Great grand stellated 120-cell

From HandWiki
Revision as of 18:37, 6 February 2024 by Dennis Ross (talk | contribs) (add)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Regular Schläfli-Hess 4-polytope with 600 vertices
Great grand stellated 120-cell
Ortho solid 016-uniform polychoron p33-t0.png
Orthogonal projection
Type Schläfli-Hess polychoron
Cells 120 {5/2,3}
Faces 720 {5/2}
Edges 1200
Vertices 600
Vertex figure {3,3}
Schläfli symbol {5/2,3,3}
Coxeter-Dynkin diagram CDel node 1.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Symmetry group H4, [3,3,5]
Dual Grand 600-cell
Properties Regular
A Zome model

In geometry, the great grand stellated 120-cell or great grand stellated polydodecahedron is a regular star 4-polytope with Schläfli symbol {5/2,3,3}, one of 10 regular Schläfli-Hess 4-polytopes. It is unique among the 10 for having 600 vertices, and has the same vertex arrangement as the regular convex 120-cell.

It is one of four regular star polychora discovered by Ludwig Schläfli. It is named by John Horton Conway, extending the naming system by Arthur Cayley for the Kepler-Poinsot solids, and the only one containing all three modifiers in the name.

With its dual, it forms the compound of great grand stellated 120-cell and grand 600-cell.

Images

Coxeter plane images
H4 A2 / B3 A3 / B2
Great grand stellated 120-cell, {5/2,3,3}
Great grand stellated 120-cell-ortho-10gon.png Great grand stellated 120-cell-6gon.png Great grand stellated 120-cell-4gon.png
[10] [6] [4]
120-cell, {5,3,3}
120-cell t0 H3.svg 120-cell t0 A2.svg 120-cell t0 A3.svg

As a stellation

The great grand stellated 120-cell is the final stellation of the 120-cell, and is the only Schläfli-Hess polychoron to have the 120-cell for its convex hull. In this sense it is analogous to the three-dimensional great stellated dodecahedron, which is the final stellation of the dodecahedron and the only Kepler-Poinsot polyhedron to have the dodecahedron for its convex hull. Indeed, the great grand stellated 120-cell is dual to the grand 600-cell, which could be taken as a 4D analogue of the great icosahedron, dual of the great stellated dodecahedron.

The edges of the great grand stellated 120-cell are τ6 as long as those of the 120-cell core deep inside the polychoron, and they are τ3 as long as those of the small stellated 120-cell deep within the polychoron.

See also

  • List of regular polytopes
  • Convex regular 4-polytope – Set of convex regular polychora
  • Kepler-Poinsot solids – regular star polyhedron
  • Star polygon – regular star polygons

References

External links

Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform 4-polytope 5-cell 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds