10-demicube

From HandWiki
Revision as of 19:24, 6 February 2024 by Pchauhan2001 (talk | contribs) (fixing)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Demidekeract
(10-demicube)
Demidekeract ortho petrie.svg
Petrie polygon projection
Type Uniform 10-polytope
Family demihypercube
Coxeter symbol 171
Schläfli symbol {31,7,1}
h{4,38}
s{21,1,1,1,1,1,1,1,1}
Coxeter diagram CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.png
9-faces 532 20 {31,6,1} Demienneract ortho petrie.svg
512 {38} 9-simplex t0.svg
8-faces 5300 180 {31,5,1} Demiocteract ortho petrie.svg
5120 {37} 8-simplex t0.svg
7-faces 24000 960 {31,4,1} Demihepteract ortho petrie.svg
23040 {36} 7-simplex t0.svg
6-faces 64800 3360 {31,3,1} Demihexeract ortho petrie.svg
61440 {35} 6-simplex t0.svg
5-faces 115584 8064 {31,2,1} Demipenteract graph ortho.svg
107520 {34} 5-simplex t0.svg
4-faces 142464 13440 {31,1,1} Cross graph 4.svg
129024 {33} 4-simplex t0.svg
Cells 122880 15360 {31,0,1} 3-simplex t0.svg
107520 {3,3} 3-simplex t0.svg
Faces 61440 {3} 2-simplex t0.svg
Edges 11520
Vertices 512
Vertex figure Rectified 9-simplex
Rectified 9-simplex.png
Symmetry group D10, [37,1,1] = [1+,4,38]
[29]+
Dual ?
Properties convex

In geometry, a 10-demicube or demidekeract is a uniform 10-polytope, constructed from the 10-cube with alternated vertices removed. It is part of a dimensionally infinite family of uniform polytopes called demihypercubes.

E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as HM10 for a ten-dimensional half measure polytope.

Coxeter named this polytope as 171 from its Coxeter diagram, with a ring on one of the 1-length branches, CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png and Schläfli symbol [math]\displaystyle{ \left\{3 \begin{array}{l}3, 3, 3, 3, 3, 3, 3\\3\end{array}\right\} }[/math] or {3,37,1}.

Cartesian coordinates

Cartesian coordinates for the vertices of a demidekeract centered at the origin are alternate halves of the dekeract:

(±1,±1,±1,±1,±1,±1,±1,±1,±1,±1)

with an odd number of plus signs.

Images

10-demicube graph.png
B10 coxeter plane
10-demicube.svg
D10 coxeter plane
(Vertices are colored by multiplicity: red, orange, yellow, green = 1,2,4,8)

References

  • H.S.M. Coxeter:
    • Coxeter, Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN:0-486-61480-8, p.296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973, p.296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN:978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN:978-1-56881-220-5 (Chapter 26. pp. 409: Hemicubes: 1n1)
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)
  • Klitzing, Richard. "10D uniform polytopes (polyxenna) x3o3o *b3o3o3o3o3o3o3o - hede". https://bendwavy.org/klitzing/dimensions/polyxenna.htm. 

External links

Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform 4-polytope 5-cell 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds