Biology:2021 in paleobotany
This article records new taxa of fossil plants that are scheduled to be described during the year 2021, as well as other significant discoveries and events related to paleobotany that are scheduled to occur in the year 2021.
Ferns and fern allies
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
In press |
Neregato et al. |
Motuca Formation |
Brazil |
A member of Calamitales. |
|||
Azolla andreisii[2] |
Sp. nov |
In press |
De Benedetti et al. |
Argentina |
A species of Azolla. |
|||
Caulopteris ellipticus[3] |
Sp. nov |
In press |
Wang et al. |
Early Permian |
Taiyuan Formation |
China |
A marattialean tree fern belonging to the family Psaroniaceae. |
|
Caulopteris neimengensis[3] |
Sp. nov |
In press |
Wang et al. |
Early Permian |
Taiyuan Formation |
China |
A marattialean tree fern belonging to the family Psaroniaceae. |
|
Caulopteris obovatus[3] |
Sp. nov |
In press |
Wang et al. |
Early Permian |
Taiyuan Formation |
China |
A marattialean tree fern belonging to the family Psaroniaceae. |
|
Cicatricosisporites pseudograndiosus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Spores of a member of the genus Ceratopteris. |
|
Cladarastega[5] |
Gen. et sp. nov |
Valid |
Poinar |
Late Cretaceous (Cenomanian) |
Burmese amber |
Myanmar |
A fern belonging to the family Dennstaedtiaceae. Genus includes new species C. burmanica. |
|
Claytosmunda zhangii[6] |
Sp. nov |
In press |
Tian, Wang & Jiang |
Late Jurassic |
China |
A fern, a species of Claytosmunda. |
||
Sp. nov |
Valid |
Pigg et al. |
Early Eocene |
United States |
A fern, a species of Dennstaedtia. |
File:Dennstaedtia christophelii holotype SRIC SR 13-004-001 A img1.tif | ||
Echinosporis densiechinatus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Spores of a member of the family Marattiaceae. |
|
Eoangiopteris congestus[8] |
Sp. nov |
Valid |
Sun et al. |
Early Permian |
Taiyuan Formation |
China |
A fern belonging to the group Marattiales. |
|
Hymenophyllum axsmithii[7] |
Sp. nov |
Valid |
Pigg et al. |
Early Eocene |
Klondike Mountain Formation |
United States |
A fern, a species of Hymenophyllum. |
|
Iberisetum[9] |
Gen. et sp. nov |
In press |
Correia, Šimůnek & Sá |
Carboniferous (Gzhelian) |
Douro Basin |
Portugal |
A member of Equisetales. Genus includes new species I. wegeneri. |
|
Laevigatosporites cultellus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Spores of a member of the family Polypodiaceae. |
|
Marsileaceaephyllum ciliatum[10] |
Sp. nov |
In press |
Wang et al. |
Myanmar |
A member of the family Marsileaceae. |
|||
Nemejcopteris haiwangii[11] |
Sp. nov |
In press |
Pšenička et al. |
Permian (Asselian) |
Taiyuan Formation |
China |
A zygopterid fern. |
|
Sp. nov |
Valid |
Kustatscher, Mazaheri-Johari & Roghi in Mazaheri-Johari et al. |
Late Triassic (Carnian) |
Miakuhi Formation |
Iran |
A member of the family Equisetaceae. |
||
Odontosoria marekgaltieri[13] |
Sp. nov |
In press |
Pšenička, Sakala & Dašková |
Early Miocene |
Most Basin |
Czech Republic |
A species of Odontosoria. |
|
Oligosporangiopteris[14] |
Gen. et sp. nov |
In press |
Votočková Frojdová et al. |
Early Permian |
Taiyuan Formation |
China |
A leptosporangiate fern. Genus includes new species O. zhongxiangii. |
|
Osmunda zhangpuensis[15] |
Sp. nov |
Wang & Sun in Wang et al. |
Miocene |
Fotan Group |
China |
A fern, a species of Osmunda. |
||
Patagoniapteris[16] |
Gen. et sp. nov |
Valid |
Gnaedinger & Zavattieri |
Late Triassic (Norian–Rhaetian) |
Argentina |
A member of the family Dipteridaceae. Genus includes new species P. artabeae. |
||
Pectinangium xuanweiense[17] |
Sp. nov |
In press |
Zhou et al. |
Permian (Lopingian) |
China |
A fern belonging to the group Marattiales. |
||
Polypodiisporites densus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Spores of a member of the family Polypodiaceae. |
|
Polypodiisporites fossulatus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Spores of a member of the family Lomariopsidaceae. |
|
Psilatriletes marginatus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Spores of a member of the genus Cyathea. |
|
Qasimia yunnanica[18] |
Sp. nov |
In press |
Guo et al. |
Permian (Lopingian) |
Xuanwei Formation |
China |
A fern belonging to the group Marattiales. |
|
Reticulosporis diversus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Spores of a member of the family Polypodiaceae. |
|
Rothwellopteris sanjiaoshuensis[19] |
Sp. nov |
In press |
He et al. |
Late Permian |
Xuanwei Formation |
China |
A fern belonging to the group Marattiales. |
|
Sp. nov |
In press |
Huang et al. |
Late Devonian |
China |
||||
Sphenophyllum parvifolium[21] |
Sp. nov |
In press |
Libertín et al. |
Early Permian |
Taiyuan Formation |
China |
||
Tapelrayen[22] |
Gen. et sp. nov |
In press |
Machado et al. |
Argentina |
Fertile remains of a fern comparable with Thelypteridaceae and Dryopteridaceae. Genus includes new species T. helgae. |
|||
Thyrsopteris cyathindusia[23] |
Sp. nov |
In press |
Zhang et al. |
Cretaceous |
Burmese amber |
Myanmar |
A tree fern, a species of Thyrsopteris. |
|
Woodwardia changchangensis[24] |
Sp. nov |
In press |
Naugolnykh & Song in Song et al. |
Middle Eocene |
Changchang Formation |
China |
A fern, a species of Woodwardia. |
Bennettitales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Blomenkemper & Abu Hamad in Blomenkemper et al. |
Jordan |
A member of Bennettitales. |
|||||
Nilssoniopteris shanxiensis[25] |
Sp. nov |
Bäumer, Backer & Wang in Blomenkemper et al. |
Permian (Cisuralian) |
Upper Shihhotse Formation |
China |
A member of Bennettitales. |
||
Sp. nov |
Bomfleur & Kerp in Blomenkemper et al. |
Permian (Changhsingian) |
Umm Irna Formation |
Jordan |
A member of Bennettitales. |
|||
Sp. nov |
Valid |
Guzmán-Madrid & Velasco de León |
Middle Jurassic (Bajocian) |
Zorrillo Formation |
Mexico |
|||
Sp. nov |
In press |
Lozano-Carmona et al. |
Middle Jurassic (Callovian) |
Tecomazuchil Formation |
Mexico |
A member of Bennettitales. |
||
Sp. nov |
In press |
Lozano-Carmona & Velasco-de León |
Middle Jurassic |
Mexico |
Cycadales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Becklesia franconica[29] |
Sp. nov |
In press |
Van Konijnenburg-van Cittert et al. |
Late Triassic (Rhaetian) |
Germany |
A member of Cycadales of uncertain phylogenetic placement. |
||
Iratinia[30] |
Gen. et sp. nov |
In press |
Spiekermann et al. |
Brazil |
A cycad-like plant. Genus includes new species I. australis. |
Ginkgoales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Eretmophyllum hamiensis[31] |
Sp. nov |
In press |
Tang et al. |
Middle Jurassic |
Xishanyao Formation |
China |
||
Sp. nov |
In press |
Andruchow-Colombo et al. |
Argentina |
|||||
Ginkgoxylon arcticum[33] |
Sp. nov |
In press |
Afonin & Gromyko |
A member of Ginkgoales described on the basis of fossil wood. |
||||
Karkenia irkutensis[34] |
Sp. nov |
In press |
Nosova, Crane & Shi |
Middle Jurassic (Aalenian) |
Prisayan Formation |
Russia |
Vladimariales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Pseudotorellia doludenkoae[35] |
Sp. nov |
Valid |
Nosova, Kostina & Bugdaeva |
Late Jurassic–Early Cretaceous (Oxfordian–Berriasian) |
Dublikan Formation |
|||
Pseudotorellia irkutensis[36] |
Sp. nov |
In press |
Nosova |
Middle Jurassic (Aalenian–Bajocian) |
Prisayan Formation |
Russia |
A Vladimariales foliage species |
|
Sp. nov |
In press |
Nosova |
Middle Jurassic (Aalenian–Bajocian) |
Prisayan Formation |
Russia |
A Vladimariales reproducive structure species |
Conifers
Araucariaceae
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Del Fueyo et al. |
Springhill Formation |
Argentina |
An Araucariaceae fossil wood. |
|||
Agathoxylon santanensis[38] |
Sp. nov |
In press |
Dos Santos et al. |
Early Cretaceous (Aptian) |
Crato Formation |
Brazil |
||
Araucaria violetae[39] |
Sp. nov |
In press |
Batista et al. |
Brazil |
A species of Araucaria. |
Cheirolepidiaceae
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Brachyoxylon lalongense[40] |
Sp. nov |
In press |
Yang & Li |
Duoni Formation |
China |
|||
Brachyoxylon patagonicum[41] |
Sp. nov |
In press |
Rombola et al. |
Argentina |
Fossil wood of a member of the family Cheirolepidiaceae. |
|||
Watsoniocladus cunhae[42] |
Sp. nov |
In press |
Kvaček & Mendes |
Almargem Formation |
Portugal |
A member of the family Cheirolepidiaceae. |
Cupressaceae
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Cupressinoxylon widdringtonioides[43] |
Sp. nov |
Valid |
De Wit & Bamford |
South Africa |
Fossil wood of a member or a relative of the family Cupressaceae. |
|||
Fokienia tianpingensis[44] |
Sp. nov |
Valid |
Wu & Jin in Wu et al. |
Miocene |
Erzitang Formation |
China |
A species of Fokienia. |
|
Nishidastrobus[45] |
Gen. et sp. nov |
Valid |
Atkinson et al. |
Japan |
A member of the family Cupressaceae belonging to the subfamily Cunninghamioideae. Genus includes new species N. japonicum. |
|||
Ohanastrobus[45] |
Gen. et sp. nov |
Valid |
Atkinson et al. |
Late Cretaceous |
Japan |
A member of the family Cupressaceae belonging to the subfamily Cunninghamioideae. Genus includes new species O. hokkaidoensis. |
||
Protaxodioxylon metangulense[46] |
Sp. nov |
In press |
Nhamutole, Bamford & Araújo |
Permian (late Capitanian) |
K5 Formation |
Mozambique |
A member of the family Cupressaceae. |
|
Protaxodioxylon verniersii[46] |
Sp. nov |
In press |
Nhamutole & Bamford in Nhamutole, Bamford & Araújo |
Permian (late Capitanian) |
K5 Formation |
Mozambique |
A member of the family Cupressaceae. |
|
Thujopsoxylon[47] |
Gen. et sp. nov |
Valid |
Dolezych, LePage & Williams |
Oligocene (Chattian) |
Korlikov Formation |
Genus includes new species T. schneiderianum. |
Pinaceae
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Lepidocasus[48] |
Gen. et sp. nov |
Valid |
Herrera et al. |
Mongolia |
A member of the family Pinaceae. Genus includes new species L. mellonae. |
|||
Nothotsuga sinogaia[49] |
Sp. nov |
In press |
Ding et al. |
Late Miocene |
China |
A species of Nothotsuga |
||
Piceoxylon nikitinii[47] |
Sp. nov |
Valid |
Dolezych, LePage & Williams |
Oligocene (Chattian) |
Korlikov Formation |
A Picea relative wood. |
||
Sp. nov |
Valid |
Zhang et al. |
Early Oligocene |
China |
A pine. |
|||
Pinus nongyaplongensis[51] |
Sp. nov |
In press |
Grote in Grote & Srisuk |
Oligocene-early Miocene |
Thailand |
A pine. |
||
Pinus weichangensis[52] |
Sp. nov |
In press |
Li et al. |
Early Miocene |
China |
A pine. |
||
Schizolepidopsis ediae[53] |
Sp. nov |
Valid |
Matsunaga et al. |
Huolinhe Formation |
China |
A member or a close relative of the family Pinaceae. |
Podocarpaceae
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Podocarpus yunnanensis[54] |
Sp. nov |
In press |
Wu et al. |
Early Pliocene |
China |
A species of Podocarpus. |
||
Protophyllocladoxylon hilarioense[55] |
Sp. nov |
In press |
Vallejos Leiz, Crisafulli & Gnaedinger |
Late Triassic (Norian–Rhaetian) |
Hilario Formation |
Argentina |
A member of the family Podocarpaceae. |
|
Protophyllocladoxylon yiwuense[56] |
Sp. nov |
In press |
Gou & Feng in Gou et al. |
Middle Jurassic |
Xishanyao Formation |
China |
A conifer of uncertain phylogenetic placement, possibly belonging or related to the family Podocarpaceae. |
Other conifers
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Cargalostrobus[57] |
Gen. et sp. nov |
Valid |
Gomankov |
A member of Pinales belonging to the family Sashiniaceae. Genus includes new species C. demetrii. |
||||
Megaporoxylon sinensis[58] |
Sp. nov |
In press |
Wan et al. |
Late Triassic (Carnian–Norian) |
Huangshanjie Formation |
China |
A coniferous trunk. |
|
Taxus huolingolensis[59] |
Sp. nov |
In press |
Dong et al. |
Huolinhe Formation |
China |
A species of Taxus. |
||
Voltzia edithae[60] |
Sp. nov |
Valid |
Forte, Kustatscher & Van Konijnenburg-van Cittert |
Middle Triassic (Anisian) |
Italy |
A member of Voltziales. |
||
Xenoxylon utahense[61] |
Sp. nov |
In press |
Xie & Gee in Xie et al. |
Late Jurassic |
United States |
Fossil wood of a conifer. |
||
Zhuotingoxylon[62] |
Gen. et sp. nov |
In press |
Wan et al. |
Guodikeng Formation |
China |
A silicified trunk with coniferous affinities. Genus includes new species Z. liaoi. |
Flowering plants
Basal angiosperms
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Allonymphaea[63] |
Nom. nov |
Valid |
Doweld |
Eocene |
Egypt |
A replacement name for Thiebaudia Chandler (1954). |
Unplaced non-eudicots
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Alcainea[64] |
Gen. et sp. nov |
Valid |
Sender et al. |
Spain |
A member of the family Chloranthaceae. Genus includes new species A. eklundiae. |
|||
Todziaphyllum[64] |
Gen. et sp. nov |
Valid |
Sender et al. |
Early Cretaceous (Albian) |
Escucha Formation |
Spain |
A member of the family Chloranthaceae. Genus includes new species T. elongatum. |
Magnoliids
Canellales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Aristolochia macginitieana[65] |
Nom. nov |
Valid |
Freitas & Doweld |
Oligocene |
United States |
An Aristolochia species; a replacement name for Aristolochia triangularis MacGinitie (1937). |
||
Cryptocaryoxylon grandoleaceum[66] |
Sp. nov |
Valid |
Akkemik |
Middle Miocene |
Kesmekaya Volcanics |
Turkey |
A member of the family Lauraceae. |
|
Laurus elliptica[67] |
Nom. nov |
Valid |
Winterscheid in Winterscheid & Kvaček |
Oligocene |
Germany |
A species of Laurus; a replacement name for Laurus obovata Weber (1852). |
||
Rosarioxylon[68] |
Gen. et sp. nov |
In press |
Cevallos-Ferriz, Catharina & Kneller |
Rosario Formation |
Mexico |
A member of the family Lauraceae. Genus includes new species R. bajacaliforniensis. |
||
Winteroxylon oleiferum[69] |
Sp. nov |
Valid |
Brea et al. |
Early Eocene |
Argentina |
A member of the family Winteraceae. |
Monocots
Alismatid monocots
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Bognerospadix[70] |
Gen. et sp. nov |
Valid |
Stockey, Hoffman & Rothwell |
Canada |
A member of the family Araceae. Genus includes new species B. speirsiae. |
Lilioid monocots
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Mirafloris[71] |
Gen. et sp. nov |
Valid |
Poinar |
Cretaceous |
Myanmar |
A member of the family Liliaceae. Genus includes new species M. burmitis. |
Commelinid monocots
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Arecipites invaginatus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Pollen of a member of the family Arecaceae. |
|
Arecocaryon[63] |
Nom. nov |
Valid |
Doweld |
Eocene |
Messel pit |
Germany |
A member of the family Arecaceae; a replacement name for Friedemannia Collinson, Manchester & Wilde (2012). |
|
Cyperaceaepollis wesselinghii[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Pollen of a member of the family Cyperaceae. |
|
Eograminis[72] |
Gen. et sp. nov |
Valid |
Poinar & Soreng |
Grass belonging to the subfamily Arundinoideae. Genus includes new species E. balticus. |
||||
Luminidites amazonicus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Pollen of a member of the family Arecaceae. |
|
Orthogonospermum[73] |
Gen. et sp. nov |
Valid |
Smith et al. |
Late Cretaceous (Maastrichtian) |
India |
A member of the family Zingiberaceae. Genus includes new species O. patanense. |
||
Sabalites colaniae[74] |
Sp. nov |
In press |
Song, Su, Do & Zhou in Song et al. |
Dong Ho Formation |
Vietnam |
A member of the family Arecaceae belonging to the subfamily Coryphoideae. |
||
Trichotomosulcites normalis[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Pollen of a member of the family Arecaceae. |
Commelinid monocot research
- A study on the evolutionary history of palms throughout the Cenozoic era, aiming to determine the impact of Cenozoic environmental changes on the diversification and biogeography of palms, is published by Lim et al. (2021).[75]
- Pollens of member of the family Poaceae preserving the same morphological characteristics as that of modern cereal grains are described from a sedimentary core from Lake Acıgöl (Turkey) by Andrieu-Ponel et al. (2021), who interpret this finding as indicative of the presence of proto-cereals in Anatolia since 2.3 million years ago, likely evolving from wild Poaceae as a result of trampling, nitrogen enrichment of soils and browsing by large mammal herds, and evaluate possible benefits from the availability of these proto-cereals for early hominins.[76]
Basal eudicots
Proteales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Platanocarpelia[77] |
Gen. et sp. nov |
Valid |
Maslova, Kodrul & Kachkina |
Kazakhstan |
A member of the family Platanaceae. Genus includes new species P. kyzyljarica. |
|||
Proteacidites pseudodehaanii[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Pollen of a member of the family Proteaceae. |
Superasterids
Campanulid euasterids
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Pittosporum ettingshausenii[78] |
Nom. nov |
Valid |
Doweld |
Miocene |
New Zealand |
A species of Pittosporum; a replacement name for Pittosporum elegans (Ettingshausen) W.R.B. Oliver (1950). |
||
Xenopanax[78] |
Gen. et comb. nov |
Valid |
Doweld |
A new genus for "Pittosporum" beringianum Chelebaeva & Akhmetiev (1983). |
Lamiid euasterids
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Adina vastanenesis[79] |
Sp. nov |
Valid |
Shukla et al. |
Early Eocene |
Cambay Shale Formation |
India |
A species of Adina. |
|
Dicolpopollis? costatus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Pollen of a member of the genus Macoubea. |
|
Dolichandra pacei[80] |
Sp. nov |
Valid |
Franco, Brea & Cerdeño |
Miocene (Santacrucian) |
Mariño Formation |
Argentina |
A species of Dolichandra. |
|
Fraxinoxylon beypazariense[66] |
Sp. nov |
Valid |
Akkemik |
Early Miocene |
Hançili Formation |
Turkey |
A member of the family Oleaceae. |
|
Fraxinus eoemarginata[81] |
Sp. nov |
In press |
Mathewes, Archibald & Lundgren |
Early Eocene |
Canada |
A species of Fraxinus. |
||
Kapgateophyllum[82] |
Nom. nov |
Valid |
Deshmukh |
Late Cretaceous (Maastrichtian) - early Eocene |
India |
A member of the family Acanthaceae; a replacement name for Acanthophyllum Ramteke & Kapgate (2014). |
||
Ladakhipollenites campbellii[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Pollen of a member of the genus Vitex. |
|
Lymingtonia splendida[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Pollen of a member of the family Convolvulaceae. |
|
Maryendressantha[83] |
Gen. et sp. nov |
Valid |
Singh et al. |
Early Eocene |
Cambay amber |
India |
A member of the family Apocynaceae. Genus includes new species M. succinifera. |
|
Perfotricolpites hexacolpatus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Pollen of a member of the genus Merremia. |
|
Verrustephanoporites intraverrucosus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Pollen of a member of the family Apocynaceae. |
Non euasterids
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Anacolosidites reticulatus[84] |
Sp. nov |
In press |
Morley, Huang & Hoorn in Huang et al. |
Middle and late Eocene |
Yaw Formation |
Pollen probably derived from plants belonging to the genus Ptychopetalum. |
||
Camptotheca manchesterii[85] |
Sp. nov |
In press |
Xie et al. |
Late Miocene |
Bangmai Formation |
China |
A species of Camptotheca. |
|
Diospyros christensenii[86] |
Sp. nov |
Valid |
Denk & Bouchal |
Miocene |
Denmark |
A species of Diospyros. |
||
Halesia mosbruggeri[87] |
Sp. nov |
Valid |
Kvaček |
Early Miocene |
Most Basin |
Czech Republic |
A species of Halesia. |
|
Loranthacites tabatingensis[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Pollen of a member of the genus Struthanthus. |
|
Mecsekispermum[88] |
Gen. et sp. nov |
Valid |
Hably & Erdei |
Miocene (Burdigalian) |
Feked Formation |
Hungary |
Possibly a member of the family Theaceae. Genus includes new species M. gordonioides. |
|
Miranthus[89] |
Gen. et 2 sp. nov |
Valid |
Friis, Crane |
Portugal |
A Primulaceae genus. Genus includes new species M. elegans and M. kvacekii. |
|||
Nyssa nanningensis[90] |
Sp. nov |
In press |
Xu & Jin in Xu et al. |
Late Oligocene |
Yongning Formation |
China |
A tupelo. |
|
Paranyssa[63] |
Nom. nov |
Valid |
Doweld |
Paleocene |
United States |
A member of the family Nyssaceae; a replacement name for Browniea Manchester & Hickey (2007). |
||
Parsonsidites? minibrenacii[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Pollen of a member of the family Amaranthaceae. |
|
Ternstroemites klettwitzensis[91] |
Sp. nov |
Valid |
Striegler |
Miocene (Tortonian) |
Rauno Formation |
Germany |
A member of the family Theaceae. |
Superrosids
Fabids
Fabales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Albizia mahuadanrensis[92] |
Sp. nov |
In press |
Hazra, Hazra & Khan in Hazra et al. |
Pliocene |
Rajdanda Formation |
India |
A species of Albizia. |
|
Albizia palaeoprocera[92] |
Sp. nov |
In press |
Hazra, Hazra & Khan in Hazra et al. |
Pliocene |
Rajdanda Formation |
India |
A species of Albizia. |
|
Cercis zhangpuensis[93] |
Sp. nov |
In press |
Wang et al. |
Miocene |
Fotan Group |
China |
A species of Cercis. |
|
Cladrastis haominiae[94] |
Sp. nov |
In press |
Jia et al. |
China |
A species of Cladrastis. |
|||
Enterolobiumoxylon[95] |
Gen. et sp. nov |
In press |
Pérez-Lara, Estrada-Ruiz & Castañeda-Posadas |
El Bosque Formation |
Mexico |
Fossil wood of a member of the family Fabaceae. Genus includes new species E. triserial. |
||
Gleditsioxylon fiambalense[96] |
Sp. nov |
In press |
Baez |
Miocene |
Tambería Formation |
Argentina |
A member of Leguminosae. |
|
Kingiodendron mexicanus[95] |
Sp. nov |
In press |
Pérez-Lara, Estrada-Ruiz & Castañeda-Posadas |
Eocene |
El Bosque Formation |
Mexico |
Fossil wood of a member of the family Fabaceae. |
|
Ladakhipollenites? pseudocolpiconstrictus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Pollen of a member of the family Fabaceae. |
|
Leguminocarpum lottii[97] |
Sp. nov |
Valid |
Li & Manchester in Li et al. |
Early Eocene |
Tepee Trail Formation |
United States |
A member of the family Fabaceae. |
|
Leguminocarpum olmensis[98] |
Sp. nov |
Valid |
Centeno-González et al. |
Mexico |
A member of the family Fabaceae. |
|||
Neopapilionia[99] |
Gen. et sp. nov |
Valid |
Hazra, Hazra & Khan in Hazra et al. |
Pliocene |
Rajdanda Formation |
India |
A member of the family Fabaceae. Genus includes new species N. indica. |
|
Ormosia cyclocarpa[100] |
Sp. nov |
In press |
Li et al. |
Miocene |
China |
A species of Ormosia. |
||
Peltophorum asiatica[101] |
Sp. nov |
In press |
Hazra, Hazra & Khan in Hazra et al. |
Pliocene |
Rajdanda Formation |
India |
A species of Peltophorum. |
|
Polyadopollenites minimus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Pollen of a member of the genus Mimosa. |
|
Salpinganthium[102] |
Gen. et sp. nov |
Valid |
Poinar & Chambers |
Dominican Republic |
A member of the family Fabaceae belonging to the tribe Detarieae. Genus includes new species S. hispaniolanum. |
|||
Striatopollis crassitectatus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Pollen of a member of the genus Macrolobium. |
|
Syncolporites foveolatus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Pollen of a member of the genus Swartzia. |
Fagales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Eucarpinoxylon kayacikii[66] |
Sp. nov |
Valid |
Akkemik |
Middle Miocene |
Kesmekaya Volcanics |
Turkey |
A member of the family Betulaceae. |
|
Fagus dodgei[103] |
Sp nov |
Valid |
Wheeler & Manchester |
Late Eocene |
John Day Formation |
USA |
A Fagus species wood. |
|
Lithocarpoxylon ashwillii[103] |
Sp nov |
Valid |
Wheeler & Manchester |
Late Eocene |
John Day Formation |
USA |
A Lithocarpoxylon species wood. |
|
Morella absarokensis[104] |
Comb nov |
valid |
(Wheeler, Scott, & Barghoorn) Wheeler & Manchester |
Middle Eocene |
Lamar River Formation |
USA |
Moved from Myrica absarokensis (1978) |
|
Morella scalariformis[104] |
Comb nov |
valid |
(Kruse) Wheeler, Baas, & Manchester |
Middle Eocene |
Eden Valley Formation |
USA |
Moved from Myrica scalariformis (1954) |
|
Myricamentum[105] |
Gen. et sp. nov |
Valid |
Wilde, Frankenhäuser & Lenz |
Eckfelder Maar |
Germany |
A catkin-like male inflorescence, probably of myricaceous affinity. Genus includes new species M. eckfeldensis. |
||
Ostryoxylon gokceadaense[66] |
Sp. nov |
Valid |
Akkemik |
Middle Miocene |
Kesmekaya Volcanics |
Turkey |
A member of the family Betulaceae. |
|
Palaeocarpinus borealis[106] |
Comb nov |
Valid |
(Heer) |
France |
A Coryloideae species. |
|||
Palaeocarpinus parva[106] |
Sp. nov |
Valid |
Manchester & Correa |
Middle Eocene |
Clarno Formation |
USA |
A Coryloideae species. |
|
Palaeocarpinus pteravestigia[106] |
Sp. nov |
Valid |
Correa & Manchester |
Fort Union Formation |
USA |
A Coryloideae species. |
||
Palaeocarya indica[107] |
Sp. nov |
Valid |
Hazra, Hazra & Khan in Hazra et al. |
Pliocene |
Rajdanda Formation |
India |
A member of the family Juglandaceae. |
|
Paralnoxylon[63] |
Nom. nov |
Valid |
Doweld |
Paleocene |
United Kingdom |
A member of the family Betulaceae; a replacement name for Cantia Stopes (1915). |
||
Quercoxylon yaltirikii[66] |
Sp. nov |
Valid |
Akkemik |
Early Miocene |
Hançili Formation |
Turkey |
A member of the family Fagaceae. |
Fagalean research
- A study on wood anatomy in extant and fossil members of Fagales is published by Wheeler, Baas & Manchester who transfer two Eocene species from Myrica to Morella.[104]
Malpighiales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Euphorbiotheca deccanensis[108] |
Sp. nov |
In press |
Reback et al. |
Late Cretaceous (Maastrichtian) |
Deccan Intertrappean Beds |
India |
A member of the family Euphorbiaceae. |
|
Passiflora appalachiana[109] |
Sp. nov |
Valid |
Hermsen |
Pliocene |
Gray Fossil Site |
United States |
A species of Passiflora. |
|
Passifloriidites[4] |
Gen. et sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Pollen of a member of the family Passifloraceae. Genus includes new species P. pseudoperculatus. |
|
Populoxylon sebenense[66] |
Sp. nov |
Valid |
Akkemik |
Early Miocene |
Hançili Formation |
Turkey |
A member of the family Salicaceae. |
|
Salicoxylon galatianum[66] |
Sp. nov |
Valid |
Akkemik |
Early Miocene |
Hançili Formation |
Turkey |
A member of the family Salicaceae. |
|
Verrustephanoporites circularis[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Pollen of a member of the genus Mascagnia. |
Oxalidales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Tropidogyne euthystyla[110] |
Sp. nov |
Valid |
Poinar, Chambers & Vega |
Cretaceous |
Burmese amber |
Myanmar |
A possible member of Cunoniaceae. |
Rosales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Alloceltidoxylon[63] |
Nom. nov |
Valid |
Doweld |
Eocene |
Clarno Formation |
United States |
A flowering plant with possible affinities with urticalean rosids; a replacement name for Scottoxylon Wheeler & Manchester (2002). |
|
Celtis popsii[103] |
Sp nov |
Valid |
Wheeler & Manchester |
Late Eocene |
John Day Formation |
USA |
A Celtis species wood. |
|
Crataegoxylon sibiricum[47] |
Sp. nov |
Valid |
Dolezych, LePage & Williams |
Oligocene (Chattian) |
Korlikov Formation |
|||
Morus asiatica[111] |
Sp. nov |
In press |
Patel, Rana & Khan in Patel et al. |
Early Eocene |
India |
A species of Morus. |
||
Prunoidoxylon prunoides[66] |
Sp. nov |
Valid |
Akkemik |
Early Miocene |
Hançili Formation |
Turkey |
A member of the family Rosaceae. |
|
Psilatriporites minimus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Pollen of a member of the genus Celtis. |
|
Pyracantha pseudococcinea[91] |
Sp. nov |
Valid |
Striegler |
Miocene (Tortonian) |
Rauno Formation |
Germany |
A species of Pyracantha. |
|
Ulmoxylon kasapligilii[66] |
Sp. nov |
Valid |
Akkemik |
Early Miocene |
Hançili Formation |
Turkey |
A member of the family Ulmaceae. |
|
Ventilago tibetensis[112] |
Sp. nov |
Valid |
Del Rio et al. |
Middle Eocene |
China |
A species of Ventilago. |
||
Zelkovoxylon crystalliferum[66] |
Sp. nov |
Valid |
Akkemik |
Early Miocene |
Hançili Formation |
Turkey |
A member of the family Ulmaceae. |
Malvids
Malvales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Bombacacidites hooghiemstrae[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Pollen of a member of the family Malvaceae. |
|
Craigia lincangensis[113] |
Sp. nov |
In press |
Wang & Xie in Wang et al. |
Late Miocene |
China |
A species of Craigia |
||
Dipterocapus fotanensis[114] |
Sp. nov |
Valid |
Chen et al. |
Miocene |
China |
A species of Dipterocarpus |
||
Discoidites angulosus[84] |
Sp. nov |
In press |
Huang, Morley & Hoorn in Huang et al. |
Late Eocene |
Yaw Formation |
Myanmar |
Pollen probably derived from plants belonging to the genus Brownlowia. |
|
Thymelipollis amazonicus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Pollen of a member of the family Thymelaeaceae. |
|
Tilia asiatica[115] |
Sp. nov |
In press |
Jia & Nam in Jia et al. |
Middle Miocene |
Pohang Basin |
South Korea |
A species of Tilia |
|
Wataria kvacekii[103] |
Sp nov |
Valid |
Wheeler & Manchester |
Late Eocene |
John Day Formation |
USA |
A Wataria species wood. |
Myrtales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Florschuetzia impostora[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen, possibly of a member of the family Lythraceae. |
|
Lazarocardenasoxylon[116] |
Gen. et sp. nov |
In press |
Estrada-Ruiz & Martínez-Cabrera in Estrada-Ruiz, Martínez-Cabrera & García-Hernández |
Mexico |
Possibly a member of the family Myrtaceae. Genus includes new species L. aldamense. |
|||
Lythrum portugalliense[117] |
Sp. nov |
In press |
Vieira et al. |
Pliocene (Piacenzian) |
Portugal |
A species of Lythrum. |
||
Syzygium guipingensis[118] |
Sp. nov |
In press |
Li et al. |
Miocene |
Erzitang Formation |
China |
A species of Syzygium. |
|
Terminalioxylon mozambicense[119] |
Sp. nov |
Valid |
Bamford & Pickford |
Probably late Eocene |
Mozambique |
A member of the family Combretaceae. |
||
Trapa sanyingensis[120] |
Sp. nov |
In press |
Aung et al. |
Late Pliocene |
Sanying Formation |
China |
||
Verrutricolporites pusillus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen, possibly of a member of the family Lythraceae. |
|
Xystonia[121] |
Gen. et sp. nov |
Valid |
Carvalho et al. |
Colombia |
A member of the family Melastomataceae. Genus includes new species X. simonae. |
Sapindales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Aceroxylon aceroides[66] |
Sp. nov |
Valid |
Akkemik |
Early Miocene |
Hançili Formation |
Turkey |
A member of the family Sapindaceae. |
|
Ampelorhiza[122] |
Gen. et sp. nov |
Valid |
Jud et al. |
Early Miocene |
Panama |
A member of the family Sapindaceae belonging to the subfamily Sapindoideae and the tribe Paullinieae. Genus includes new species A. heteroxylon. |
||
Anacardium gassonii[123] |
Sp. nov |
Valid |
Rodríguez-Reyes, Estrada-Ruiz & Terrazas in Rodríguez-Reyes et al. |
Oligocene-Miocene |
Panama |
A species of Anacardium. |
||
Atalantioxylon thanobolensis[124] |
Sp. nov |
Valid |
Soomro et al. |
Miocene |
Manchar Formation |
Pakistan |
Fossil wood of a member of the family Rutaceae. |
|
Melia santangensis[125] |
Sp. nov |
Valid |
Liu, Xu & Jin in Liu et al. |
Late Oligocene |
Yongning Formation |
China |
A species of Melia. |
|
Pistacia terrazasae[103] |
Sp nov |
Valid |
Wheeler & Manchester |
Late Eocene |
John Day Formation |
USA |
A Pistacia species wood. |
|
Proteacidites poriscabratus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Pollen of a member of the family Sapindaceae. |
|
Sorindeioxylon[119] |
Gen. et sp. nov |
Valid |
Bamford & Pickford |
Probably late Eocene |
Mazamba Formation |
Mozambique |
A member of the family Anacardiaceae. Genus includes new species S. gorongosense. |
|
Syncolporites tenuicolpatus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Pollen of a member of the genus Serjania. |
|
Tetradium nanningense[126] |
Sp. nov |
Valid |
Huang et al. |
Late Oligocene |
Yongning Formation |
China |
A species of Tetradium. |
|
Verrutricolporites simplex[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Pollen of a member of the family Simaroubaceae. |
Non eurosid superrosids
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Hamamelidoxylon crystalliferum[103] |
Sp nov |
Valid |
Wheeler & Manchester |
Late Eocene |
John Day Formation |
USA |
A Hamamelidoxylon species wood. |
|
Liquidambar guipingensis[127] |
Sp. nov |
In press |
Huang et al. |
Miocene |
Erzitang Formation |
China |
A species of Liquidambar. |
|
Liquidambaroxylon efeae[66] |
Sp. nov |
Valid |
Akkemik |
Early Miocene |
Hançili Formation |
Turkey |
A member of the family Altingiaceae. |
|
Obirafructus[128] |
Gen. et sp. nov |
Valid |
Kajita & Nishida in Kajita, Suzuki & Nishida |
Haborogawa Formation |
Japan |
A member of Saxifragales of uncertain phylogenetic placement. Genus includes new species O. kokubunii. |
||
Paleoaltingia[129] |
Gen. nov |
Valid |
Lai et al. |
United States |
A member of Altingiaceae. Genus includes P. ovum-dinosauri and P. polyodonta. |
Other angiosperms
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Araliaephyllum vittenburgii[130] |
Sp. nov |
Valid |
Golovneva & Volynets in Golovneva et al. |
Galenki Formation |
A flowering plant of uncertain phylogenetic placement. |
|||
Baderadea[131] |
Gen. et sp. nov |
Valid |
Pessoa, Ribeiro & Jud |
Early Cretaceous (Aptian) |
Brazil |
A herbaceous eudicot similar to some members of Ranunculales. Genus includes new species B. pinnatissecta. |
||
Byttneripollis rugulatus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Dilcherifructus[132] |
Gen. et sp. nov |
Valid |
Wang |
Middle Jurassic |
Simón Formation |
Mexico |
Possibly a fruit of an early flowering plant. Genus includes new species D. mexicana. |
|
Farabeipollis deccanensis[133] |
Sp. nov |
Valid |
Sonkusare, Samant & Mohabey |
Late Cretaceous (Maastrichtian) |
Deccan Intertrappean Beds |
India |
Pollen of a flowering plant of uncertain affinity. |
|
Florigerminis[134] |
Gen. et sp. nov |
In press |
Cui et al. |
Middle-Late Jurassic |
Jiulongshan Formation |
China |
A possible flower bud. |
|
Gansufructus[135] |
Gen. et sp. nov |
In press |
Du in Du et al. |
Zhonggou Formation |
China |
A eudicot of uncertain phylogenetic placement. Genus includes new species G. saligna. |
||
Inaperturopollenites tectatus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Ladakhipollenites? corvattatus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Ladakhipollenites? endoporatus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Ladakhipollenites nanus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Ladakhipollenites? sphaericus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Margocolporites bilinearis[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Margocolporites incertus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Multiporopollenites intermedius[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Nigericolpites[136] |
Nom. nov |
Valid |
Hernández |
Late Cretaceous (Maastrichtian) |
Nigeria |
Pollen of a flowering plant; a replacement name for Clavatricolpites Hoeken-Klinkenberg (1964). |
||
Psilaperiporites circinatus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Psilaperiporites depressus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Psilastephanocolporites ectoporatus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Psilastephanocolporites pseudomarinamensis[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Ranunculacidites pontoreticulatus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Retibrevitricolpites pseudoretibolus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Retiperiporites retiporatus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Retistephanocolpites liberalis[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Retistephanocolporites loxocolpatus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Retitrescolpites benjaminensis[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Retitrescolpites brevicolpatus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Retitrescolpites grossus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Retitrescolpites kriptoporus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Retitrescolpites marginatus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Retitriporites discretus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Retitriporites sifonis[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Rhoipites apertus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Rhoipites? colpiverrucosus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Rhoipites crassinexinicus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Rhoipites crassitectatus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Rhoipites grossomurus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Rhoipites guttatus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Rhoipites lolongatus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Rhoipites protoguttatus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Rhoipites pseudocrassopolaris[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Rhoipites pseudopilatus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Rhoipites pseudoscabratus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Rhoipites quantulus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Rhoipites vilis[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Tetracolporopollenites nanus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
|
Tetracolporopollenites xatanawensis[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil pollen. |
Other plants
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Adelocladoxis[137] |
Gen. et sp. nov |
Valid |
Durieux et al. |
Battery Point Formation |
Canada |
A member of Cladoxylopsida. Genus includes new species A. praecox. |
||
Nom. nov |
Valid |
Kraft & Kvaček |
Požáry Formation |
Czech Republic |
A member of the family Drepanophycaceae; a replacement name for Baragwanathia brevifolia Kraft & Kvaček (2017). |
|||
Camarozonosporites fossulatus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Spores of a member of the family Lycopodiaceae. |
|
Cingulatisporites cristatus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Spores of a member of the genus Selaginella. |
|
Cingulatisporites matisiensis[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Spores of a member of the genus Phaeoceros. |
|
Closterium mosbruggeri[139] |
Sp. nov |
Valid |
Ivanov & Belkinova |
Miocene (Serravallian) |
Bulgaria |
A green alga, a species of Closterium. |
||
Colpodexylon mergae[140] |
Sp. nov |
In press |
Harris et al. |
Witpoort Formation |
South Africa |
A member of Lycopsida. |
||
Colpodexylon pullumpedes[140] |
Sp. nov |
In press |
Harris et al. |
Devonian (Famennian) |
Witpoort Formation |
South Africa |
A member of Lycopsida. |
|
Cordaabaxicutis martii[141] |
Sp. nov |
Valid |
Šimůnek & Lojka |
Carboniferous (Pennsylvanian) |
Kladno Formation |
Czech Republic |
Cordaitalean cuticles. |
|
Cordaabaxicutis papillosus[141] |
Sp. nov |
Valid |
Šimůnek & Lojka |
Carboniferous (Pennsylvanian) |
Kladno Formation |
Czech Republic |
Cordaitalean cuticles. |
|
Cordaadaxicutis raristomatus[141] |
Sp. nov |
Valid |
Šimůnek & Lojka |
Carboniferous (Pennsylvanian) |
Kladno Formation |
Czech Republic |
Cordaitalean cuticles. |
|
Cynodontium luthii[142] |
Sp. nov |
Valid |
Bippus, Rothwell & Stockey |
Late Cretaceous |
United States |
A moss belonging to the family Rhabdoweisiaceae, a species of Cynodontium. |
||
Dayvaultia[143] |
Gen. et sp. nov |
Valid |
Manchester et al. |
Late Jurassic |
United States |
A seed-bearing structure of gnetalean affinity. Genus includes new species D. tetragona. |
||
Distefanopolia[144] |
Gen. et comb. nov |
Valid |
Barattolo, Romano & Conrad |
Late Triassic and possibly Early Jurassic |
Austria |
A green alga belonging to the group Dasycladales and the family Bornetelleae. Genus includes "Heteroporella" micropora Di Stefano & Senowbari-Daryan (1985), "Heteroporella" macropora Di Stefano, 1981 ex Di Stefano & Senowbari-Daryan (1985), "Chinianella" zanklii Ott (1967), "Chinianella" crosii Ott (1968) and "Heteroporella" carpatica Bystrický (1967). |
||
Sp. nov |
Valid |
Naugolnykh |
A member of the family Zosterophyllaceae. |
|||||
Dragastanella[146] |
Gen. et sp. et comb. nov |
Valid |
Barattolo, Bucur & Marian |
Italy |
A green alga belonging to the group Dasycladales. Genus includes new species D. transylvanica, as well as "Zittelina" hispanica Masse, Arias & Vilas (1993), "Zittelina" massei Bucur, Granier & Săsăran (2010) and "Triploporella" matesina Barattolo (1980). |
|||
Elandia[147] |
Gen. et sp. nov |
Valid |
Gess & Prestianni |
Baviaanskloof Formation |
South Africa |
An early polysporangiophyte. Genus includes new species E. itshoba. |
||
Flabellopteris[148] |
Gen. et sp. nov |
In press |
Gess & Prestianni |
Devonian (Famennian) |
Witpoort Formation |
South Africa |
A fern-like plant of uncertain affinities. Genus includes new species F. lococannensis. |
|
Foraminisporis connexus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Spores of a member of the genus Anthoceros. |
|
Frullania kachinensis[149] |
Sp. nov |
Valid |
Li et al. |
Cretaceous |
Burmese amber |
Myanmar |
A liverwort, a species of Frullania. |
|
Frullania palaeoafricana[150] |
Sp. nov |
In press |
Bouju et al. |
Miocene |
Ethiopian amber |
Ethiopia |
A liverwort, a species of Frullania. |
|
Frullania shewanensis[150] |
Sp. nov |
In press |
Bouju et al. |
Miocene |
Ethiopian amber |
Ethiopia |
A liverwort, a species of Frullania. |
|
Gilboaphyton fuyunensis[151] |
Sp. nov |
In press |
Liu et al. |
Late Devonian |
Kaxiweng Formation |
China |
A member of Protolepidodendrales. |
|
Guazia[152] |
Gen. et sp. nov |
In press |
Wang et al. |
Late Devonian |
Wutong Formation |
China |
A seed plant of uncertain phylogenetic placement. Genus includes new species G. dongzhiensis. |
|
Ixostrobus daohugouensis[153] |
Sp. nov |
In press |
Na & Sun in Na et al. |
Middle Jurassic |
China |
A member of Czekanowskiales. |
||
Kenrickia[154] |
Gen. et sp. nov |
In press |
Toledo et al. |
Battery Point Formation |
Canada |
An early euphyllophyte belonging to the group Radiatopses. Genus includes new species K. bivena. |
||
Krommia[147] |
Gen. et sp. nov |
Valid |
Gess & Prestianni |
Devonian (Lochkovian?) |
Baviaanskloof Formation |
Brazil |
An early polysporangiophyte. Genus includes new species K. parvapila. |
|
Lejeunea abyssinicoides[150] |
Sp. nov |
In press |
Bouju et al. |
Miocene |
Ethiopian amber |
Ethiopia |
A liverwort, a species of Lejeunea. |
|
Lycaugea[155] |
Gen. et sp. nov |
Valid |
Meyer-Berthaud, Decombeix & Blanchard |
Australia |
A lycopsid. Genus includes new species L. edieae. |
|||
Lycopodiumsporites amazonicus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Spores of a member of the family Lycopodiaceae. |
|
Melvillipteris sonidia[156] |
Sp. nov |
In press |
Bai et al. |
China |
A member of Rhacophytales. |
|||
Mesochara adobensis[157] |
Sp. nov |
In press |
De Sosa Tomas et al. |
Argentina |
A member of Charophyta. |
|||
Mesochara dobrogeica[158] |
Sp. nov |
In press |
Sanjuan et al. |
Romania |
A member of Charophyta. |
|||
Mixoxylon[159] |
Gen. et sp. nov |
In press |
Chernomorets & Sakala |
Whisky Bay Formation |
A homoxylous wood of uncertain systematic affinities. Genus includes new species M. australe. |
|||
Mtshaelo[147] |
Gen. et sp. nov |
Valid |
Gess & Prestianni |
Devonian (Lochkovian?) |
Baviaanskloof Formation |
South Africa |
An early polysporangiophyte. Genus includes new species M. kougaensis. |
|
Omniastrobus[160] |
Gen. et sp. nov |
Valid |
Bonacorsi et al. |
Campbellton Formation |
Canada |
A lycophyte. Genus includes new species O. dawsonii. |
||
Palaeonitella trifurcata[161] |
Sp. nov |
Valid |
Martín-Closas et al. |
Spain |
A member of Charophyta belonging to the family Characeae. |
|||
Paratingia wuhaia[162] |
Sp. nov |
Valid |
Wang et al. |
Permian (Asselian) |
Taiyuan Formation |
China |
A progymnosperm belonging to the group Noeggerathiales and the family Tingiostachyaceae. |
|
Permotheca? musaformis[163] |
Sp. nov |
Valid |
Foraponova & Karasev |
Permian |
Russia |
A pteridosperm. |
||
Radula heinrichsii[164] |
Sp. nov |
In press |
Feldberg et al. |
Cretaceous |
Burmese amber |
Myanmar |
A liverwort, a species of Radula. |
|
Rehamnia[165] |
Gen. et sp. nov |
In press |
Oukassou & Naugolnykh |
Late Devonian |
Morocco |
A member of Lycopodiophyta of uncertain phylogenetic placement. Genus includes new species R. michardis. |
||
Ricciopsis baojishanensis[166] |
Sp. nov |
In press |
Han & Yan in Han et al. |
Nanying'er Formation |
China |
A liverwort. |
||
Sp. nov |
Valid |
McSweeney, Shimeta & Buckeridge |
Yea Formation |
Australia |
An early land plant of uncertain affinities. |
|||
Skyttegaardia[168] |
Gen. et sp. nov |
In press |
Friis, Crane & Pedersen |
Denmark |
A plant of uncertain phylogenetic placement, possibly close to cycads. Genus includes new species S. galtieri. |
|||
Thysananthus aethiopicus[150] |
Sp. nov |
In press |
Bouju et al. |
Miocene |
Ethiopian amber |
Ethiopia |
A liverwort belonging to the family Lejeuneaceae. |
|
Velascoa[169] |
Gen. et sp. nov |
Junior homonym |
Flores Barragan, Velasco de León & Ortega Chavez |
Matzitzi Formation |
Mexico |
Fossil leaves of a plant of uncertain phylogenetic placement, with a morphology similar to Ginkgophyta. Genus includes new species V. pueblensis. The generic name is preoccupied by Velascoa Calderón & Rzedowski (1997). |
||
Vitinellopsis[170] |
Gen. et sp. nov |
In press |
Vachard, Bucur & Munnecke |
Sweden |
A green alga belonging to the group Bryopsidales. Genus includes new species V. gotlandica. |
|||
Sp. nov |
In press |
Gossmann et al. |
Early Devonian |
Germany |
A zosterophyll. |
Palynology
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Camarozonosporites trilobatus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
A spore of lycopodialean affinity. |
|
Echinatisporis infantulus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil spores. |
|
Erlansonisporites duwaensis[172] |
Sp. nov |
Valid |
Li et al. |
Mesozoic |
China |
|||
Erlansonisporites exquisitus[172] |
Sp. nov |
Valid |
Li et al. |
Mesozoic |
China |
|||
Erlansonisporites perbellus[172] |
Sp. nov |
Valid |
Li et al. |
Mesozoic |
China |
|||
Erlansonisporites textilis[172] |
Sp. nov |
Valid |
Li et al. |
Mesozoic |
China |
|||
Ginkgomonocolpites[173] |
Nom. nov |
Valid |
Hernández |
Paleogene |
India |
A gymnosperm pollen; a replacement name for Psilamonocolpites Mathur (1966). |
||
Hamulatisporis bareanus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil spores. |
|
Henrisporites longibaculiformis[172] |
Sp. nov |
Valid |
Li et al. |
Mesozoic |
China |
|||
Horstisporites comitus[172] |
Sp. nov |
Valid |
Li et al. |
Mesozoic |
China |
|||
Horstisporites denticulatus[172] |
Sp. nov |
Valid |
Li et al. |
Mesozoic |
China |
|||
Horstisporites subtilis[172] |
Sp. nov |
Valid |
Li et al. |
Mesozoic |
China |
|||
Horstisporites tarimensis[172] |
Sp. nov |
Valid |
Li et al. |
Mesozoic |
China |
|||
Hughesisporites reticulatus[172] |
Sp. nov |
Valid |
Li et al. |
Mesozoic |
China |
|||
Hughesisporites unicus[172] |
Sp. nov |
Valid |
Li et al. |
Mesozoic |
China |
|||
Ischyosporites dubius[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
A spore of dicksoniaceous affinity. |
|
Ischyosporites granulatus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil spores. |
|
Laevigatosporites indigestus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil spores. |
|
Luntaispora[172] |
Gen. et sp. nov |
Valid |
Li et al. |
Mesozoic |
China |
Genus includes new species L. laevigata. |
||
Microfoveolatosporis simplex[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil spores. |
|
Minerisporites tarimensis[172] |
Sp. nov |
Valid |
Li et al. |
Mesozoic |
China |
|||
Minerisporites triangularis[172] |
Sp. nov |
Valid |
Li et al. |
Mesozoic |
China |
|||
Narkisporites conicus[172] |
Sp. nov |
Valid |
Li et al. |
Mesozoic |
China |
|||
Narkisporites densibaculatus[172] |
Sp. nov |
Valid |
Li et al. |
Mesozoic |
China |
|||
Narkisporites densiconicus[172] |
Sp. nov |
Valid |
Li et al. |
Mesozoic |
China |
|||
Narkisporites tarimensis[172] |
Sp. nov |
Valid |
Li et al. |
Mesozoic |
China |
|||
Neoraistrickia dubia[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil spores. |
|
Noniasporites triassicus[174] |
Sp. nov |
Valid |
Ghosh et al. |
Panchet Formation |
India |
A megaspore. |
||
Otynisporites tarimensis[172] |
Sp. nov |
Valid |
Li et al. |
Mesozoic |
China |
|||
Polypodiisporites discretus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil spores. |
|
Psilatriletes delicatus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil spores. |
|
Punctatosporites latrubessei[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil spores. |
|
Rotverrusporites amazonicus[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil spores. |
|
Stellibacutriletes[172] |
Gen. et 4 sp. nov |
Valid |
Li et al. |
Mesozoic |
China |
Genus includes new species S. capillaris, S. gracilis, S. rarus and S. solidus. |
||
Striatriletes inconspicuus[172] |
Sp. nov |
Valid |
Li et al. |
Mesozoic |
China |
|||
Tarimispora[172] |
Gen. et 2 sp. nov |
Valid |
Li et al. |
Mesozoic |
China |
Genus includes new species T. auriculata and T. perfecta. |
||
Tricristatispora trilobata[172] |
Sp. nov |
Valid |
Li et al. |
Mesozoic |
China |
|||
Tricristatispora yingmailensis[172] |
Sp. nov |
Valid |
Li et al. |
Mesozoic |
China |
|||
Trileites plicatilis[172] |
Sp. nov |
Valid |
Li et al. |
Mesozoic |
China |
|||
Verrucatotriletes pseudovirueloides[4] |
Sp. nov |
Valid |
D'Apolito, Jaramillo & Harrington |
Miocene |
Solimões Formation |
Brazil |
Fossil spores. |
Palynological research
- Strother & Foster (2021) describe an assemblage of fossil spores from the Ordovician (Tremadocian) of Australia , representing a morphology that was intermediate morphology between confirmed land plant spores and earlier forms of uncertain phylogenetic placement, and evaluate the implications of these fossils for the knowledge of the evolution of land plants from their algal ancestors.[175]
- A study on the fossil pollen record from New Zealand, dating from 100 million years ago to the present, is published by Prebble et al. (2021), who report evidence indicating that Cretaceous diversification was closely followed by an increase in flowering plants frequency, but their maximum frequency did not occur until the Eocene.[176]
- A study on changes of abundance in spores and pollen record from the Danish Basin, and on their implications for the knowledge of the impact of the Triassic–Jurassic extinction event on land plants, is published by Lindström (2021).[177]
- A study on the vegetation history in the southwestern Balkans, as indicated by pollen from the sedimentary record in the Lake Ohrid extending to 1.36 million years ago, is published by Donders et al. (2021).[178]
Research
- A study on changes of the morphological complexity of reproductive structures of land plants throughout their evolutionary history, based on data from fossil and extant land plants, is published by Leslie, Simpson & Mander (2021).[179]
- Revision of Silurian (Wenlock to Přídolí) assemblages of polysporangiophytes with dispersed spores and cryptospores, aiming to determine the relationship between Silurian plant evolution and climate changes linked with perturbations of the global carbon cycle, is published by Pšenička et al. (2021).[180]
- Reconstruction of the structure and development of the rooting system of Asteroxylon mackiei is presented by Hetherington et al. (2021).[181]
- A study on factors influencing the extent of arboreal vegetation during the Late Paleozoic icehouse is published by Matthaeus et al. (2021), who interpret their findings as indicating that Pangaea could have supported widespread arboreal plant growth and forest cover based on leaf water constraints, but the forest extent was restricted because of impact of freezing on plants, and estimate that contracting forest cover increased net global surface runoff by up to 6.1%.[182]
- Description of the reproductive organs of the lycopsids from the Upper Devonian Wutong Formation (China), and a study on the ability of the sporophyll units for wind dispersal, is published by Zhou et al. (2021), who name new form species Lepidophylloides longshanensis and Lepidophylloides changxingensis.[183]
- An exceptionally well preserved Brasilodendron-like lycopsid forest containing over 150 upright stumps is described from an early Permian postglacial landscape of western Gondwana (Paraná Basin, Brazil ) by Mottin et al. (2021).[184]
- A study on the anatomy of Stigmaria asiatica is published by Chen et al. (2021).[185]
- Stump casts of Sigillaria, preserving traces of internal anatomy, are described from the earliest Permian Wuda Tuff (China) by D'Antonio et al. (2021).[186]
- A study aiming to determine probable causes of the world-wide proliferation of members of Isoetales, particularly Pleuromeia, during and in the aftermath of the Permian–Triassic extinction event, and evaluating the implications of this proliferation for the knowledge of environmental stresses during and in the aftermath of this extinction event, is published by Looy, van Konijnenburg-van Cittert & Duijnstee (2021).[187]
- New fossil material of Saportaea salisburioides, providing new information on leaf morphology and growth of this plant, is described from the Permian Umm Irna Formation (Jordan) by Kerp et al. (2021), who interpret their findings as indicating that Saportaea grandifolia and Baiera virginiana were synonyms of S. salisburioides, and possibly indicating that the fructification belonging to the genus Nystroemia is a part of Saportaea.[188]
- Description of Geinitzia reichenbachii from its gross morphology to the cellular scale, and a study on the likely ecology of this conifer, is published by Moreau et al. (2021).[189]
- A study on the evolutionary history of the family Cycadaceae, based on genomic data and fossil record, is published by Liu et al. (2021).[190]
- Well-preserved recurved cupules of seed plants are described from the Lower Cretaceous of China by Shi et al. (2021), who interpret the structure of these cupules as consistent with the recurved form and development of the second integument in the bitegmic anatropous ovules of flowering plants, and evaluate the implications of these fossils for the knowledge of the origin of the flowering plants.[191]
- Taxonomically diverse flora from the Seafood Salad locality, found ~65 m below the Cretaceous-Paleogene boundary in the Hell Creek Formation (Montana, United States ), is described by Wilson, Wilson Mantilla & Strӧmberg (2021), who study the affinities of plants of this locality and compare them with other Late Cretaceous floras of the Western Interior.[192]
- A study on the timing of the origin of the flowering plants, based on data from fossil record and from the diversity of extant members of this group, is published by Silvestro et al. (2021), who interpret their findings as indicating that several flowering plant families originated in the Jurassic.[193]
- A study on the diversity of insect damage types in fossil plants from the Cretaceous (Albian to Cenomanian) Dakota Formation (United States), evaluating their implications for the knowledge of the early evolution of angiosperm florivory and associated pollination, is published by Xiao et al. (2021).[194]
- New fossil material of Callianthus dilae is described from the Lower Cretaceous Yixian Formation (China) by Wang et al. (2021), who reconstruct the whole plant of Callianthus, interpreting it as an aquatic flowering plant.[195]
- A study on the anatomy of the epidermal features of the floating leaves of Quereuxia angulata from the Upper Cretaceous Yong'ancun Formation (China) is published by Liang et al. (2021).[196]
- A study on plant extinction and ecological change in tropical forests resulting from the Cretaceous–Paleogene extinction event, based on data from fossil pollen and leaves from Colombia, is published by Carvalho et al. (2021), who report evidence indicative of a long interval of low plant diversity in the Neotropics after the end-Cretaceous extinction, and the emergence of forests with a structure resembling modern Neotropical rainforests, with a closed canopy and multistratal structure dominated by flowering plants, during the Paleocene.[197]
- A study on the impact of the mid-Eocene greenhouse warming event on floras from southernmost South America is published by Fernández et al. (2021).[198]
- Evidence from middle Eocene-middle Miocene tuffaceous deposits of central and northern Patagonia, indicating that soils, vegetation, insects and mammal herbivores began to record diverse traits related to the presence of grasslands with mosaic vegetation since middle Eocene, is presented by Bellosi et al. (2021).[199]
- A study on Middle Miocene microfloral assemblages from ten localities in the Madrid Basin (Spain ), providing evidence of prevalence of open habitats with grass-dominated, savannah-like vegetation under a warm and semi-arid climatic regime in the Iberian Peninsula in the Middle Miocene, is published by Casas-Gallego et al. (2021).[200]
- Crump et al. (2021) present a record of vegetation from the Last Interglacial based on ancient DNA from lake sediment from the Baffin Island (Canada ), and report evidence of major ecosystem changes in the Arctic in response to warmth, including a ~400 km northward range shift of dwarf birch relative to today.[201]
Deaths
- Alan Graham (1934–2021), passed away on 8 July 2021. Graham earned his PhD in 1962 under the guidance of Chester A. Arnold, and was noted for a career studying the Cenozoic paleobotany of the Caribbean and Central America. [202]
References
- ↑ Neregato, R.; Rößler, R.; Noll, R.; Rohn, R. (2021). "New petrified calamitaleans from the Permian of the Parnaíba Basin, central-north Brazil, part III, with some concerns regarding anatomical features of Paleozoic petrified sphenophytes". Review of Palaeobotany and Palynology 293: Article 104499. doi:10.1016/j.revpalbo.2021.104499. Bibcode: 2021RPaPa.29304499N.
- ↑ De Benedetti, F.; Zamaloa, M. C.; Gandolfo, M. A.; Cúneo, N. R. (2021). "Water fern spores (Salviniales) from the Late Cretaceous of Patagonia, Argentina". Review of Palaeobotany and Palynology 290: Article 104428. doi:10.1016/j.revpalbo.2021.104428. Bibcode: 2021RPaPa.29004428D.
- ↑ 3.0 3.1 3.2 Wang, S.-J.; Wang, J.; Liu, L.; Hilton, J. (2021). "Stem diversity of the marattialean tree fern family Psaroniaceae from the earliest Permian Wuda Tuff Flora". Review of Palaeobotany and Palynology 294: Article 104378. doi:10.1016/j.revpalbo.2021.104378. Bibcode: 2021RPaPa.29404378W.
- ↑ 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.20 4.21 4.22 4.23 4.24 4.25 4.26 4.27 4.28 4.29 4.30 4.31 4.32 4.33 4.34 4.35 4.36 4.37 4.38 4.39 4.40 4.41 4.42 4.43 4.44 4.45 4.46 4.47 4.48 4.49 4.50 4.51 4.52 4.53 4.54 4.55 4.56 4.57 4.58 4.59 4.60 4.61 4.62 4.63 4.64 4.65 4.66 4.67 4.68 4.69 4.70 4.71 4.72 4.73 4.74 4.75 4.76 4.77 4.78 4.79 4.80 4.81 4.82 4.83 4.84 4.85 4.86 4.87 4.88 4.89 4.90 D'Apolito, C.; Jaramillo, C.; Harrington, G. (2021). "Miocene Palynology of the Solimões Formation (Well 1-AS-105-AM), Western Brazilian Amazonia". Smithsonian Contributions to Paleobiology 105 (105): iv-134. doi:10.5479/si.16803493. https://figshare.com/articles/book/Miocene_Palynology_of_the_Solim_es_Formation_Well_1-AS-105-AM_Western_Brazilian_Amazonia/16803493.
- ↑ Poinar, G. (2021). "A new fern, Cladarastega burmanica gen. et sp. nov. (Dennstaedtiaceae: Polypodiales) in mid-Cretaceous Burmese amber". Palaeodiversity 14 (1): 153–160. doi:10.18476/pale.v14.a7.
- ↑ Tian, N.; Wang, Y.-D.; Jiang, Z.-K. (2021). "A new permineralized osmundaceous rhizome with fungal remains from the Jurassic of western Liaoning, NE China". Review of Palaeobotany and Palynology 290: Article 104414. doi:10.1016/j.revpalbo.2021.104414. ISSN 0034-6667. Bibcode: 2021RPaPa.29004414T.
- ↑ 7.0 7.1 Pigg, K. B.; DeVore, M. L.; Greenwood, D. R.; Sundue, M. A.; Schwartsburd, P.; Basinger, J. F. (2021). "Fossil Dennstaedtiaceae and Hymenophyllaceae from the Early Eocene of the Pacific Northwest". International Journal of Plant Sciences 182 (9): 793–807. doi:10.1086/715633.
- ↑ Sun, W.; Li, D.; Zhou, W.; Bek, J.; Liu, L.; Wang, J. (2021). "Eoangiopteris congestus sp. nov., a marattialean fern from the Lower Permian Taiyuan Formation of Wuda Coalfield, Inner Mongolia". Acta Palaeontologica Sinica 60 (2): 224–242. doi:10.19800/j.cnki.aps.2020012. http://gswxb.cnjournals.cn/gswxb/article/abstract/20210203.
- ↑ Correia, P.; Šimůnek, Z.; Sá, A. A. (2021). "The equisetalean Iberisetum wegeneri gen. nov., sp. nov. from the Upper Pennsylvanian of Portugal". Historical Biology: An International Journal of Paleobiology 33 (12): 3495–3505. doi:10.1080/08912963.2021.1874373.
- ↑ Wang, S.; Long, X.; Zhang, H.; Cai, H.; Engel, M. S.; Shi, C. (2021). "A semi-aquatic fern (Marsileaceae) from the mid-Cretaceous amber of northern Myanmar". Cretaceous Research 133: Article 105119. doi:10.1016/j.cretres.2021.105119.
- ↑ Pšenička, J.; Wang, J.; Bek, J.; Pfefferkorn, H. W.; Opluštil, S.; Zhou, W.; Frojdová, J.; Libertín, M. (2021). "A zygopterid fern with fertile and vegetative parts in anatomical and compression preservation from the earliest Permian of Inner Mongolia, China". Review of Palaeobotany and Palynology 294: Article 104382. doi:10.1016/j.revpalbo.2021.104382. Bibcode: 2021RPaPa.29404382P.
- ↑ Mazaheri-Johari, M.; Kustatscher, E.; Roghi, G.; Ghasemi-Nejad, E.; Gianolla, P. (2021). "A monotypic stand of Neocalamites iranensis n. sp. from the Carnian Pluvial Episode (Late Triassic) of the Aghdarband area, NE Iran (Turan Plate)". Rivista Italiana di Paleontologia e Stratigrafia 127 (2): 189–209. doi:10.13130/2039-4942/15646.
- ↑ Pšenička, J.; Sakala, J.; Dašková, J. (2021). "Odontosoria marekgaltieri sp. nov. (Lindsaeaceae), a new fern from the early Miocene of the Czech Republic: First evidence of the genus in the fossil record". Review of Palaeobotany and Palynology 297: Article 104580. doi:10.1016/j.revpalbo.2021.104580.
- ↑ Votočková Frojdová, J.; Wang, J.; Pšenička, J.; Bek, J.; Opluštil, S.; Libertín, M. (2021). "A new leptosporangiate fern Oligosporangiopteris zhongxiangii gen. and sp. nov. from the lowermost Permian of Inner Mongolia, China – morphology, anatomy and reproductive organs". Review of Palaeobotany and Palynology 294: Article 104479. doi:10.1016/j.revpalbo.2021.104479. Bibcode: 2021RPaPa.29404479V.
- ↑ Wang, Z.; Shi, G.; Sun, B.; Dong, C.; Yin, S.; Wu, X. (2021). "A new species of Osmunda L. (Osmundaceae) from the middle Miocene of Fujian, Southeast China". Acta Palaeontologica Sinica 60 (3): Article 2021045. doi:10.19800/j.cnki.aps.2021045. http://gswxb.cnjournals.cn/gswxb/article/abstract/20210306.
- ↑ Gnaedinger, S. C.; Zavattieri, A. M. (2021). "A new Late Triassic dipteridacean fern from the Paso Flores Formation, Neuquén Basin, Argentina". Acta Palaeontologica Polonica 66 (4): 885–900. doi:10.4202/app.00864.2020.
- ↑ Zhou, Y.; Guo, Y.; Pšenička, J.; Bek, J.; Yang, S.-L.; Feng, Z. (2021). "A new marattialean fern, Pectinangium xuanweiense sp. nov., from the Lopingian of Southwest China". Review of Palaeobotany and Palynology 295: Article 104500. doi:10.1016/j.revpalbo.2021.104500. Bibcode: 2021RPaPa.29504500Z.
- ↑ Guo, Y.; Zhou, Y.; Bek, J.; Yang, S.-L.; Feng, Z. (2021). "Qasimia yunnanica sp. nov., a marattialean fern with bivalvate synangia from the Lopingian of Southwest China". Review of Palaeobotany and Palynology 293: Article 104497. doi:10.1016/j.revpalbo.2021.104497. Bibcode: 2021RPaPa.29304497G.
- ↑ He, X.-Y.; Hilton, J.; Wang, S.-J.; Cheng, X.-S. (2021). "Exploring the stem to crown group transition in Marattiales: A new species of frond from the late Permian of China with features of the Psaroniaceae and Marattiaceae". Review of Palaeobotany and Palynology 295: Article 104506. doi:10.1016/j.revpalbo.2021.104506. Bibcode: 2021RPaPa.29504506H.
- ↑ Huang, P.; Liu, L.; Liu, L.; Wang, J.-S.; Xue, J.-Z. (2022). "Sphenophyllum Brongniart (Sphenopsida) from the Upper Devonian of South China". Palaeoworld 31 (3): 402–418. doi:10.1016/j.palwor.2021.09.007.
- ↑ Libertín, M.; Bek, J.; Wang, J.; Opluštil, S.; Pšenička, J.; Votočková Frojdová, J. (2021). "New data about three sphenophylls and their spores from the volcanic tuff of Wuda, Taiyuan Formation, earliest Permian, China". Review of Palaeobotany and Palynology 294: Article 104484. doi:10.1016/j.revpalbo.2021.104484. Bibcode: 2021RPaPa.29404484L.
- ↑ Machado, M. A.; Vera, E. I.; Passalia, M. G.; Ponce, M. M. (2021). "Eupolypod ferns with dryopteroid/thelypteroid traits from Arroyo Chacay (Huitrera Formation, Eocene), Río Negro Province, Argentina". Review of Palaeobotany and Palynology 287: Article 104381. doi:10.1016/j.revpalbo.2021.104381. Bibcode: 2021RPaPa.28704381M. http://rid.unrn.edu.ar/handle/20.500.12049/6970.
- ↑ Zhang, H.-R.; Shi, C.; Long, X.-X.; Feng, Q.; Cai, H.-H.; Lü, Y.-T.; Wang, S. (2022). "A new fossil record of Thyrsopteridaceae (Cyatheales) from the mid-Cretaceous amber of Myanmar". Palaeoworld 31 (3): 478–484. doi:10.1016/j.palwor.2021.09.002.
- ↑ Song, H.-Z.; Naugolnykh, S. V.; Wu, X.-K.; Liu, X.-Y.; Jin, J.-H. (2022). "Fertile Woodwardia from the middle Eocene of South China and its implications for palaeogeography and palaeoclimate". Plant Diversity 44 (6): 565–576. doi:10.1016/j.pld.2021.09.003. ISSN 2468-2659. PMID 36540713.
- ↑ 25.0 25.1 25.2 Blomenkemper, P.; Bäumer, R.; Backer, M.; Abu Hamad, A.; Wang, J.; Kerp, H.; Bomfleur, B. (2021). "Bennettitalean Leaves From the Permian of Equatorial Pangea—The Early Radiation of an Iconic Mesozoic Gymnosperm Group". Frontiers in Earth Science 9: Article 652699. doi:10.3389/feart.2021.652699. Bibcode: 2021FrEaS...9..162B.
- ↑ Guzmán-Madrid, D. S.; Velasco de León, M. P. (2021). "Weltrichia magna sp. nov., a new record for the Middle Jurassic of Oaxaca, México". Acta Palaeobotanica 61 (1): 95–106. doi:10.35535/acpa-2021-0005.
- ↑ Lozano-Carmona, D. E.; Corro-Ortiz, M. G.; Morales, R. L.; Velasco-de León, M. P. (2021). "Weltrichia xochitetlii sp. nov. (Bennettitales) from the Middle Jurassic of northwestern Oaxaca, Mexico: First paleobotanical evidence from the Tecomazúchil formation". Journal of South American Earth Sciences 108: Article 103230. doi:10.1016/j.jsames.2021.103230. ISSN 0895-9811. Bibcode: 2021JSAES.10803230L.
