Biconvex optimization

From HandWiki
Revision as of 21:06, 6 February 2024 by S.Timg (talk | contribs) (add)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Biconvex optimization is a generalization of convex optimization where the objective function and the constraint set can be biconvex. There are methods that can find the global optimum of these problems.[1][2] A set [math]\displaystyle{ B \subset X\times Y }[/math] is called a biconvex set on [math]\displaystyle{ X\times Y }[/math] if for every fixed [math]\displaystyle{ y\in Y }[/math], [math]\displaystyle{ B_y = \{x \in X: (x,y) \in B\} }[/math] is a convex set in [math]\displaystyle{ X }[/math] and for every fixed [math]\displaystyle{ x\in X }[/math], [math]\displaystyle{ B_x = \{y \in Y: (x,y) \in B\} }[/math] is a convex set in [math]\displaystyle{ Y }[/math].

A function [math]\displaystyle{ f(x, y): B \to \mathbb{R} }[/math] is called a biconvex function if fixing [math]\displaystyle{ x }[/math], [math]\displaystyle{ f_x(y) = f(x, y) }[/math] is convex over [math]\displaystyle{ Y }[/math] and fixing [math]\displaystyle{ y }[/math], [math]\displaystyle{ f_y(x) = f(x, y) }[/math] is convex over [math]\displaystyle{ X }[/math].

A common practice for solving a biconvex problem (which does not guarantee global optimality of the solution) is alternatively updating [math]\displaystyle{ x, y }[/math] by fixing one of them and solving the corresponding convex optimization problem.[1]

The generalization to functions of more than two arguments is called a block multi-convex function. A function [math]\displaystyle{ f(x_1,\ldots,x_K) \to \mathbb{R} }[/math] is block multi-convex iff it is convex with respect to each of the individual arguments while holding all others fixed.[3]

References

  1. 1.0 1.1 Gorski, Jochen; Pfeuffer, Frank; Klamroth, Kathrin (22 June 2007). "Biconvex sets and optimization with biconvex functions: a survey and extensions". Mathematical Methods of Operations Research 66 (3): 373–407. doi:10.1007/s00186-007-0161-1. http://www2.math.uni-wuppertal.de/~klamroth/publications/gopfkl07.pdf. 
  2. Floudas, Christodoulos A. (2000). Deterministic global optimization : theory, methods, and applications. Dordrecht [u.a.]: Kluwer Academic Publ.. ISBN 978-0-7923-6014-8. https://www.springer.com/mathematics/book/978-0-7923-6014-8. 
  3. Chen, Caihua (2016). ""The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent"". Mathematical Programming 155 (1–2): 57–59. doi:10.1007/s10107-014-0826-5.