Chen; Hongshan Wang; Yongqing Liufu; Qian Hu; Qiongyao Fu; Zhiming Xie (2018). "A new species of Palaeocarya (Juglandaceae) from the Ningming Basin in Guangxi, South China". Phytotaxa 367 (1): 55–62. doi:10.11646/phytotaxa.367.1.6.
- ↑ Kathleen B. Pigg; Finley A. Bryan; Melanie L. DeVore (2018). "Paleoallium billgenseli gen. et sp. nov.: fossil monocot remains from the latest Early Eocene Republic Flora, northeastern Washington State, USA". International Journal of Plant Sciences 179 (6): 477–486. doi:10.1086/697898.
- ↑ Jun-Ling Dong; Bai-Nian Sun; Teng Mao; Pei-Hong Jin; Zi-Xi Wang (2018). "Two samaras of Rhamnaceae from the middle Miocene of southeast China". Review of Palaeobotany and Palynology 259: 112–122. doi:10.1016/j.revpalbo.2018.09.004. Bibcode: 2018RPaPa.259..112D.
- ↑ 65.0 65.1 65.2 Samar Nour-El-Deen; Romain Thomas; Wagieh El-Saadawi (2018). "First record of fossil Trachycarpeae in Africa: three new species of Palmoxylon from the Oligocene (Rupelian) Gebel Qatrani Formation, Fayum, Egypt". Journal of Systematic Palaeontology 16 (9): 741–766. doi:10.1080/14772019.2017.1343258.
- ↑ Eliana Moya; Mariana Brea; Alicia I. Lutz (2018). "Redescription and reassignment of the fossil wood Menendoxylon piptadiensis from the Pliocene Andalhuala Formation, South America". Journal of Systematic Palaeontology 16 (13): 1145–1157. doi:10.1080/14772019.2017.1386727. https://figshare.com/articles/journal_contribution/5624944.
- ↑ 67.0 67.1 Ünal Akkemik; Gökhan Atıcı; Imogen Poole; Mehmet Çobankaya (2018). "Three new silicified woods from a newly discovered earliest Miocene forest site in the Haymana Basin (Ankara, Turkey)". Review of Palaeobotany and Palynology 254: 49–64. doi:10.1016/j.revpalbo.2018.04.012. Bibcode: 2018RPaPa.254...49A.
- ↑ Gaurav Srivastava; R. C. Mehrotra; C. Srikarni (2018). "Fossil wood flora from the Siwalik Group of Arunachal Pradesh, India and its climatic and phytogeographic significance". Journal of Earth System Science 127 (1): Article 2. doi:10.1007/s12040-017-0903-2. Bibcode: 2018JESS..127....2S.
- ↑ Dmitry D. Sokoloff; Michael S. Ignatov; Margarita V. Remizowa; Maxim S. Nuraliev; Vladimir Blagoderov; Amin Garbout; Evgeny E. Perkovsky (2018). "Staminate flower of Prunus s. l. (Rosaceae) from Eocene Rovno amber (Ukraine)". Journal of Plant Research 131 (6): 925–943. doi:10.1007/s10265-018-1057-2. PMID 30032395.
- ↑ Steven R. Manchester; Behnaz Balmaki (2018). "Spiny fruits revealed by nano-CT scanning: Pseudoanacardium peruvianum (Berry) gen. et comb. nov. from the early Oligocene Belén flora of Peru". Acta Palaeobotanica 58 (1): 41–48. doi:10.2478/acpa-2018-0005.
- ↑ Friðgeir Grímsson; Guido W. Grimm; Alastair J. Potts; Reinhard Zetter; Susanne S. Renner (2018). "A Winteraceae pollen tetrad from the early Paleocene of western Greenland, and the fossil record of Winteraceae in Laurasia and Gondwana". Journal of Biogeography 45 (3): 567–581. doi:10.1111/jbi.13154.
- ↑ John G. Conran; Elizabeth M. Kennedy; Jennifer M. Bannister (2018). "Early Eocene Ripogonaceae leaf macrofossils from New Zealand". Australian Systematic Botany 31 (1): 8–15. doi:10.1071/SB17016.
- ↑ A.L. Hernández-Damián; S.L. Gómez-Acevedo; S.R.S. Cevallos-Ferriz (2018). "Fossil flower of Salacia lombardii sp. nov. (Salacioideae-Celastraceae) preserved in amber from Simojovel de Allende, Mexico". Review of Palaeobotany and Palynology 252: 1–9. doi:10.1016/j.revpalbo.2018.02.003. Bibcode: 2018RPaPa.252....1H.
- ↑ George O. Poinar Jr.; Kenton L. Chambers (2018). "Setitheca lativalva gen. et sp. nov., a fossil flower of Laurales from mid-Cretaceous Myanmar amber". Journal of the Botanical Research Institute of Texas 12 (2): 643–653. doi:10.17348/jbrit.v12.i2.964.
- ↑ Sandip More; Rajarshi Rit; Mahasin Ali Khan; Dipak Kumar Paruya; Suchana Taral; Tapan Chakraborty; Subir Bera (2018). "Record of leaf and pollen cf. Sloanea (Elaeocarpaceae) from the Middle Siwalik of Darjeeling sub-Himalaya, India and its palaeobiogeographic implications". Journal of the Geological Society of India 91 (3): 301–306. doi:10.1007/s12594-018-0854-5.
- ↑ Maria A. Gandolfo; Kevin C. Nixon; William L. Crepet; David A. Grimaldi (2018). "A late Cretaceous fagalean inflorescence preserved in amber from New Jersey". American Journal of Botany 105 (8): 1424–1435. doi:10.1002/ajb2.1103. PMID 29901855. https://www.researchgate.net/publication/325770238.
- ↑ Yongjiang Huang; Arata Momohara; Yuqing Wang (2018). "Selective extinction within a Tertiary relict genus in the Japanese Pleistocene explained by climate cooling and species-specific cold tolerance". Review of Palaeobotany and Palynology 258: 1–12. doi:10.1016/j.revpalbo.2018.06.009. Bibcode: 2018RPaPa.258....1H.
- ↑ 78.0 78.1 78.2 Han, M.; Manchester, S.; Fu, Q.-Y.; Jin, J.-H.; Quan, C. (2018). "Paleogene fossil fruits of Stephania (Menispermaceae) from North America and East Asia". Journal of Systematics and Evolution 56 (2): 81–91. doi:10.1111/jse.12288.
- ↑ Manchester, S.R. (1994). "Fruits and Seeds of the Middle Eocene Nut Beds Flora, Clarno Formation, Oregon". Palaeontographica Americana 58: 30–31.
- ↑ Bruce H. Tiffney; Steven R. Manchester; Peter W. Fritsch (2018). "Two new species of Symplocos based on endocarps from the early Miocene Brandon Lignite of Vermont, USA". Acta Palaeobotanica 58 (2): 185–198. doi:10.2478/acpa-2018-0008.
- ↑ Myall Tarran; Peter G. Wilson; Rosemary Paull; Ed Biffin; Robert S. Hill (2018). "Identifying fossil Myrtaceae leaves: the first described fossils of Syzygium from Australia". American Journal of Botany 105 (10): 1748–1759. doi:10.1002/ajb2.1163. PMID 30276795.
- ↑ Else Marie Friis; Peter R. Crane; Kaj Raunsgaard Pedersen (2018). "Tanispermum, a new genus of hemi‐orthotropous to hemi‐anatropous angiosperm seeds from the Early Cretaceous of eastern North America". American Journal of Botany 105 (8): 1369–1388. doi:10.1002/ajb2.1124. PMID 30080239.
- ↑ William L. Crepet; Kevin C. Nixon; Andrea Weeks (2018). "Mid‐Cretaceous angiosperm radiation and an asterid origin of bilaterality: diverse and extinct "Ericales" from New Jersey". American Journal of Botany 105 (8): 1412–1423. doi:10.1002/ajb2.1131. PMID 30075046.
- ↑ L. B. Golovneva; A. A. Zolina (2018). "Fossil evidence of initial radiation of Cercidiphyllaceae". Paleobotanika 9: 54–75. doi:10.31111/palaeobotany/2018.9.54. ISSN 2218-7235. https://elibrary.ru/item.asp?id=37042584.
- ↑ 85.0 85.1 Qiu-Yue Zhang; Jian Huang; Lin-Bo Jia; Tao Su; Zhe-Kun Zhou; Yao-Wu Xing (2018). "Miocene Ulmus fossil fruits from Southwest China and their evolutionary and biogeographic implications". Review of Palaeobotany and Palynology 259: 198–206. doi:10.1016/j.revpalbo.2018.10.007. Bibcode: 2018RPaPa.259..198Z.
- ↑ N. I. Blokhina; O. V. Bondarenko (2018). "Fossil wood of Ulmus priamurica sp. nov. (Ulmaceae) from the Miocene of the Erkovetskii Brown Coal Field, Amur Region, Russia". Paleontological Journal 52 (2): 208–218. doi:10.1134/S003103011802003X.
- ↑ Xiao-Qing Liang; Ping Lu; Jian-Wei Zhang; Tao Su; Zhe-Kun Zhou (2018). "First fossils of Zygogynum from the Middle Miocene of Central Yunnan, Southwest China, and their palaeobiogeographic significance". Palaeoworld 27 (3): 399–409. doi:10.1016/j.palwor.2018.05.003.
- ↑ Ignacio H. Escapa; Ari Iglesias; Peter Wilf; Santiago A. Catalano; Marcos A. Caraballo‐Ortiz; N. Rubén Cúneo (2018). "Agathis trees of Patagonia's Cretaceous‐Paleogene death landscapes and their evolutionary significance". American Journal of Botany 105 (8): 1345–1368. doi:10.1002/ajb2.1127. PMID 30074620.
- ↑ M. Philippe; M. Rioult; J.-Ph. Rioult; F. Thévenard (2018). "A reappraisal of Lignier's Mesozoic fossil wood collection: Ages, nomenclature and taxonomy". Review of Palaeobotany and Palynology 252: 10–19. doi:10.1016/j.revpalbo.2018.02.001. Bibcode: 2018RPaPa.252...10P.
- ↑ 90.0 90.1 90.2 90.3 Stănilă Iamandei; Eugenia Iamandei; Eugen Grădinaru (2018). "Contributions to the study of the Early Jurassic petrified forest of Holbav and Cristian areas (Brașov region, South Carpathians, Romania). 1st part". Acta Palaeontologica Romaniae 14 (2): 3–34.
- ↑ Adriana C. Kloster; Silvia C. Gnaedinger (2018). "Coniferous wood of Agathoxylon from the La Matilde Formation, (Middle Jurassic), Santa Cruz, Argentina". Journal of Paleontology 92 (4): 546–567. doi:10.1017/jpa.2017.145. Bibcode: 2018JPal...92..546K.
- ↑ Ana Andruchow‐Colombo; Ignacio H. Escapa; N. Rubén Cúneo; María A. Gandolfo (2018). "Araucaria lefipanensis (Araucariaceae), a new species with dimorphic leaves from the Late Cretaceous of Patagonia, Argentina". American Journal of Botany 105 (6): 1067–1087. doi:10.1002/ajb2.1113. PMID 29995329.
- ↑ Rafael Souza Faria; Fresia Ricardi-Branco; Rosemarie Rohn; Marcelo Adorna Fernandes; Isabel Christiano-De-Souza (2018). "Permian woods with preserved primary structures from the southeast of Brazil (Irati Formation, Paraná basin)". Palaeobiodiversity and Palaeoenvironments 98 (3): 385–401. doi:10.1007/s12549-018-0320-9.
- ↑ Ning Tian; Zhi-Peng Zhu; Yong-Dong Wang; Si-Cong Wang (2018). "Occurrence of Brachyoxylon Hollick et Jeffrey from the Lower Cretaceous of Zhejiang Province, southeastern China". Journal of Palaeogeography 7 (1): Article 8. doi:10.1186/s42501-018-0008-0.
- ↑ Brian A. Atkinson; Rudolph Serbet; Timothy J. Hieger; Edith L. Taylor (2018). "Additional evidence for the Mesozoic diversification of conifers: Pollen cone of Chimaerostrobus minutus gen. et sp. nov. (Coniferales), from the Lower Jurassic of Antarctica". Review of Palaeobotany and Palynology 257: 77–84. doi:10.1016/j.revpalbo.2018.06.013. Bibcode: 2018RPaPa.257...77A.
- ↑ Wen-Na Ding; Lutz Kunzmann; Tao Su; Jian Huang; Zhe-Kun Zhou (2018). "A new fossil species of Cryptomeria (Cupressaceae) from the Rupelian of the Lühe Basin, Yunnan, East Asia: Implications for palaeobiogeography and palaeoecology". Review of Palaeobotany and Palynology 248: 41–51. doi:10.1016/j.revpalbo.2017.09.003. Bibcode: 2018RPaPa.248...41D.
- ↑ Tatiana Kodrul; Natalia Gordenko; Aleksandra Sokolova; Natalia Maslova; Xinkai Wu; Jianhua Jin (2018). "A new Oligocene species of Cunninghamia R. Brown ex Richard et A. Richard (Cupressaceae) from the Maoming Basin, South China". Review of Palaeobotany and Palynology 258: 234–247. doi:10.1016/j.revpalbo.2018.09.003. Bibcode: 2018RPaPa.258..234K.
- ↑ 98.0 98.1 98.2 98.3 98.4 98.5 98.6 98.7 98.8 Valeria S. Perez Loinaze; Magdalena Llorens (2018). "Palynology of the Baqueró Group (upper Aptian), Patagonia Argentina: An integrated study". Cretaceous Research 86: 219–237. doi:10.1016/j.cretres.2018.02.004. Bibcode: 2018CrRes..86..219P.
- ↑ Pei-Hong Jin; Jun-Ling Dong; Zi-Xi Wang; Xiu-Cai Yuan; Yi-Fan Hua; Bao-Xia Du; Bai-Nian Sun (2018). "A new species of Elatides from the Lower Cretaceous in Shandong province, Eastern China and its geographic significance". Cretaceous Research 85: 109–127. doi:10.1016/j.cretres.2017.11.022. Bibcode: 2018CrRes..85..109J.
- ↑ 100.0 100.1 Amit K. Ghosh; Ratan Kar; Reshmi Chatterjee; Arindam Chakraborty; Jayasri Banerji (2018). "Two new conifers from the Early Cretaceous of the Rajmahal Basin, India: implications on palaeoecology and phytogeography". Ameghiniana 55 (4): 437–450. doi:10.5710/AMGH.17.02.2018.3124.
- ↑ Ana Andruchow-Colombo; Ignacio H. Escapa; Raymond J. Carpenter; Robert S. Hill; Ari Iglesias; Ana M. Abarzua; Peter Wilf (2018). "Oldest record of the scale-leaved clade of Podocarpaceae, early Paleocene of Patagonia, Argentina". Alcheringa 43: 127–145. doi:10.1080/03115518.2018.1517222.
- ↑ N.V. Nosova; A.I. Kiritchkova (2018). "A new species of Marskea Florin (Pinopsida) from the Middle Jurassic of the Irkutsk Coal Basin (East Siberia)". Paleontological Journal 52 (5): 574–581. doi:10.1134/S0031030118050106. https://elibrary.ru/item.asp?id=35524952.
- ↑ Ruth A. Stockey; Nicholas J. P. Wiebe; Brian A. Atkinson; Gar W. Rothwell (2018). "Cupressaceous pollen cones from the Early Cretaceous of Vancouver Island, British Columbia: Morinostrobus holbergensis gen. et sp. nov.". International Journal of Plant Sciences 179 (5): 402–414. doi:10.1086/697728.
- ↑ Mahasin Ali Khan; Subir Bera (2018). "Pinus daflaensis (Pinaceae), a replacement name for P. arunachalensis Khan & Bera". Phytotaxa 334 (2): 200. doi:10.11646/phytotaxa.334.2.9.
- ↑ 105.0 105.1 Alma R. Huerta Vergara; Sergio R.S. Cevallos-Ferriz (2018). "Vegetative and reproductive organs of Late Cretaceous Pinus spp. from Esqueda, Sonora, Mexico". Review of Palaeobotany and Palynology 259: 134–141. doi:10.1016/j.revpalbo.2018.10.003. Bibcode: 2018RPaPa.259..134H.
- ↑ 106.0 106.1 106.2 106.3 106.4 Alexander B. Doweld (2018). "New names of fossil Pinus and Pinuspollenites (Pinaceae) of Northern Eurasia". The Journal of Japanese Botany 93 (3): 215–219.
- ↑ Wenlong He; Liang Xiao; Xiangchuan Li; Shuangxing Guo (2018). "An ancient example of Platycladus (Cupressceae) from the early Miocene of northern China: origin and biogeographical implications". Historical Biology: An International Journal of Paleobiology 30 (8): 1123–1131. doi:10.1080/08912963.2017.1339038.
- ↑ 108.0 108.1 Yujin Zhang; Ning Tian; Zhipeng Zhu; Yongdong Wang; Xinwei Wu; Zhibin Zhang; Chao Zhang; Qiuliang Si et al. (2018). "Two new species of Protocedroxylon Gothan (Pinaceae) from the Middle Jurassic of Eastern Inner Mongolia, NE China". Acta Geologica Sinica (English Edition) 92 (5): 1685–1699. doi:10.1111/1755-6724.13671. http://www.geojournals.cn/dzxben/ch/reader/view_abstract.aspx?file_no=2018endzxb05001&flag=1.
- ↑ Maria Edenilce P. Batista; Lutz Kunzmann; Francisco Irineudo Bezerra; José Artur F.G. de Andrade; Artur A. Sá; Maria Iracema B. Loiola (2018). "A new cheirolepidiaceous conifer Pseudofrenelopsis salesii sp. nov. from the Early Cretaceous of Brazil (Romualdo Formation, Araripe Basin): Paleoecological and taphonomic significance". Review of Palaeobotany and Palynology 258: 154–162. doi:10.1016/j.revpalbo.2018.08.002. Bibcode: 2018RPaPa.258..154B. http://www.repositorio.ufc.br/handle/riufc/64100.
- ↑ Jiří Kvaček; Eduardo Barrón; Zuzana Heřmanová; Mário Miguel Mendes; Jakub Karch; Jan Žemlička; Jan Dudák (2018). "Araucarian conifer from late Albian amber of northern Spain". Papers in Palaeontology 4 (4): 643–656. doi:10.1002/spp2.1223.
- ↑ Long Li; Jian-Hua Jin; Steven R. Manchester (2018). "Cupressaceae fossil remains from the Paleocene of Carneyville, Wyoming". Review of Palaeobotany and Palynology 251: 1–13. doi:10.1016/j.revpalbo.2017.12.003. Bibcode: 2018RPaPa.251....1L.
- ↑ Ning Tian; Zhipeng Zhu; Yongdong Wang; Marc Philippe; Chunyong Chou; Aowei Xie (2018). "Sequoioxylon zhangii sp. nov. (Sequoioideae, Cupressaceae s.l.), a new coniferous wood from the Upper Cretaceous in Heilongjiang Province, Northeastern China". Review of Palaeobotany and Palynology 257: 85–94. doi:10.1016/j.revpalbo.2018.07.008. Bibcode: 2018RPaPa.257...85T.
- ↑ 113.0 113.1 113.2 113.3 113.4 113.5 113.6 113.7 Andrey O. Frolov; Irina M. Mashchuk (2018). Jurassic flora and vegetation of the Irkutsk Coal Basin. V.B. Sochava Institute of Geography SB RAS Publishers. pp. 1–541. ISBN 978-5-94797-328-0. https://www.researchgate.net/publication/360890254.
- ↑ Xiao Tan; David L. Dilcher; Hongshan Wang; Yi Zhang; Yu-Ling Na; Tao Li; Yun-Feng Li; Chun-Lin Sun (2018). "Yanliaoa, an extinct genus of Cupressaceae s. l. from the Middle Jurassic, northeastern China". Palaeoworld 27 (3): 360–373. doi:10.1016/j.palwor.2018.03.001.
- ↑ Le Liu; De-Ming Wang; Mei-Cen Meng; Pu Huang; Jin-Zhuang Xue (2018). "A new seed plant with multi-ovulate cupules from the Upper Devonian of South China". Review of Palaeobotany and Palynology 249: 80–86. doi:10.1016/j.revpalbo.2017.11.006. Bibcode: 2018RPaPa.249...80L.
- ↑ 116.0 116.1 116.2 116.3 Zbyněk Šimůnek (2018). "Cuticular analysis of new Westphalian and Stephanian Cordaites species from the USA". Review of Palaeobotany and Palynology 253: 1–14. doi:10.1016/j.revpalbo.2018.03.001. Bibcode: 2018RPaPa.253....1S.
- ↑ 117.0 117.1 117.2 117.3 117.4 117.5 Stephen McLoughlin; Christian Pott; Ian H. Sobbe (2018). "The diversity of Australian Mesozoic bennettitopsid reproductive organs". Palaeobiodiversity and Palaeoenvironments 98 (1): 71–95. doi:10.1007/s12549-017-0286-z.
- ↑ 118.0 118.1 118.2 À.I Kiritchkova; E.I. Kostina; N.V. Nosova (2018). "Jurassic flora of the Irkutsk coal basin". Botanicheskii Zhurnal 103 (1): 36–63. https://elibrary.ru/item.asp?id=32327135.
- ↑ Yong Yang; Longbiao Lin; David K. Ferguson; Yingwei Wang (2018). "Macrofossil evidence unveiling evolution of male cones in Ephedraceae (Gnetidae)". BMC Evolutionary Biology 18 (1): 125. doi:10.1186/s12862-018-1243-9. PMID 30157769.
- ↑ Yun-Feng Li; Chun-Lin Sun; Hongshan Wang; David L. Dilcher; Xiao Tan; Tao Li; Yu-Ling Na (2018). "First record of Eretmophyllum (Ginkgoales) with well-preserved cuticle from the Middle Jurassic of the Ordos Basin, Inner Mongolia, China". Palaeoworld 27 (2): 188–201. doi:10.1016/j.palwor.2017.09.002.
- ↑ 121.0 121.1 121.2 Chun-Lin Sun; Xiao Tan; David L. Dilcher; Hongshan Wang; Yu-Ling Na; Tao Li; Yun-Feng Li (2018). "Middle Jurassic Ginkgo leaves from the Daohugou area, Inner Mongolia, China and their implication for palaeo-CO2 reconstruction". Palaeoworld 27 (4): 467–481. doi:10.1016/j.palwor.2018.09.005.
- ↑ Andrey O. Frolov; Irina M. Mashchuk (2022). "New Discoveries and New Combinations of the Fossil-genus Ginkgoites Seward (Ginkgoales) from the Lower and Middle Jurassic of East Siberia (Russia)". Phytotaxa 567 (1): 49–60. doi:10.11646/phytotaxa.567.1.4.
- ↑ A.V. Gomankov (2018). "Rhipidopsis-like leaves in the Upper Permian of the Russian Platform and some evolutionary lineages in Ginkgoopsida". Paleobotanicheskii Vremennik. Prilozhenie K Zhurnalu "Lethaea Rossica" 3: 41–49. http://paleobot.ru/pdf/05_2018_suppl3.pdf.
- ↑ 124.0 124.1 Zixi Wang; Bainian Sun; Fankai Sun; Conghui Xiong; Yingquan Chen; Xuelian Wang (2018). "Microstructure and significance of cordaitean reproductive organs from the lower Permian of Gansu, Northwest China". Journal of Asian Earth Sciences 158: 49–64. doi:10.1016/j.jseaes.2018.02.016. Bibcode: 2018JAESc.158...49W.
- ↑ Ana María Zavattieri; Pedro Raúl Gutiérrez; Miguel Ezpeleta (2018). "Gymnosperm pollen grains from the La Veteada Formation (Lopingian), Paganzo Basin, Argentina: biostratigraphic and palaeoecological implications". Alcheringa: An Australasian Journal of Palaeontology 42 (2): 276–299. doi:10.1080/03115518.2017.1410571.
- ↑ 126.0 126.1 Qiang Fu; Jose Bienvenido Diez; Mike Pole; Manuel García Ávila; Zhong-Jian Liu; Hang Chu; Yemao Hou; Pengfei Yin et al. (2018). "An unexpected noncarpellate epigynous flower from the Jurassic of China". eLife 7: e38827. doi:10.7554/eLife.38827. PMID 30558712.
- ↑ Mario Coiro; James A. Doyle; Jason Hilton (2019). "How deep is the conflict between molecular and fossil evidence on the age of angiosperms?". New Phytologist 223 (1): 83–99. doi:10.1111/nph.15708. PMID 30681148. http://pure-oai.bham.ac.uk/ws/files/56892950/_system_appendPDF_proof_fl.pdf.
- ↑ 128.0 128.1 Yi Zhao; Shenghui Deng; Ping Shang; Qin Leng; Yuanzheng Lu; Guobin Fu; Xueying Ma (2018). "Two new species of Nilssoniopteris (Bennettitales) from the Middle Jurassic of Sandaoling, Turpan-Hami Basin, Xinjiang, NW China". Journal of Paleontology 92 (4): 525–545. doi:10.1017/jpa.2017.133. Bibcode: 2018JPal...92..525Z.
- ↑ Yi Zhao; Yuanzheng Lu; Ping Shang; Shenghui Deng; Xunlian Wang (2018). "An amended species, Nilssoniopteris neimenguensis nom. nov., from the Lower Jurassic of the Xilinhot Basin, Inner Mongolia, northern China, with a reexamination of Nilssoniopteris species". Review of Palaeobotany and Palynology 255: 22–34. doi:10.1016/j.revpalbo.2018.04.013. Bibcode: 2018RPaPa.255...22Z.
- ↑ 130.0 130.1 Fabiany Herrera; Gongle Shi; Gombosuren Tsolmon; Niiden Ichinnorov; Masamichi Takahashi; Peter R. Crane; Patrick S. Herendeen (2018). "Exceptionally well-preserved Early Cretaceous leaves of Nilssoniopteris from central Mongolia". Acta Palaeobotanica 58 (2): 135–157. doi:10.2478/acpa-2018-0016.
- ↑ Toshihiro Yamada; Julien Legrand; Harufumi Nishida (2018). "Late Early Cretaceous (Albian) Sasayama flora from the Sasayama Group in Hyogo Prefecture, Japan". Paleontological Research 22 (2): 112–128. doi:10.2517/2017PR014.
- ↑ S.V. Naugolnykh (2018). "Ecology and paleoecology in context of geomonitoring aims as exemplified by the City of Krasnoufimsk (Sverdlovsk region)". Socialno-ecologicheskie Technologii 2018 (1): 38–64. doi:10.31862/2500-2963-2018-1-38-64. http://soc-ecol.ru/ecology-and-paleoecology-in-context-of-geomonitoring-aims-as-exemplified-by-the-city-of-krasnoufimsk-sverdlovsk-region/.
- ↑ Stephen McLoughlin; Benjamin Bomfleur; Andrew N. Drinnan (2018). "Pachytestopsis tayloriorum gen. et sp. nov., an anatomically preserved glossopterid seed from the Lopingian of Queensland, Australia". Transformative paleobotany. Papers to commemorate the life and legacy of Thomas N. Taylor. Academic Press. pp. 155–178. doi:10.1016/B978-0-12-813012-4.00009-7. ISBN 978-01-281-3012-4. http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-2904.
- ↑ A. O. Frolov; I. M. Mashchuk (2018). "A new species of the genus Phoenicopsis (Leptostrobales) from the Middle Jurassic of the Irkutsk Basin (Eastern Siberia)". Paleontological Journal 52 (4): 463–468. doi:10.1134/S0031030118040068.
- ↑ 135.0 135.1 135.2 Gongle Shi; Fabiany Herrera; Patrick S. Herendeen; Andrew B. Leslie; Niiden Ichinnorov; Masamichi Takahashi; Peter R. Crane (2018). "Leaves of Podozamites and Pseudotorellia from the Early Cretaceous of Mongolia: stomatal patterns and implications for relationships". Journal of Systematic Palaeontology 16 (2): 111–137. doi:10.1080/14772019.2016.1274343.
- ↑ 136.0 136.1 Natalya Nosova; Lina Golovneva (2018). "Phoenicopsis (Leptostrobales) and Pseudotorellia (Ginkgoales) from the Cretaceous of North Asia". Cretaceous Research 86: 149–162. doi:10.1016/j.cretres.2018.03.001. Bibcode: 2018CrRes..86..149N.
- ↑ 137.0 137.1 Anastasia A. Gnilovskaya; Lina B. Golovneva (2018). "The Late Cretaceous Pterophyllum (Bennettitales) in the North-East of Russia". Cretaceous Research 82: 56–63. doi:10.1016/j.cretres.2017.09.013. Bibcode: 2018CrRes..82...56G.
- ↑ Bárbara Cariglino; Mariana Monti; Ana María Zavattieri (2018). "A Middle Triassic macroflora from southwestern Gondwana (Mendoza, Argentina) with typical Northern Hemisphere elements: Biostratigraphic, palaeogeographic and palaeoenvironmental implications". Review of Palaeobotany and Palynology 257: 1–18. doi:10.1016/j.revpalbo.2018.06.004. Bibcode: 2018RPaPa.257....1C.
- ↑ A.V. Gomankov (2018). "New species of Rufloria S. Meyen (Cordaitanthales, Rufloriaceae) and its significance for the stratigraphy of the Angaran Permian". Lethaea Rossica 16: 23–32. http://paleobot.ru/pdf/03_2018_16.pdf.
- ↑ Tao Yang; Fei Liang; Shu-chong Bai; Xiao-rong Guo (2018). "New discovery of Solenites (Czekanowskialean) from Upper Triassic Haojiagou Formation in Urumqi, Xinjiang". Global Geology 37 (1): 1–8. doi:10.3969/j.issn.1004-5589.2018.01.001.
- ↑ Giuseppa Forte; Evelyn Kustatscher; Johanna H.A. van Konijnenburg-van Cittert; Hans Kerp (2018). "Sphenopterid diversity in the Kungurian of Tregiovo (Trento, NE-Italy)". Review of Palaeobotany and Palynology 252: 64–76. doi:10.1016/j.revpalbo.2018.02.006. Bibcode: 2018RPaPa.252...64F.
- ↑ N. V. Gordenko; A. V. Broushkin (2018). "Ovuliferous organs of Trisquamales Gordenko et Broushkin ordo. nov. (Gymnospermae) from the Middle Jurassic of the Kursk Region, European Russia". Paleontological Journal 52 (1): 90–107. doi:10.1134/S0031030118010082. https://elibrary.ru/item.asp?id=32290539.
- ↑ L.C.A. Martínez; E.G. Ottone; A.E. Artabe (2018). "A new cycad trunk from the Palaeocene in the Neuquén Basin, Patagonia (Argentina)". Review of Palaeobotany and Palynology 256: 1–12. doi:10.1016/j.revpalbo.2018.05.006. Bibcode: 2018RPaPa.256....1M.
- ↑ Boglárka Erdei; Michael Calonje; Austin Hendy; Nicolas Espinoza (2018). "A review of the Cenozoic fossil record of the genus Zamia L. (Zamiaceae, Cycadales) with recognition of a new species from the late Eocene of Panama - evolution and biogeographic inferences". Bulletin of Geosciences 93 (2): 185–204. doi:10.3140/bull.geosci.1671.
- ↑ Pedro Correia; Zbynĕk Šimůnek; Artur A. Sá; Deolinda Flores (2018). "A new Late Pennsylvanian floral assemblage from the Douro Basin, Portugal". Geological Journal 53 (6): 2507–2531. doi:10.1002/gj.3086.
- ↑ 146.0 146.1 146.2 Dianne Edwards; Cheng-Sen Li (2018). "Diversity in affinities of plants with lateral sporangia from the Lower Devonian of Sichuan Province, China". Review of Palaeobotany and Palynology 258: 98–111. doi:10.1016/j.revpalbo.2018.07.002. Bibcode: 2018RPaPa.258...98E. https://orca.cardiff.ac.uk/id/eprint/114268/1/ORCA%20version%20of%20Edwards%20and%20Li%202018b.pdf.
- ↑ 147.0 147.1 147.2 Sol Noetinger; Mercedes di Pasquo; Daniel Starck (2018). "Middle-Upper Devonian palynofloras from Argentina, systematic and correlation". Review of Palaeobotany and Palynology 257: 95–116. doi:10.1016/j.revpalbo.2018.07.009. Bibcode: 2018RPaPa.257...95N.
- ↑ 148.0 148.1 148.2 Ulla Kaasalainen; Jochen Heinrichs; Matthew A. M. Renner; Lars Hedenäs; Alfons Schäfer-Verwimp; Gaik Ee Lee; Michael S. Ignatov; Jouko Rikkinen et al. (2018). "A Caribbean epiphyte community preserved in Miocene Dominican amber". Earth and Environmental Science Transactions of the Royal Society of Edinburgh 107 (2–3): 321–331. doi:10.1017/S175569101700010X.
- ↑ Fayao Chen; Xiao Shi; Jianxin Yu; Hongfei Chi; Jun Zhu; Hui Li; Cheng Huang (2018). "Permineralized calamitean axes from the Upper Permian of Xinjiang, Northwest China and its paleoecological implication". Journal of Earth Science 29 (2): 237–244. doi:10.1007/s12583-017-0941-3.
- ↑ 150.00 150.01 150.02 150.03 150.04 150.05 150.06 150.07 150.08 150.09 150.10 150.11 150.12 150.13 150.14 150.15 150.16 150.17 150.18 150.19 150.20 150.21 150.22 150.23 150.24 150.25 150.26 150.27 150.28 150.29 150.30 150.31 150.32 150.33 150.34 Heidi M. Anderson; John M. Anderson (2018). "Molteno sphenophytes: Late Triassic biodiversity in southern Africa". Palaeontologia Africana 53: 1–391.
- ↑ Facundo De Benedetti; María del C. Zamaloa; María A. Gandolfo; Néstor Rubén Cúneo (2018). "Heterosporous ferns From Patagonia: the case of Azolla". Transformative paleobotany. Papers to commemorate the life and legacy of Thomas N. Taylor. Academic Press. pp. 361–373. doi:10.1016/B978-0-12-813012-4.00015-2. ISBN 978-01-281-3012-4.
- ↑ 152.0 152.1 152.2 152.3 Dianne Edwards; Cheng-Sen Li (2018). "Further insights into the Lower Devonian terrestrial vegetation of Sichuan Province, China". Review of Palaeobotany and Palynology 253: 37–48. doi:10.1016/j.revpalbo.2018.03.004. Bibcode: 2018RPaPa.253...37E. https://orca.cardiff.ac.uk/id/eprint/114267/1/ORCA%20version%20of%20Edwards%20and%20Li%202018a.pdf.
- ↑ 153.0 153.1 153.2 153.3 153.4 Pedro R. Gutiérrez; M. Lucía Balarino (2018). "The palynology of the Ordóñez Formation (Pennsylvanian) in the Chacoparaná Basin, northern Argentina". Acta Palaeobotanica 58 (1): 3–26. doi:10.2478/acpa-2018-0002.
- ↑ Jochen Heinrichs; Alfons Schäfer-Verwimp; Matthew A. M. Renner; Kathrin Feldberg (2018). "Cheilolejeunea lamyi sp. nov., a fossil Lejeuneaceae from Miocene Dominican amber". Cryptogamie, Bryologie 39 (2): 155–161. doi:10.7872/cryb/v39.iss2.2018.155.
- ↑ Milan Libertín; Jiří Kvaček; Jiří Bek; Viktor Žárský; Petr Štorch (2018). "Sporophytes of polysporangiate land plants from the early Silurian period may have been photosynthetically autonomous". Nature Plants 4 (5): 269–271. doi:10.1038/s41477-018-0140-y. PMID 29725100.
- ↑ Jerald B. Pinson; Steven R. Manchester; Emily B. Sessa (2018). "Culcita remberi sp. nov., an understory fern of Cyatheales from the Miocene of northern Idaho". International Journal of Plant Sciences 179 (8): 635–639. doi:10.1086/698938.
- ↑ Josefina Bodnar; Juan Martín Drovandi; Eduardo Manuel Morel; Daniel Gustavo Ganuza (2018). "Middle Triassic dipterid ferns from west-central Argentina and their relationship to palaeoclimatic changes". Acta Palaeontologica Polonica 63 (2): 397–416. doi:10.4202/app.00459.2018.
- ↑ Christian Pott; Johannes M. Bouchal; Thereis Y.S. Choo; Rihab Yousif; Benjamin Bomfleur (2018). "Ferns and fern allies from the Carnian (Upper Triassic) of Lunz am See, Lower Austria: A melting pot of Mesozoic fern vegetation". Palaeontographica Abteilung B 297 (1–6): 1–101. doi:10.1127/palb/2018/0059. Bibcode: 2018PalAB.297....1P.
- ↑ Kelly C. Pfeiler; Alexandru M. F. Tomescu (2018). "An Early Devonian permineralized rhyniopsid from the Battery Point Formation of Gaspé (Canada)". Botanical Journal of the Linnean Society 187 (2): 292–302. doi:10.1093/botlinnean/boy011.
- ↑ Jennifer L. Morris; Dianne Edwards; John B. Richardson (2018). "The advantages and frustrations of a plant Lagerstätte as illustrated by a new taxon from the Lower Devonian of the Welsh Borderland, UK". Transformative paleobotany. Papers to commemorate the life and legacy of Thomas N. Taylor. Academic Press. pp. 49–67. doi:10.1016/B978-0-12-813012-4.00004-8. ISBN 978-01-281-3012-4.
- ↑ 161.0 161.1 Charles H. Wellman (2018). "The classic Lower Devonian plant-bearing deposits of northern New Brunswick, eastern Canada: dispersed spore taxonomy and biostratigraphy". Review of Palaeobotany and Palynology 249: 24–49. doi:10.1016/j.revpalbo.2017.11.003. Bibcode: 2018RPaPa.249...24W. http://eprints.whiterose.ac.uk/125116/3/Manuscript.pdf.
- ↑ Victoria J. García Muro; Claudia V. Rubinstein; Philippe Steemans (2018). "Late Silurian palynomorphs from the Precordillera of San Juan, Argentina: Diversity, palaeoenvironmental, and palaeogeographic significance". Acta Palaeontologica Polonica 63 (1): 41–61. doi:10.4202/app.00400.2017.
- ↑ Gar W. Rothwell; Michael A. Millay; Ruth A. Stockey (2018). "Escapia gen. nov.: morphological evolution, paleogeographic diversification, and the environmental distribution of marattialean ferns through time". Transformative paleobotany. Papers to commemorate the life and legacy of Thomas N. Taylor. Academic Press. pp. 271–360. doi:10.1016/B978-0-12-813012-4.00014-0. ISBN 978-01-281-3012-4.
- ↑ Ioan I. Bucur; Kamal Haji Karim; Hyam Daoud; Bruno Granier; Polla Azad Khanaqa (2018). "A new organ-species dasycladalean green alga from Darbandikhan, Kurdistan, Iraq". Arabian Journal of Geosciences 11 (17): Article 484. doi:10.1007/s12517-018-3840-8.
- ↑ Kathrin Feldberg; Alina S. Müller; Alfons Schäfer-Verwimp; Matt von Konrat; Alexander R. Schmidt; Jochen Heinrichs (2018). "Frullania grabenhorstii sp. nov., a fossil liverwort (Jungermanniopsida: Frullaniaceae) with perianth from Bitterfeld amber". Bryophyte Diversity and Evolution 40 (2): 91–103. doi:10.11646/bde.40.2.7.
- ↑ Yuriy S. Mamontov; Michael S. Ignatov; Evgeny E. Perkovsky (2018). "Hepatics from Rovno amber (Ukraine), 7. Frullania zerovii, sp. nov.". Nova Hedwigia 106 (1–2): 103–113. doi:10.1127/nova_hedwigia/2017/0446.
- ↑ Tomoyuki Katagiri (2018). "Geocalyx heinrichsii sp. nov., the first representative of Geocalycaceae (Jungermanniales, Marchantiophyta) in Baltic amber". Bryophyte Diversity and Evolution 40 (2): 113–117. doi:10.11646/bde.40.2.9.
- ↑ Ning Tian; Yong-Dong Wang; Wu Zhang; Shao-Lin Zheng; Zhi-Peng Zhu; Zhong-Jian Liu (2018). "Permineralized osmundaceous and gleicheniaceous ferns from the Jurassic of Inner Mongolia, NE China". Palaeobiodiversity and Palaeoenvironments 98 (1): 165–176. doi:10.1007/s12549-017-0313-0.
- ↑ Dieter Uhl; Markus Poschmann (2018). "Groenlandia pescheri sp. nov. (Potamogetonaceae) from the Late Oligocene Fossil-Lagerstätte Enspel (Westerwald, Germany)". Acta Palaeobotanica 58 (1): 61–72. doi:10.2478/acpa-2018-0001.
- ↑ Ye-Ming Cheng; Xiao-Nan Yang (2018). "A new tree fern stem, Heilongjiangcaulis keshanensis gen. et sp. nov., from the Cretaceous of the Songliao Basin, Northeast China: a representative of early Cyatheaceae". Historical Biology: An International Journal of Paleobiology 30 (4): 518–530. doi:10.1080/08912963.2017.1301445.
- ↑ Ledis Regalado; Alexander R. Schmidt; Michael Krings; Julia Bechteler; Harald Schneider; Jochen Heinrichs (2018). "Fossil evidence of eupolypod ferns in the mid-Cretaceous of Myanmar". Plant Systematics and Evolution 304 (1): 1–13. doi:10.1007/s00606-017-1439-2.
- ↑ 172.0 172.1 Heinrich Winterscheid; Zlatko Kvaček; Jiří Váña; Michael S. Ignatov (2018). "Systematic-taxonomic revision of the flora from the late Oligocene Fossillagerstätte Rott near Bonn (Germany). Part 1: Introduction; Bryidae, Polypodiidae, and Pinidae". Palaeontographica Abteilung B 297 (1–6): 103–141. doi:10.1127/palb/2018/0058. Bibcode: 2018PalAB.297..103W.
- ↑ Bruno Granier (2018). "A new and unique bodyplan in fossil Bryopsidales, with description of Jaffrezocodium bipennatus n. gen., n. sp., an ( ?) Albian-Cenomanian calcareous green alga". Cretaceous Research 85: 207–213. doi:10.1016/j.cretres.2018.01.011. Bibcode: 2018CrRes..85..207G.
- ↑ Jean Galtier; Carla J. Harper; Ronny Rößler; Evelyn Kustatscher; Michael Krings (2018). "Enigmatic, structurally preserved stems from the Triassic of Central Europe: a fern or not a fern?". Transformative paleobotany. Papers to commemorate the life and legacy of Thomas N. Taylor. Academic Press. pp. 187–209. doi:10.1016/B978-0-12-813012-4.00011-5. ISBN 978-01-281-3012-4.
- ↑ R.W. Gess; C. Prestianni (2018). "Kowieria alveoformis gen. nov. sp. nov., a new heterosporous lycophyte from the Latest Devonian of Southern Africa". Review of Palaeobotany and Palynology 249: 1–8. doi:10.1016/j.revpalbo.2017.10.002. Bibcode: 2018RPaPa.249....1G. https://orbi.uliege.be/bitstream/2268/295481/1/Gess%20and%20Prestianni%202018%20Kowiera.pdf.
- ↑ Philippe Gerrienne; Borja Cascales-Minana; Cyrille Prestianni; Philippe Steemans; Li Cheng-Sen (2018). "Lilingostrobus chaloneri gen. et sp. nov., a Late Devonian woody lycopsid from Hunan, China". PLOS ONE 13 (7): e0198287. doi:10.1371/journal.pone.0198287. PMID 29995908. Bibcode: 2018PLoSO..1398287G.
- ↑ Emilio Estrada-Ruiz; Naylet K. Centeno-González; Felisa Aguilar-Arellano; Hugo I. Martínez-Cabrera (2018). "New record of the aquatic fern Marsilea, from the Olmos Formation (Upper Campanian), Coahuila, Mexico". International Journal of Plant Sciences 179 (6): 487–496. doi:10.1086/697729.
- ↑ Natalia Zavialova; David J. Batten (2018). "Species of the water-fern megaspore genus Molaspora from a Cenomanian deposit in western France: occurrence, sporoderm ultrastructure and evolutionary relationships". Grana 57 (5): 325–344. doi:10.1080/00173134.2017.1417475.
- ↑ Baba Senowbari-Daryan (2018). "Algae (Dasycladales) from the Upper Triassic Nayband Formation (northeast Iran)". Geopersia 8 (1): 35–42. doi:10.22059/geope.2017.235449.648331.
- ↑ San-Ping Xie; Si-Hang Zhang; Tian-Yu Chen; Xian-Chun Zhang; Xu Zeng; Yang Yu (2018). "Late Miocene occurrence of monogeneric family Oleandraceae from southwest China and its implications on evolution of eupolypods I". Review of Palaeobotany and Palynology 256: 13–19. doi:10.1016/j.revpalbo.2018.05.002. Bibcode: 2018RPaPa.256...13X.
- ↑ Eliana P. Coturel; Josefina Bodnar; Eduardo M. Morel; Daniel G. Ganuza; Ana J. Sagasti; Marisol Beltrán (2018). "New species of osmundaceous fertile leaves from the Upper Triassic of Argentina". Acta Palaeobotanica 58 (2): 107–119. doi:10.2478/acpa-2018-0014.
- ↑ Yingying Zhang; Christopher M. Berry; Deming Wang; Jinzhuang Xue; Le Liu (2018). "Pleurorhizoxylon yixingense gen. et sp. nov., a euphyllophyte axis with anatomically preserved adventitious roots from the Late Devonian of South China". International Journal of Plant Sciences 179 (7): 523–540. doi:10.1086/698710. https://orca.cardiff.ac.uk/113013/1/Pleurorhizoxylon%20yixingense%20gen.pdf.
- ↑ Ezequiel Ignacio Vera; Silvia Nélida Césari (2018). "Cyathealean Antarctic ferns from the Aptian Cerro Negro Formation: Rafaherbstia nishidai gen. et sp. nov. and associated fertile organs". Review of Palaeobotany and Palynology 254: 33–48. doi:10.1016/j.revpalbo.2018.04.011. Bibcode: 2018RPaPa.254...33V.
- ↑ Pu Huang; Lu Liu; Min Qin; Le Liu; Zhenzhen Deng; Deming Wang; James F. Basinger; Jinzhuang Xue (2018). "New Sphenophyllum plant from the Upper Devonian of Zhejiang Province, China". Historical Biology: An International Journal of Paleobiology 30 (7): 917–927. doi:10.1080/08912963.2017.1322077.
- ↑ K. Rashidi; F. Schlagintweit (2018). "Zittelina? arumaensis (Okla 1995) nov. comb., and Suppiluliumaella tarburensis n. sp. (Dasycladales) from the upper Maastrichtian of Iran". Arabian Journal of Geosciences 11 (17): Article 478. doi:10.1007/s12517-018-3839-1.
- ↑ Enhao Jia; Haijun Song (2018). "End-Permian mass extinction of calcareous algae and microproblematica from Liangfengya, South China". Geobios 51 (5): 401–418. doi:10.1016/j.geobios.2018.08.007. Bibcode: 2018Geobi..51..401J.
- ↑ Yang Xiaonan; Liu Fengxiang; Cheng Yeming (2018). "A new tree fern stem, Tempskya zhangii sp. nov. (Tempskyaceae) from the Cretaceous of Northeast China". Cretaceous Research 84: 188–199. doi:10.1016/j.cretres.2017.11.016. Bibcode: 2018CrRes..84..188Y.
- ↑ Hong-He Xu; Qiang Fu; Yao Wang (2018). "A new protolepidodendrid lycopsid from the Middle Devonian of Hunan, South China and its palaeogeographic implications". Review of Palaeobotany and Palynology 256: 63–69. doi:10.1016/j.revpalbo.2018.06.003. Bibcode: 2018RPaPa.256...63X.
- ↑ Adolfina Savoretti; Alexander C. Bippus; Ruth A. Stockey; Gar W. Rothwell; Alexandru M. F. Tomescu (2018). "Grimmiaceae in the Early Cretaceous: Tricarinella crassiphylla gen. et sp. nov. and the value of anatomically preserved bryophytes". Annals of Botany 121 (7): 1275–1286. doi:10.1093/aob/mcy015. PMID 29444206.
- ↑ Jennifer L. Morris; Mark N. Puttick; James W. Clark; Dianne Edwards; Paul Kenrick; Silvia Pressel; Charles H. Wellman; Ziheng Yang et al. (2018). "The timescale of early land plant evolution". Proceedings of the National Academy of Sciences of the United States of America 115 (10): E2274–E2283. doi:10.1073/pnas.1719588115. PMID 29463716. Bibcode: 2018PNAS..115E2274M.
- ↑ S. Blair Hedges; Qiqing Tao; Mark Walker; Sudhir Kumar (2018). "Accurate timetrees require accurate calibrations". Proceedings of the National Academy of Sciences of the United States of America 115 (41): E9510–E9511. doi:10.1073/pnas.1812558115. PMID 30266795. Bibcode: 2018PNAS..115E9510B.
- ↑ Jennifer L. Morris; Mark N. Puttick; James W. Clark; Dianne Edwards; Paul Kenrick; Silvia Pressel; Charles H. Wellman; Ziheng Yang et al. (2018). "Reply to Hedges et al.: Accurate timetrees do indeed require accurate calibrations". Proceedings of the National Academy of Sciences of the United States of America 115 (41): E9512–E9513. doi:10.1073/pnas.1812816115. PMID 30266794. Bibcode: 2018PNAS..115E9512M.
- ↑ Mariusz A. Salamon; Philippe Gerrienne; Philippe Steemans; Przemysław Gorzelak; Paweł Filipiak; Alain Le Hérissé; Florentin Paris; Borja Cascales-Miñana et al. (2018). "Putative Late Ordovician land plants". New Phytologist 218 (4): 1305–1309. doi:10.1111/nph.15091. PMID 29542135. https://orbi.uliege.be/bitstream/2268/222752/1/Salamon_et_al-2018-New_Phytologist.pdf.
- ↑ Oleg V. Ivanov; Elena V. Maslova; Michael S. Ignatov (2018). "Development of the sphagnoid areolation pattern in leaves of Palaeozoic protosphagnalean mosses". Annals of Botany 122 (5): 915–925. doi:10.1093/aob/mcy046. PMID 29659704.
- ↑ Alexander C. Bippus; Ignacio E. Escapa; Alexandru M. F. Tomescu (2018). "Wanted dead or alive (probably dead): Stem group Polytrichaceae". American Journal of Botany 105 (8): 1243–1263. doi:10.1002/ajb2.1096. PMID 29893495.
- ↑ Alexander J. Hetherington; Liam Dolan (2018). "Stepwise and independent origins of roots among land plants". Nature 561 (7722): 235–238. doi:10.1038/s41586-018-0445-z. PMID 30135586. Bibcode: 2018Natur.561..235H.
- ↑ C. Kevin Boyce; William A. DiMichele (2016). "Arborescent lycopsid productivity and lifespan: Constraining the possibilities". Review of Palaeobotany and Palynology 227: 97–110. doi:10.1016/j.revpalbo.2015.10.007. Bibcode: 2016RPaPa.227...97B.
- ↑ Barry A. Thomas; Christopher J. Cleal (2018). "Arborescent lycophyte growth in the late Carboniferous coal swamps". New Phytologist 218 (3): 885–890. doi:10.1111/nph.14903. PMID 29282734.
- ↑ C. Kevin Boyce; William A. DiMichele (2018). "Fast or slow for the arborescent lycopsids?". New Phytologist 218 (3): 891–893. doi:10.1111/nph.15059. PMID 29457227.
- ↑ Jeffrey P. Benca; Ivo A. P. Duijnstee; Cindy V. Looy (2018). "UV-B–induced forest sterility: Implications of ozone shield failure in Earth's largest extinction". Science Advances 4 (2): e1700618. doi:10.1126/sciadv.1700618. PMID 29441357.
- ↑ Viktória Baranyi; Tammo Reichgelt; Paul E. Olsen; William G. Parker; Wolfram M. Kürschner (2018). "Norian vegetation history and related environmental changes: New data from the Chinle Formation, Petrified Forest National Park (Arizona, SW USA)". GSA Bulletin 130 (5–6): 775–795. doi:10.1130/B31673.1. Bibcode: 2018GSAB..130..775B.
- ↑ Sam M. Slater; Charles H. Wellman; Michael Romano; Vivi Vajda (2018). "Dinosaur-plant interactions within a Middle Jurassic ecosystem—palynology of the Burniston Bay dinosaur footprint locality, Yorkshire, UK". Palaeobiodiversity and Palaeoenvironments 98 (1): 139–151. doi:10.1007/s12549-017-0309-9.
- ↑ Carles Martín-Closas; Alba Vicente; Jordi Pérez-Cano; Josep Sanjuan; Telm Bover-Arnal (2018). "On the earliest occurrence of Tolypella section Tolypella in the fossil record and the age of major clades in extant Characeae". Botany Letters 165 (1): 23–33. doi:10.1080/23818107.2017.1387078.
- ↑ Sol Noetinger; Sandra L. Strayer; Alexandru M.F. Tomescu (2018). "Spore wall ultrastructure and development in a basal euphyllophyte: Psilophyton dawsonii from the Lower Devonian of Quebec (Canada)". American Journal of Botany 105 (7): 1212–1223. doi:10.1002/ajb2.1137. PMID 30075048.
- ↑ Feng Liu; Benjamin Bomfleur; Huiping Peng; Quan Li; Hans Kerp; Huaicheng Zhu (2018). "280-m.y.-old fossil starch reveals early plant–animal mutualism". Geology 46 (5): 423–426. doi:10.1130/G39929.1. Bibcode: 2018Geo....46..423L.
- ↑ Andrés Elgorriaga; Ignacio H. Escapa; Gar W. Rothwell; Alexandru M. F. Tomescu; N. Rubén Cúneo (2018). "Origin of Equisetum: Evolution of horsetails (Equisetales) within the major euphyllophyte clade Sphenopsida". American Journal of Botany 105 (8): 1286–1303. doi:10.1002/ajb2.1125. PMID 30025163.
- ↑ De-Ming Wang; Ying-Ying Zhang; Le Liu; Hong-He Xu; Min Qin; Lu Liu (2018). "Reinvestigation of the Late Devonian Shougangia bella and new insights into the evolution of fern-like plants". Journal of Systematic Palaeontology 16 (4): 309–324. doi:10.1080/14772019.2017.1289269.
- ↑ Brian Axsmith; Judith Skog; Christian Pott (2018). "A Triassic mystery solved: fertile Pekinopteris from the Triassic of North Carolina, United States". Transformative paleobotany. Papers to commemorate the life and legacy of Thomas N. Taylor. Academic Press. pp. 179–186. doi:10.1016/B978-0-12-813012-4.00010-3. ISBN 978-01-281-3012-4.
- ↑ Cunlin Xin; Luhan Wang; Baoxia Du; Yamei Zhang; Jingjing Wang (2018). "Cuticles and spores in situ of Coniopteris hymenophylloides from the Middle Jurassic in Gansu, northwestern China". Acta Geologica Sinica (English Edition) 92 (3): 904–914. doi:10.1111/1755-6724.13582. http://www.geojournals.cn/dzxben/ch/reader/view_abstract.aspx?file_no=2018endzxb03003&flag=1.
- ↑ Gar W. Rothwell; Michael A. Millay; Ruth A. Stockey (2018). "Resolving the overall pattern of marattialean fern phylogeny". American Journal of Botany 105 (8): 1304–1314. doi:10.1002/ajb2.1115. PMID 30001474.
- ↑ Thereis Y. S. Choo; Ignacio H. Escapa (2018). "Assessing the evolutionary history of the fern family Dipteridaceae (Gleicheniales) by incorporating both extant and extinct members in a combined phylogenetic study". American Journal of Botany 105 (8): 1315–1328. doi:10.1002/ajb2.1121. PMID 30091784.
- ↑ Selin Toledo; Alexander C. Bippus; Alexandru M. F. Tomescu (2018). "Buried deep beyond the veil of extinction: Euphyllophyte relationships at the base of the spermatophyte clade". American Journal of Botany 105 (8): 1264–1285. doi:10.1002/ajb2.1102. PMID 29893501.
- ↑ G. Edirisooriya; H.A. Dharmagunawardhane; Stephen McLoughlin (2018). "The first record of the Permian Glossopteris flora from Sri Lanka: implications for hydrocarbon source rocks in the Mannar Basin". Geological Magazine 155 (4): 907–920. doi:10.1017/S0016756816001114. Bibcode: 2018GeoM..155..907E.
- ↑ Serge V. Naugolnykh; L. Uranbileg (2018). "A new discovery of Glossopteris in southeastern Mongolia as an argument for distant migration of Gondwanan plants". Journal of Asian Earth Sciences 154: 142–148. doi:10.1016/j.jseaes.2017.11.039. Bibcode: 2018JAESc.154..142N.
- ↑ Shelby DeWitt; Brooke Kelly; Margarita Araiza; Patricia E. Ryberg (2018). "Growth habit indicators from Permian Antarctic glossopterids". Review of Palaeobotany and Palynology 248: 34–40. doi:10.1016/j.revpalbo.2017.10.003. Bibcode: 2018RPaPa.248...34D.
- ↑ Patrick Blomenkemper; Hans Kerp; Abdalla Abu Hamad; William A. DiMichele; Benjamin Bomfleur (2018). "A hidden cradle of plant evolution in Permian tropical lowlands". Science 362 (6421): 1414–1416. doi:10.1126/science.aau4061. PMID 30573628. Bibcode: 2018Sci...362.1414B.
- ↑ Andrew B. Leslie; Jeremy Beaulieu; Garth Holman; Christopher S. Campbell; Wenbin Mei; Linda R. Raubeson; Sarah Mathews (2018). "An overview of extant conifer evolution from the perspective of the fossil record". American Journal of Botany 105 (9): 1531–1544. doi:10.1002/ajb2.1143. PMID 30157290.
- ↑ Dai Jing; Sun Bainian (2018). "Early Cretaceous atmospheric CO2 estimates based on stomatal index of Pseudofrenelopsis papillosa (Cheirolepidiaceae) from southeast China". Cretaceous Research 85: 232–242. doi:10.1016/j.cretres.2017.08.011. Bibcode: 2018CrRes..85..232J.
- ↑ David S. Gernandt; Cecelic Reséndiz Arias; Teresa Terrazas; Xitlali Aguirre Dugua; Ann Willyard (2018). "Incorporating fossils into the Pinaceae tree of life". American Journal of Botany 105 (8): 1329–1344. doi:10.1002/ajb2.1139. PMID 30091785.
- ↑ Mariko Yamada; Toshihiro Yamada (2018). "Relicts of the Mid-Miocene Climatic Optimum may contribute to the floristic diversity of Japan: a case study of Pinus mikii (Pinaceae) and its extant relatives". Journal of Plant Research 131 (2): 239–244. doi:10.1007/s10265-017-0993-6. PMID 29101488.
- ↑ Chong Dong; Yong-Dong Wang; Xiao-Ju Yang; Bai-Nian Sun (2018). "Whole-plant reconstruction and updated phylogeny of Austrohamia acanthobractea (Cupressaceae) from the Middle Jurassic of Northeast China". International Journal of Plant Sciences 179 (8): 640–662. doi:10.1086/699665.
- ↑ Jean-David Moreau; Frédéric Thévenard (2018). "Rediscovery of the allegedly "destroyed" holotype of Weltrichia fabrei Saporta, 1891 from the Rhaetian?/Hettangian of Lozère (Southern France)". Geodiversitas 40 (21): 521–527. doi:10.5252/geodiversitas2018v40a21. http://sciencepress.mnhn.fr/en/periodiques/geodiversitas/40/21.
- ↑ P.I. Alekseev (2018). "The revision of gymnosperm species from Eocene Baltic Amber". Botanicheskii Zhurnal 103 (2): 229–245. https://elibrary.ru/item.asp?id=32501077.
- ↑ Jose Barba-Montoya; Mario dos Reis; Harald Schneider; Philip C. J. Donoghue; Ziheng Yang (2018). "Constraining uncertainty in the timescale of angiosperm evolution and the veracity of a Cretaceous Terrestrial Revolution". New Phytologist 218 (2): 819–834. doi:10.1111/nph.15011. PMID 29399804.
- ↑ James A. Doyle; Peter K. Endress (2018). "Phylogenetic analyses of Cretaceous fossils related to Chloranthaceae and their evolutionary implications". The Botanical Review 84 (2): 156–202. doi:10.1007/s12229-018-9197-6. https://escholarship.org/uc/item/0d58r5r0.
- ↑ Nathan A. Jud; Michael D. D’Emic; Scott A. Williams; Josh C. Mathews; Katie M. Tremaine; Janok Bhattacharya (2018). "A new fossil assemblage shows that large angiosperm trees grew in North America by the Turonian (Late Cretaceous)". Science Advances 4 (9): eaar8568. doi:10.1126/sciadv.aar8568. PMID 30263954.
- ↑ Selena Y. Smith; William J. D. Iles; John C. Benedict; Chelsea D. Specht (2018). "Building the monocot tree of death: Progress and challenges emerging from the macrofossil‐rich Zingiberales". American Journal of Botany 105 (8): 1389–1400. doi:10.1002/ajb2.1123. PMID 30071130.
- ↑ Brian A. Atkinson (2018). "The critical role of fossils in inferring deep‐node phylogenetic relationships and macroevolutionary patterns in Cornales". American Journal of Botany 105 (8): 1401–1411. doi:10.1002/ajb2.1084. PMID 29797563.
- ↑ Reilly F. Hayes; Selena Y. Smith; Marisol Montellano-Ballesteros; Gerardo Álvarez-Reyes; René Hernandez-Rivera; David E. Fastovsky (2018). "Cornalean affinities, phylogenetic significance, and biogeographic implications of Operculifructus infructescences from the Late Cretaceous (Campanian) of Mexico". American Journal of Botany 105 (11): 1911–1928. doi:10.1002/ajb2.1179. PMID 30359466.
- ↑ Mario Coiro; Guillaume Chomicki; James A. Doyle (2018). "Experimental signal dissection and method sensitivity analyses reaffirm the potential of fossils and morphology in the resolution of the relationship of angiosperms and Gnetales". Paleobiology 44 (3): 490–510. doi:10.1017/pab.2018.23. Bibcode: 2018Pbio...44..490C.
- ↑ Kelly K.S. Matsunaga; Selena Y. Smith; Steven R. Manchester; Dashrath Kapgate; Deepak Ramteke; Amin Garbout; Herminso Villarraga-Gómez (2018). "Reinvestigating an enigmatic Late Cretaceous monocot: morphology, taxonomy, and biogeography of Viracarpon". PeerJ 6: e4580. doi:10.7717/peerj.4580. PMID 29637023.
- ↑ Yan Wu; Hai-Lu You; Xiao-Qiang Li (2018). "Dinosaur-associated Poaceae epidermis and phytoliths from the Early Cretaceous of China". National Science Review 5 (5): 721–727. doi:10.1093/nsr/nwx145.
- ↑ Tiina Särkinen; Sören Kottner; Wolfgang Stuppy; Farah Ahmed; Sandra Knapp (2018). "A new commelinid monocot seed fossil from the early Eocene previously identified as Solanaceae". American Journal of Botany 105 (1): 95–107. doi:10.1002/ajb2.1009. PMID 29532926.
- ↑ Tammo Reichgelt; Christopher K. West; David R. Greenwood (2018). "The relation between global palm distribution and climate". Scientific Reports 8 (1): Article number 4721. doi:10.1038/s41598-018-23147-2. PMID 29549297. Bibcode: 2018NatSR...8.4721R.
- ↑ Rathnasiri Premathilake; Chris O. Hunt (2018). "Late Pleistocene humans in Sri Lanka used plant resources: A phytolith record from Fahien rock shelter". Palaeogeography, Palaeoclimatology, Palaeoecology 505: 1–17. doi:10.1016/j.palaeo.2018.05.015. Bibcode: 2018PPP...505....1P. http://researchonline.ljmu.ac.uk/id/eprint/8819/1/PAPER-Text-April-11-without%20changes%20marked.pdf.
- ↑ Rathnasiri Premathilake; Chris O. Hunt (2018). "Earliest Musa banana from the late Quaternary sequence at Fahien Rock Shelter in Sri Lanka". Journal of Quaternary Science 33 (6): 624–638. doi:10.1002/jqs.3041. Bibcode: 2018JQS....33..624P. http://researchonline.ljmu.ac.uk/id/eprint/8767/1/1.%20Main%20text%20-%20JQS.pdf.
- ↑ Renske E. Onstein; William J. Baker; Thomas L. P. Couvreur; Søren Faurby; Leonel Herrera-Alsina; Jens-Christian Svenning; W. Daniel Kissling (2018). "To adapt or go extinct? The fate of megafaunal palm fruits under past global change". Proceedings of the Royal Society B: Biological Sciences 285 (1880): 20180882. doi:10.1098/rspb.2018.0882. PMID 29899077.
- ↑ Steven R. Manchester; Lina B. Golovneva; Dmitry D. Sokoloff; Else Marie Friis (2018). "Early eudicot reproductive structure: Fruit and flower morphology of Ranunculaecarpus Samyl. from the Early Cretaceous of eastern Siberia". Acta Palaeobotanica 58 (2): 121–133. doi:10.2478/acpa-2018-0017.
- ↑ Natalia P. Maslova; Eugeny V. Karasev; Tatiana M. Kodrul; Robert A. Spicer; Lyudmila D. Volkova; Teresa E. V. Spicer; Jianhua Jin; Xiaoyan Liu (2018). "Sun and shade leaf variability in Liquidambar chinensis and Liquidambar formosana (Altingiaceae): implications for palaeobotany". Botanical Journal of the Linnean Society 188 (3): 296–315. doi:10.1093/botlinnean/boy047.
- ↑ Christa-Ch. Hofmann (2018). "Light and scanning electron microscopic investigations of pollen of Ericales (Ericaceae, Sapotaceae, Ebenaceae, Styracaceae and Theaceae) from five lower and mid-Eocene localities". Botanical Journal of the Linnean Society 187 (4): 550–578. doi:10.1093/botlinnean/boy035.
- ↑ Friðgeir Grímsson; Alexandros Xafis; Frank H. Neumann; Louis Scott; Marion K. Bamford; Reinhard Zetter (2018). "The first Loranthaceae fossils from Africa". Grana 57 (4): 249–259. doi:10.1080/00173134.2018.1430167. PMID 29780299.
- ↑ Lu Dai; Qinghe Hao; Limi Mao (2018). "Morphological diversity of Quercus fossil pollen in the northern South China Sea during the last glacial maximum and its paleoclimatic implication". PLOS ONE 13 (10): e0205246. doi:10.1371/journal.pone.0205246. PMID 30312322. Bibcode: 2018PLoSO..1305246D.
- ↑ Eva‐Maria Sadowski; Jörg U. Hammel; Thomas Denk (2018). "Synchrotron X‐ray imaging of a dichasium cupule of Castanopsis from Eocene Baltic amber". American Journal of Botany 105 (12): 2025–2036. doi:10.1002/ajb2.1202. PMID 30548995.
- ↑ Takayuki Shiono; Buntarou Kusumoto; Moriaki Yasuhara; Yasuhiro Kubota (2018). "Roles of climate niche conservatism and range dynamics in woody plant diversity patterns through the Cenozoic". Global Ecology and Biogeography 27 (7): 865–874. doi:10.1111/geb.12755.
- ↑ Valeria Susana Perez Loinaze; Ezequiel Ignacio Vera; Lucas Ernesto Fiorelli; Julia Brenda Desojo (2018). "Palaeobotany and palynology of coprolites from the Late Triassic Chañares Formation of Argentina: implications for vegetation provinces and the diet of dicynodonts". Palaeogeography, Palaeoclimatology, Palaeoecology 502: 31–51. doi:10.1016/j.palaeo.2018.04.003. Bibcode: 2018PPP...502...31P.
- ↑ Fiona L. Gill; Jürgen Hummel; A. Reza Sharifi; Alexandra P. Lee; Barry H. Lomax (2018). "Diets of giants: the nutritional value of sauropod diet during the Mesozoic". Palaeontology 61 (5): 647–658. doi:10.1111/pala.12385. PMID 30147151. Bibcode: 2018Palgy..61..647G.
- ↑ Bárbara Cariglino (2018). "Patterns of insect-mediated damage in a Permian Glossopteris flora from Patagonia (Argentina)". Palaeogeography, Palaeoclimatology, Palaeoecology 507: 39–51. doi:10.1016/j.palaeo.2018.06.022. Bibcode: 2018PPP...507...39C.
- ↑ Yu-Ling Na; Chun-Lin Sun; Hongshan Wang; David L. Dilcher; Zhen-Yuan Yang; Tao Li; Yun-Feng Li (2018). "Insect herbivory and plant defense on ginkgoalean and bennettitalean leaves of the Middle Jurassic Daohugou Flora from Northeast China and their paleoclimatic implications". Palaeoworld 27 (2): 202–210. doi:10.1016/j.palwor.2017.08.002.
- ↑ Rafael Matos Lindoso; Tânia Lindner Dutra; Ismar de Souza Carvalho; Manuel Alfredo Medeiros (2018). "New plant fossils from the Lower Cretaceous of the Parnaíba Basin, Northeastern Brazil: Southern Laurasia links". Brazilian Journal of Geology 48 (1): 127–145. doi:10.1590/2317-4889201820170071.
- ↑ Ulrich Heimhofer; Nina Wucherpfennig; Thierry Adatte; Stefan Schouten; Elke Schneebeli-Hermann; Silvia Gardin; Gerta Keller; Sarah Kentsch et al. (2018). "Vegetation response to exceptional global warmth during Oceanic Anoxic Event 2". Nature Communications 9 (1): Article number 3832. doi:10.1038/s41467-018-06319-6. PMID 30237441. Bibcode: 2018NatCo...9.3832H.
- ↑ Daran Zheng; Su-Chin Chang; Vincent Perrichot; Suryendu Dutta; Arka Rudra; Lin Mu; Richard S. Kelly; Sha Li et al. (2018). "A Late Cretaceous amber biota from central Myanmar". Nature Communications 9 (1): Article number 3170. doi:10.1038/s41467-018-05650-2. PMID 30093646. Bibcode: 2018NatCo...9.3170Z.
- ↑ David A. Grimaldi; David Sunderlin; Georgene A. Aaroe; Michelle R. Dempsky; Nancy E. Parker; George Q. Tillery; Jaclyn G. White; Phillip Barden et al. (2018). "Biological inclusions in amber from the Paleogene Chickaloon Formation of Alaska". American Museum Novitates (3908): 1–37. doi:10.1206/3908.1. http://digitallibrary.amnh.org/handle/2246/6909.
- ↑ Raymond J. Carpenter; Ari Iglesias; Peter Wilf (2018). "Early Cenozoic vegetation in Patagonia: new insights from organically preserved plant fossils (Ligorio Márquez Formation, Argentina)". International Journal of Plant Sciences 179 (2): 115–135. doi:10.1086/695488. https://www.researchgate.net/publication/322283745.
- ↑ Olaf K. Lenz; Volker Wilde (2018). "Changes in Eocene plant diversity and composition of vegetation: the lacustrine archive of Messel (Germany)". Paleobiology 44 (4): 709–735. doi:10.1017/pab.2018.25. Bibcode: 2018Pbio...44..709L.
- ↑ He Wang; Suryendu Dutta; Richard S. Kelly; Arka Rudra; Sha Li; Qing-Qing Zhang; Qian-Qi Zhang; Yi-Xiao Wu et al. (2018). "Amber fossils reveal the Early Cenozoic dipterocarp rainforest in central Tibet". Palaeoworld 27 (4): 506–513. doi:10.1016/j.palwor.2018.09.006.
- ↑ Liliana Londoño; Dana L. Royer; Carlos Jaramillo; Jaime Escobar; David A. Foster; Andrés L. Cárdenas‐Rozo; Aaron Wood (2018). "Early Miocene CO2 estimates from a Neotropical fossil leaf assemblage exceed 400 ppm". American Journal of Botany 105 (11): 1929–1937. doi:10.1002/ajb2.1187. PMID 30418663.
- ↑ J. W. Andrae; F. A. McInerney; P. J. Polissar; J. M. K. Sniderman; S. Howard; P. A. Hall; S. R. Phelps (2018). "Initial expansion of C4 vegetation in Australia during the Late Pliocene". Geophysical Research Letters 45 (10): 4831–4840. doi:10.1029/2018GL077833. Bibcode: 2018GeoRL..45.4831A.
- ↑ Allison T. Karp; Anna K. Behrensmeyer; Katherine H. Freeman (2018). "Grassland fire ecology has roots in the late Miocene". Proceedings of the National Academy of Sciences of the United States of America 115 (48): 12130–12135. doi:10.1073/pnas.1809758115. PMID 30429316. Bibcode: 2018PNAS..11512130K.
- ↑ Gael J. Kergoat; Fabien L. Condamine; Emmanuel F. A. Toussaint; Claire Capdevielle-Dulac; Anne-Laure Clamens; Jérôme Barbut; Paul Z. Goldstein; Bruno Le Ru (2018). "Opposite macroevolutionary responses to environmental changes in grasses and insects during the Neogene grassland expansion". Nature Communications 9 (1): Article number 5089. doi:10.1038/s41467-018-07537-8. PMID 30504767. Bibcode: 2018NatCo...9.5089K.
- ↑ Michaela Ecker; James S. Brink; Lloyd Rossouw; Michael Chazan; Liora K. Horwitz; Julia A. Lee-Thorp (2018). "The palaeoecological context of the Oldowan–Acheulean in southern Africa". Nature Ecology & Evolution 2 (7): 1080–1086. doi:10.1038/s41559-018-0560-0. PMID 29784982. https://ora.ox.ac.uk/objects/uuid:77c6bbee-e8cf-4576-96f5-4f3170f0e565.
- ↑ Zhou Xinying; Yang Jilong; Wang Shiqi; Xiao Guoqiao; Zhao Keliang; Zheng Yan; Shen Hui; Li Xiaoqiang (2018). "Vegetation change and evolutionary response of large mammal fauna during the Mid-Pleistocene Transition in temperate northern East Asia". Palaeogeography, Palaeoclimatology, Palaeoecology 505: 287–294. doi:10.1016/j.palaeo.2018.06.007. Bibcode: 2018PPP...505..287Z.
- ↑ Irene Esteban; Curtis W. Marean; Erich C. Fisher; Panagiotis Karkanas; Dan Cabanes; Rosa M. Albert (2018). "Phytoliths as an indicator of early modern humans plant gathering strategies, fire fuel and site occupation intensity during the Middle Stone Age at Pinnacle Point 5-6 (south coast, South Africa)". PLOS ONE 13 (6): e0198558. doi:10.1371/journal.pone.0198558. PMID 29864147. Bibcode: 2018PLoSO..1398558E.
- ↑ Mathias M. Pires; Paulo R. Guimarães; Mauro Galetti; Pedro Jordano (2018). "Pleistocene megafaunal extinctions and the functional loss of long-distance seed-dispersal services". Ecography 41 (1): 153–163. doi:10.1111/ecog.03163.
- ↑ Elizabeth S. Jeffers; Nicki J. Whitehouse; Adrian Lister; Gill Plunkett; Phil Barratt; Emma Smyth; Philip Lamb; Michael W. Dee et al. (2018). "Plant controls on Late Quaternary whole ecosystem structure and function". Ecology Letters 21 (6): 814–825. doi:10.1111/ele.12944. PMID 29601664. https://pure.qub.ac.uk/en/publications/plant-controls-on-late-quaternary-whole-ecosystem-structure-and-function(1d922098-dc73-4015-819c-4157767a2d34).html.
- ↑ Joanna K. Carpenter; Jamie R. Wood; Janet M. Wilmshurst; Dave Kelly (2018). "An avian seed dispersal paradox: New Zealand's extinct megafaunal birds did not disperse large seeds". Proceedings of the Royal Society B: Biological Sciences 285 (1877): 20180352. doi:10.1098/rspb.2018.0352. PMID 29669903.
- ↑ Benjamin Adroit; Vincent Girard; Lutz Kunzmann; Jean-Frédéric Terral; Torsten Wappler (2018). "Plant-insect interactions patterns in three European paleoforests of the late-Neogene—early-Quaternary". PeerJ 6: e5075. doi:10.7717/peerj.5075. PMID 29942705.
- ↑ J.S. Carrión; J. Ochando; S. Fernández; R. Blasco; J. Rosell; M. Munuera; G. Amorós; I. Martín-Lerma et al. (2018). "Last Neanderthals in the warmest refugium of Europe: Palynological data from Vanguard Cave". Review of Palaeobotany and Palynology 259: 63–80. doi:10.1016/j.revpalbo.2018.09.007. Bibcode: 2018RPaPa.259...63C. http://researchonline.ljmu.ac.uk/id/eprint/10340/1/Carrion%20et%20al%202018.pdf.
- ↑ L.M. Sender; I. Escapa; A. Benedetti; R. Cúneo; J.B. Diez (2018). "Exploring the interior of cuticles and compressions of fossil plants by FIB‐SEM milling and image microscopy". Journal of Microscopy 269 (1): 48–58. doi:10.1111/jmi.12607. PMID 28745429.
- ↑ Eleni Asouti; Maria Ntinou; Ceren Kabukcu (2018). "The impact of environmental change on Palaeolithic and Mesolithic plant use and the transition to agriculture at Franchthi Cave, Greece". PLOS ONE 13 (11): e0207805. doi:10.1371/journal.pone.0207805. PMID 30458046. Bibcode: 2018PLoSO..1307805A.
- ↑ Jennifer Watling; Myrtle P. Shock; Guilherme Z. Mongeló; Fernando O. Almeida; Thiago Kater; Paulo E. De Oliveira; Eduardo G. Neves (2018). "Direct archaeological evidence for Southwestern Amazonia as an early plant domestication and food production centre". PLOS ONE 13 (7): e0199868. doi:10.1371/journal.pone.0199868. PMID 30044799. Bibcode: 2018PLoSO..1399868W.
- ↑ Jamie R. Wood; Francisca P. Díaz; Claudio Latorre; Janet M. Wilmshurst; Olivia R. Burge; Rodrigo A. Gutiérrez (2018). "Plant pathogen responses to Late Pleistocene and Holocene climate change in the central Atacama Desert, Chile". Scientific Reports 8 (1): Article number 17208. doi:10.1038/s41598-018-35299-2. PMID 30464240. Bibcode: 2018NatSR...817208W.
- ↑ Yong-Sheng Chen; Tao Deng; Zhuo Zhou; Hang Sun (2018). "Is the East Asian flora ancient or not?". National Science Review 5 (6): 920–932. doi:10.1093/nsr/nwx156.
Original source: https://en.wikipedia.org/wiki/2018 in paleobotany.
Read more |