Classical shadow
In quantum computing, classical shadow is a protocol for predicting functions of a quantum state using only a logarithmic number of measurements.[1] Given an unknown state [math]\displaystyle{ \rho }[/math], a tomographically complete set of gates [math]\displaystyle{ U }[/math] (e.g. Clifford gates), a set of [math]\displaystyle{ M }[/math] observables [math]\displaystyle{ \{O_{i}\} }[/math] and a quantum channel [math]\displaystyle{ \mathcal{E} }[/math] defined by randomly sampling from [math]\displaystyle{ U }[/math], applying it to [math]\displaystyle{ \rho }[/math] and measuring the resulting state, predict the expectation values [math]\displaystyle{ \operatorname{tr}(O_{i} \rho) }[/math].[2] A list of classical shadows [math]\displaystyle{ S }[/math] is created using [math]\displaystyle{ \rho }[/math], [math]\displaystyle{ U }[/math] and [math]\displaystyle{ \mathcal{E} }[/math] by running a Shadow generation algorithm. When predicting the properties of [math]\displaystyle{ \rho }[/math], a Median-of-means estimation algorithm is used to deal with the outliers in [math]\displaystyle{ S }[/math].[3] Classical shadow is useful for direct fidelity estimation, entanglement verification, estimating correlation functions, and predicting entanglement entropy.[1]
Recently, researchers have built on classical shadow to devise provably efficient classical machine learning algorithms for a wide range of quantum many-body problems.[4] For example, machine learning models could learn to solve ground states of quantum many-body systems and classify quantum phases of matter.
Algorithm Shadow generation
- Inputs [math]\displaystyle{ N }[/math] copies of an unknown [math]\displaystyle{ n }[/math]-qubit state [math]\displaystyle{ \rho }[/math]
A list of unitaries [math]\displaystyle{ U }[/math] that is tomographically complete
A classical description of a quantum channel [math]\displaystyle{ \mathcal{E}^{-1} }[/math]
- For [math]\displaystyle{ i }[/math] ranging from [math]\displaystyle{ 1 }[/math] to [math]\displaystyle{ N }[/math]:
- Choose a random unitary [math]\displaystyle{ U_{i} }[/math] from [math]\displaystyle{ U }[/math]
- Apply [math]\displaystyle{ U_{i} }[/math] to [math]\displaystyle{ \rho }[/math] to get a state [math]\displaystyle{ \rho_{i} }[/math]
- Perform a computational basis measurement on [math]\displaystyle{ \rho_{i} }[/math] for an outcome [math]\displaystyle{ b_{i} \in \{0, 1\}^{n} }[/math]
- Classically compute [math]\displaystyle{ \mathcal{E}^{-1}(U_{i}^{\dagger}|b_{i}\rangle\langle b_{i}|U_{i}) }[/math] and add it to a list [math]\displaystyle{ S }[/math]
- Return [math]\displaystyle{ S }[/math]
- "←" denotes assignment. For instance, "largest ← item" means that the value of largest changes to the value of item.
- "return" terminates the algorithm and outputs the following value.
Algorithm Median-of-means estimation
- Inputs A list of observables [math]\displaystyle{ O_{1}, ...., O_{M} }[/math]
A classical shadow [math]\displaystyle{ S(\rho; N) = [\hat{\rho}_1, \ldots, \hat{\rho}_N] }[/math]
A positive integer [math]\displaystyle{ K }[/math] that specifies how many linear estimates of [math]\displaystyle{ \rho }[/math] to calculate.
- Return A list [math]\displaystyle{ [o_{1}, ..., o_{M}] }[/math] where [math]\displaystyle{ o_{i} = \mathrm{median}(\mathrm{trace}(O_{1} p_{1}),..., \mathrm{trace}(O_{1} p_{K})) }[/math]
- where [math]\displaystyle{ p_{k} = \frac{1}{[\frac{N}{K}]} \sum_{i = (k-1)[\frac{N}{K}] + 1}^{k [\frac{N}{K}]} \hat{\rho}_{i} }[/math] and where [math]\displaystyle{ k = 1, ..., K }[/math].
- "←" denotes assignment. For instance, "largest ← item" means that the value of largest changes to the value of item.
- "return" terminates the algorithm and outputs the following value.
References
- ↑ 1.0 1.1 Huang, Hsin-Yuan; Kueng, Richard; Preskill, John (2020). "Predicting many properties of a quantum system from very few measurements". Nat. Phys. 16 (10): 1050–1057. doi:10.1038/s41567-020-0932-7. Bibcode: 2020NatPh..16.1050H.
- ↑ Koh, D. E.; Grewal, Sabee (2022). "Classical Shadows with Noise". Quantum 6: 776. doi:10.22331/q-2022-08-16-776. Bibcode: 2022Quant...6..776K.
- ↑ Struchalin, G.I.; Zagorovskii, Ya. A.; Kovlakov, E.V.; Straupe, S.S.; Kulik, S.P. (2021). "Experimental Estimation of Quantum State Properties from Classical Shadows". PRX Quantum 2 (1): 010307. doi:10.1103/PRXQuantum.2.010307.
- ↑ Huang, Hsin-Yuan; Kueng, Richard; Torlai, Giacomo; Albert, Victor A.; Preskill, John (2022). "Provably efficient machine learning for quantum many-body problems". Science 377 (6613): eabk3333. doi:10.1126/science.abk3333. PMID 36137032.
Original source: https://en.wikipedia.org/wiki/Classical shadow.
Read more |