- ↑ Lozano-Carmona, D. E.; Velasco-de León, M. P. (2021). "Bennettitales from the Middle Jurassic of northwestern Oaxaca, Mexico: Diversity, sedimentary environments, and phytogeography". Journal of South American Earth Sciences 110: Article 103404. doi:10.1016/j.jsames.2021.103404. ISSN 0895-9811. Bibcode: 2021JSAES.11003404L.
- ↑ Van Konijnenburg-van Cittert, J. H. A.; Pott, C.; Schmeißner, S.; Dütsch, G.; Kustatscher, E. (2021). "The Rhaetian flora of Wüstenwelsberg, Bavaria, Germany: Description of selected gymnosperms (Ginkgoales, Cycadales, Coniferales) together with an ecological assessment of the locally prevailing vegetation". Review of Palaeobotany and Palynology 288: Article 104398. doi:10.1016/j.revpalbo.2021.104398. Bibcode: 2021RPaPa.28804398V.
- ↑ Spiekermann, R.; Jasper, A.; Siegloch, A. M.; Guerra-Sommer, M.; Uhl, D. (2021). "Not a lycopsid but a cycad-like plant: Iratinia australis gen. nov. et sp. nov. from the Irati Formation, Kungurian of the Paraná Basin, Brazil". Review of Palaeobotany and Palynology 289: Article 104415. doi:10.1016/j.revpalbo.2021.104415. Bibcode: 2021RPaPa.28904415S.
- ↑ Tang, D.-L.; Wang, Z.-E.; Huang, Y.-T.; Ding, H.; Ding, S.-T.; Wu, J.-Y. (2022). "A new species of Eretmophyllum (Ginkgoales) from the Middle Jurassic of Turpan-Hami Basin, Xinjiang, China". Palaeoworld 31 (4): 646–657. doi:10.1016/j.palwor.2021.12.001.
- ↑ Andruchow-Colombo, A.; Gandolfo, M. A.; Cúneo, N. R.; Escapa, I. H. (2021). "Ginkgoites villardeseoanii sp. nov., a ginkgophyte with insect damage from the Upper Cretaceous (Maastrichtian) Lefipán Formation (Chubut, Patagonia, Argentina)". Cretaceous Research 133: Article 105124. doi:10.1016/j.cretres.2021.105124.
- ↑ Afonin, M.; Gromyko, D. (2021). "First record of Ginkgoxylon (Ginkgoales) fossil wood in the Lower Cretaceous of the Arctic region". Cretaceous Research 125: Article 104868. doi:10.1016/j.cretres.2021.104868. Bibcode: 2021CrRes.12504868A.
- ↑ Nosova, N.; Crane, P. R.; Shi, G. (2021). "Ovule-bearing structures of Karkenia Archangelsky, associated dispersed seeds and Sphenobaiera leaves from the Middle Jurassic of East Siberia, Russia". Review of Palaeobotany and Palynology 295: Article 104522. doi:10.1016/j.revpalbo.2021.104522. Bibcode: 2021RPaPa.29504522N.
- ↑ Nosova, N. V.; Kostina, E. I.; Bugdaeva, E. V. (2021). "Pseudotorellia Florin from the Upper Jurassic–Lower Cretaceous of the Bureya Basin, Russian Far East". Stratigraphy and Geological Correlation 29 (4): 434–449. doi:10.1134/S0869593821040031. Bibcode: 2021SGC....29..434N.
- ↑ 36.0 36.1 Nosova, N. (2021). "Female reproductive structures of Umaltolepis Krassilov and associated leaves of Pseudotorellia Florin from the Middle Jurassic of East Siberia, Russia". Review of Palaeobotany and Palynology 289: Article 104412. doi:10.1016/j.revpalbo.2021.104412. Bibcode: 2021RPaPa.28904412N.
- ↑ Del Fueyo, G. M.; Carrizo, A.; Poiré, D. G.; Lafuente Diaz, M. A. (2021). "Recurrent volcanic activity recorded in araucarian wood from the Lower Cretaceous Springhill Formation, Patagonia, Argentina: Palaeoenvironmental interpretations". Acta Palaeontologica Polonica 66 (1): 231–253. doi:10.4202/app.00783.2020.
- ↑ dos Santos, Â. C. S.; Siegloch, A. M.; Guerra-Sommer, M.; Degani-Schmidt, I.; Carvalho, I. S. (2021). "Agathoxylon santanensis sp. nov. from the Aptian Crato fossil Lagerstätte, Santana Formation, Araripe Basin, Brazil". Journal of South American Earth Sciences 112, Part 2: Article 103633. doi:10.1016/j.jsames.2021.103633. Bibcode: 2021JSAES.11203633S.
- ↑ Batista, M. E. P.; Loiola, M. I. B.; Soares, A. A.; Mastroberti, A. A.; Sá, A. A.; Nascimento Jr., D. R.; Silva Filho, W. F.; Kunzmann, L. (2021). "New Insights into the Evolution of Mucilage Cells in Araucariaceae: Araucaria violetae sp. nov. from the Early Cretaceous Araripe Basin (Northeast Brazil)". International Journal of Plant Sciences 183 (1): 43–60. doi:10.1086/717104.
- ↑ Yang, X.-J.; Li, J.-G. (2021). "A petrified wood Brachyoxylon from the Lower Cretaceous of Bangoin, Tibet (Xizang), Southwest China". Cretaceous Research 130: Article 105064. doi:10.1016/j.cretres.2021.105064.
- ↑ Rombola, C. F.; Greppi, C. D.; Pujana, R. R.; García Massini, J. L.; Bellosi, E. S.; Marenssi, S. A. (2021). "Brachyoxylon fossil woods with traumatic resin canals from the Upper Cretaceous Cerro Fortaleza Formation, southern Patagonia (Santa Cruz Province, Argentina)". Cretaceous Research 130: Article 105065. doi:10.1016/j.cretres.2021.105065. https://www.sciencedirect.com/science/article/abs/pii/S019566712100313X.
- ↑ Kvaček, J.; Mendes, M. M. (2021). "A new Cheirolepidiaceae conifer Watsoniocladus cunhae sp. nov. from the Early Cretaceous (late Aptian–early Albian) of western Portugal". Review of Palaeobotany and Palynology 295: Article 104519. doi:10.1016/j.revpalbo.2021.104519. Bibcode: 2021RPaPa.29504519K.
- ↑ de Wit, M.; Bamford, M. (2021). "Fossil wood from the Upper Cretaceous crater sediments of the Salpeterkop volcano, North West Province, South Africa". South African Journal of Geology 124 (3): 751–760. doi:10.25131/sajg.124.0028. Bibcode: 2021SAJG..124..751D.
- ↑ Wu, X.; Zhang, H.; Kodrul, T. M.; Maslova, N. P.; Jiang, S.; Yin, Q.; Quan, C.; Jin, J. (2021). "First Fossil Fokienia (Cupressaceae) in South China and Its Palaeogeographic and Palaeoecological Implications". Frontiers in Earth Science 9: Article 709663. doi:10.3389/feart.2021.709663. Bibcode: 2021FrEaS...9..555W.
- ↑ 45.0 45.1 Atkinson, B. A.; Contreras, D. L.; Stockey, R. A.; Rothwell, G. W. (2021). "Ancient diversity and turnover of cunninghamioid conifers (Cupressaceae): two new genera from the Upper Cretaceous of Hokkaido, Japan". Botany 99 (8): 457–473. doi:10.1139/cjb-2021-0005.
- ↑ 46.0 46.1 Nhamutole, N.; Bamford, M.; Araújo, R. (2021). "New species of Protaxodioxylon (conifer wood) from the Middle Permian of the Metangula Graben (Niassa Province, Mozambique) and their implications". Journal of African Earth Sciences 183: Article 104323. doi:10.1016/j.jafrearsci.2021.104323. Bibcode: 2021JAfES.18304323N.
- ↑ 47.0 47.1 47.2 Dolezych, M.; LePage, B. A.; Williams, C. J. (2021). "A Chattian-Aquitanian wood flora from the West Siberian Plain: Implications for regional palaeobiogeography". Palaeontographica Abteilung B 302 (1–6): 37–169. doi:10.1127/palb/2021/0074. Bibcode: 2021PalAB.302...37D.
- ↑ Herrera, F.; Shi, G.; Bickner, M. A.; Ichinnorov, N.; Leslie, A. B.; Crane, P. R.; Herendeen, P. S. (2021). "Early Cretaceous abietoid Pinaceae from Mongolia and the history of seed scale shedding". American Journal of Botany 108 (8): 1483–1499. doi:10.1002/ajb2.1713. ISSN 0002-9122. PMID 34458982.
- ↑ Ding, S.-T.; Chen, S.-Y.; Ruan, S.-C.; Yang, M.; Han, Y.; Wang, X.-H.; Zhang, T.-H.; Sun, B.-N. (2021). "First fossil record of Nothotsuga (Pinaceae) in China: implications for palaeobiogeography and palaeoecology". Historical Biology: An International Journal of Paleobiology 33 (12): 3617–3624. doi:10.1080/08912963.2021.1881781.
- ↑ Zhang, J.-W.; Wang, L.; D'Rozario, A.; Liang, X.-Q.; Huang, J.; Zhou, Z.-K. (2021). "Pinus leptokrempfii, an Oligocene Relative of the Flat-Needled Pine P. krempfii (Pinaceae) from China: Implications for Paleogeographic Origin". International Journal of Plant Sciences 182 (5): 389–400. doi:10.1086/713957.
- ↑ Grote, P. J.; Srisuk, P. (2021). "Fossil Pinus from the Cenozoic of Thailand". Review of Palaeobotany and Palynology 295: Article 104501. doi:10.1016/j.revpalbo.2021.104501. ISSN 0034-6667. Bibcode: 2021RPaPa.29504501G.
- ↑ Li, Y.; Yi, T.-M.; Grote, P. J.; An, P.-C.; Zhu, Y.-B.; Zhang, Z.-Y.; Li, C.-S. (2021). "A new species of Pinus (Pinaceae) from the Miocene of Weichang, Hebei Province, China and its evolutionary significance". Historical Biology: An International Journal of Paleobiology 34 (5): 885–896. doi:10.1080/08912963.2021.1952197.
- ↑ Matsunaga, K. K. S.; Herendeen, P. S.; Herrera, F.; Ichinnorov, N.; Crane, P. R.; Shi, G. (2021). "Ovulate Cones of Schizolepidopsis ediae sp. nov. Provide Insights into the Evolution of Pinaceae". International Journal of Plant Sciences 182 (6): 490–507. doi:10.1086/714281.
- ↑ Wu, J.; Chen, H.; Ruan, S.; Yang, M.; Mo, L.; Ji, B.; Zhang, J.; Ding, S. (2021). "Fossil leaves of Podocarpus subgenus Foliolatus (Podocarpaceae) from the Pliocene of southwestern China and biogeographic history of Podocarpus". Review of Palaeobotany and Palynology 287: Article 104380. doi:10.1016/j.revpalbo.2021.104380. Bibcode: 2021RPaPa.28704380W.
- ↑ Vallejos Leiz, L.; Crisafulli, A.; Gnaedinger, S. (2022). "New records of Late Triassic wood from Argentina and their biostratigraphic, paleoclimatic, and paleoecological implications". Acta Palaeontologica Polonica 67 (2): 329–340. doi:10.4202/app.00939.2021.
- ↑ Gou, X.-D.; Feng, Z.; Wei, H.-B.; Lv, Y.; Yang, S.-L. (2021). "A new Protophyllocladoxylon stem from the Xishanyao Formation (Middle Jurassic) in the Santanghu Basin, Xinjiang, Northwest China". Review of Palaeobotany and Palynology 292: Article 104474. doi:10.1016/j.revpalbo.2021.104474. Bibcode: 2021RPaPa.29204474G.
- ↑ Gomankov, A. V. (2021). "On conifer fructifications from the Cargala Mines (the Kazanian of the Southern Fore-Urals)". Lethaea Rossica 23: 21–31. http://paleobot.ru/pdf/02_2021_23.pdf.
- ↑ Wan, M.; Wang, J.; Shi, T.; Wang, K.; Tang, P.; Wang, J. (2021). "Megaporoxylon sinensis sp. nov., a new coniferous trunk from the Upper Triassic of northern Bogda Mountains, northwestern China". Review of Palaeobotany and Palynology 295: Article 104536. doi:10.1016/j.revpalbo.2021.104536. Bibcode: 2021RPaPa.29504536W.
- ↑ Dong, C.; Shi, G.; Herrera, F.; Wang, Y.; Wang, Z.; Zhang, B.; Xu, X.; Herendeen, P. S. et al. (2021). "Leaves of Taxus with cuticle micromorphology from the Early Cretaceous of eastern Inner Mongolia, Northeast China". Review of Palaeobotany and Palynology 298: Article 104588. doi:10.1016/j.revpalbo.2021.104588.
- ↑ Forte, G.; Kustatscher, E.; Van Konijnenburg-van Cittert, J. H. A. (2021). "Conifer diversity in the Middle Triassic: new data from the Fossillagerstätte Kühwiesenkopf/Monte Prà della Vacca (Pelsonian, Anisian) in the Dolomites (NE Italy)". International Journal of Plant Sciences 182 (6): 445–467. doi:10.1086/714280.
- ↑ Xie, A.; Gee, C. T.; Bennis, M. B.; Gray, D.; Sprinkel, D. A. (2021). "A more southerly occurrence of Xenoxylon in North America: X. utahense Xie et Gee sp. nov. from the Upper Jurassic Morrison Formation in Utah, USA, and its paleobiogeographic and paleoclimatic significance". Review of Palaeobotany and Palynology 291: Article 104451. doi:10.1016/j.revpalbo.2021.104451. Bibcode: 2021RPaPa.29104451X.
- ↑ Wan, M.; Yang, W.; Wang, K.; Liu, L.; Wang, J. (2021). "Zhuotingoxylon liaoi gen. et sp. nov., a silicified coniferous trunk from the Changhsingian (Permian) of southern Bogda Mountains, northwestern China". Geological Journal 56 (12): 6135–6150. doi:10.1002/gj.4189.
- ↑ 63.0 63.1 63.2 63.3 63.4 Doweld, A. B. (2021). "Fossil Alloceltidoxylon, Allonymphaea, Arecocaryon, Paralnoxylon and Paranyssa and extant Komaroviopsis, Marcanodendron, and Papyrocactus (Magnoliophyta), new replacement generic names". Phytotaxa 524 (2): 92–98. doi:10.11646/phytotaxa.524.2.3.
- ↑ 64.0 64.1 Sender, L. M.; Doyle, J. A.; Upchurch, G. R.; Endress, P. K.; Villanueva-Amadoz, U.; Diez, J. B. (2021). "Evidence on vegetative and inflorescence morphology of Chloranthaceae (Angiospermae) from the Early Cretaceous (middle–late Albian) of Spain". Journal of Systematic Palaeontology 18 (24): 2015–2042. doi:10.1080/14772019.2021.1873434. https://figshare.com/articles/dataset/Evidence_on_vegetative_and_inflorescence_morphology_of_Chloranthaceae_Angiospermae_from_the_Early_Cretaceous_middle_late_Albian_of_Spain/14138245.
- ↑ Freitas, J.; Doweld, A. B. (2021). "Aristolochia macginitieana (Aristolochiaceae), a replacement name for Aristolochia triangularis MacGinitie non Aristolochia triangularis Chamisso". Phytotaxa 500 (1): 59–60. doi:10.11646/phytotaxa.500.1.11.
- ↑ 66.00 66.01 66.02 66.03 66.04 66.05 66.06 66.07 66.08 66.09 66.10 66.11 Akkemik, Ü. (2021). "A re-examination of the angiosperm wood record from the early and middle Miocene of Turkey, and new species descriptions". Acta Palaeobotanica 61 (1): 42–94. doi:10.35535/acpa-2021-0004.
- ↑ Winterscheid, H.; Kvaček, Z. (2021). "Systematic-taxonomic revision of the flora from the late Oligocene Fossillagerstätte Rott near Bonn (Germany). Part 2: Magnoliidae: Basal angiosperms and magnoliids". Palaeontographica Abteilung B 303 (4–6): 119–155. doi:10.1127/palb/2021/0077. Bibcode: 2021PalAB.303..119W.
- ↑ Cevallos-Ferriz, S. R. S.; Catharina, A. S.; Kneller, B. (2021). "Cretaceous Lauraceae wood from El Rosario, Baja California, Mexico". Review of Palaeobotany and Palynology 292: Article 104478. doi:10.1016/j.revpalbo.2021.104478. Bibcode: 2021RPaPa.29204478C.
- ↑ Brea, M.; Iglesias, A.; Wilf, P.; Moya, E.; Gandolfo, M. A. (2021). "First South American Record of Winteroxylon, Eocene of Laguna del Hunco (Chubut, Patagonia, Argentina): New Link to Australasia and Malesia". International Journal of Plant Sciences 182 (3): 185–197. doi:10.1086/712427. ISSN 1058-5893.
- ↑ Stockey, R. A.; Hoffman, G. L.; Rothwell, G. W. (2021). "Fossil evidence for Paleocene diversification of Araceae: Bognerospadix gen. nov. and Orontiophyllum grandifolium comb. nov.". American Journal of Botany 108 (8): 1417–1440. doi:10.1002/ajb2.1707. PMID 34431509.
- ↑ Poinar, G. O. (2021). "A Monocot Flower, Mirafloris burmitis gen. et sp. nov. (Monocots: Angiospermae), in Burmese Amber". Biosis: Biological Systems 2 (3): 342–348. doi:10.37819/biosis.002.03.0126.
- ↑ Poinar, G.; Soreng, R. J. (2021). "A New Genus and Species of Grass, Eograminis balticus (Poaceae: Arundinoideae) in Baltic Amber". International Journal of Plant Sciences 182 (9): 808–816. doi:10.1086/716781.
- ↑ Smith, S. Y.; Kapgate, D. K.; Robinson, S.; Srivastava, R.; Benedict, J. C.; Manchester, S. R. (2021). "Fossil fruits and seeds of Zingiberales from the Late Cretaceous–early Cenozoic Deccan Intertrappean Beds of India". International Journal of Plant Sciences 182 (2): 91–108. doi:10.1086/711474.
- ↑ Song, A.; Liu, J.; Liang, S.-Q.; Do, T. V.; Nguyen, H. B.; Deng, W.-Y.-D.; Jia, L.-B.; Del Rio, C. et al. (2022). "Leaf fossils of Sabalites (Arecaceae) from the Oligocene of northern Vietnam and their paleoclimatic implications". Plant Diversity 44 (4): 406–416. doi:10.1016/j.pld.2021.08.003. PMID 35967257.
- ↑ Lim, J. Y.; Huang, H.; Farnsworth, A.; Lunt, D. J.; Baker, W. J.; Morley, R. J.; Kissling, W. D.; Hoorn, C. (2021). "The Cenozoic history of palms: Global diversification, biogeography and the decline of megathermal forests". Global Ecology and Biogeography 31 (3): 425–439. doi:10.1111/geb.13436. https://research-information.bris.ac.uk/ws/files/308458806/Full_text_PDF_final_published_version_.pdf.
- ↑ Andrieu-Ponel, V.; Rochette, P.; Demory, F.; Alçiçek, H.; Boulbes, N.; Bourlès, D.; Helvacı, C.; Lebatard, A.-E. et al. (2021). "Continuous presence of proto-cereals in Anatolia since 2.3 Ma, and their possible co-evolution with large herbivores and hominins". Scientific Reports 11 (1): Article number 8914. doi:10.1038/s41598-021-86423-8. PMID 33903602. Bibcode: 2021NatSR..11.8914A.
- ↑ Maslova, N. P.; Kodrul, T. M.; Kachkina, V. V. (2021). "Leaves of Ettingshausenia cuneifolia (Bronn) Stiehler (Angiospermae) and Associated Carpels and Stamens from the Turonian of Southern Kazakhstan". Paleontological Journal 55 (10): 1193–1214. doi:10.1134/S0031030121100063.
- ↑ 78.0 78.1 Doweld, A. B. (2021). "New names in Pittosporum, extant and fossil (Pittosporaceae)". Phytotaxa 498 (4): 298–300. doi:10.11646/phytotaxa.498.4.9.
- ↑ Shukla, A.; Mehrotra, R. C.; Verma, P.; Chandra, K.; Singh, A. (2021). ""Out-of-India" dispersal for Adina (tribe Naucleeae; family Rubiaceae): evidence from the early Eocene fossil record from India". Palaeoworld 30 (4): 737–745. doi:10.1016/j.palwor.2021.01.001.
- ↑ Franco, M. J.; Brea, M.; Cerdeño, E. (2021). "First Bignoniaceae liana from the Miocene of South America and its evolutionary significance". American Journal of Botany 108 (9): 1761–1774. doi:10.1002/ajb2.1736. PMID 34591314.
- ↑ Mathewes, R.; Archibald, S. B.; Lundgren, A. (2021). "Tips and identification of early Eocene Fraxinus L. samaras from the Quilchena locality, Okanagan Highlands, British Columbia, Canada". Review of Palaeobotany and Palynology 293: Article 104480. doi:10.1016/j.revpalbo.2021.104480. Bibcode: 2021RPaPa.29304480M.
- ↑ Deshmukh, U. B. (2021). "Kapgateophyllum gen. nov. (Acanthaceae)". Phytotaxa 500 (2): 147–148. doi:10.11646/phytotaxa.500.2.8.
- ↑ Singh, H.; Judd, W. S.; Samant, B.; Agnihotri, P.; Grimaldi, D. A.; Manchester, S. R. (2021). "Flowers of Apocynaceae in amber from the early Eocene of India". American Journal of Botany 108 (5): 883–892. doi:10.1002/ajb2.1651. ISSN 0002-9122. PMID 34018178.
- ↑ 84.0 84.1 Huang, H.; Pérez-Pinedo, D.; Morley, R. J.; Dupont-Nivet, G.; Philip, A.; Win, Z.; Aung, D. W.; Licht, A. et al. (2021). "At a crossroads: The late Eocene flora of central Myanmar owes its composition to plate collision and tropical climate". Review of Palaeobotany and Palynology 291: Article 104441. doi:10.1016/j.revpalbo.2021.104441. Bibcode: 2021RPaPa.29104441H.
- ↑ Xie, S.-P.; Zhang, S.-H.; McElwain, J. C.; Zhang, P.; Wang, B.; Zhang, Y.; Yang, Y.-H.; Chen, J.-Y. (2021). "First occurrence of Camptotheca fruits from late Miocene of southwestern China". Historical Biology: An International Journal of Paleobiology 33 (12): 3625–3632. doi:10.1080/08912963.2021.1881782.
- ↑ Denk, T.; Bouchal, J. M. (2021). "Dispersed pollen and calyx remains of Diospyros (Ebenaceae) from the middle Miocene "Plant beds" of Søby, Denmark". GFF 143 (2–3): 292–304. doi:10.1080/11035897.2021.1907443. Bibcode: 2021GFF...143..292D. http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-4502.
- ↑ Kvaček, Z. (2021). "Halesia mosbruggeri Kvaček, sp. nov., a new fossil fruit of Halesia L. (Styracaceae) from the Bohemian Miocene (Czech Republic)". Palaeobiodiversity and Palaeoenvironments 101 (1): 75–78. doi:10.1007/s12549-020-00463-y.
- ↑ Erdei, B.; Hably, L. (2021). "Fossil Gordonia (s.l.)–like (Theaceae) winged seeds from the early Miocene of the Mecsek Mts, W Hungary". Palaeobiodiversity and Palaeoenvironments 101 (1): 59–67. doi:10.1007/s12549-020-00461-0.
- ↑ Friis, E. M.; Crane, P. R.; Pedersen, K. R. (2021). "Early flowers of primuloid Ericales from the Late Cretaceous of Portugal and their ecological and phytogeographic implications". Fossil Imprint 77 (2): 214–230. doi:10.37520/fi.2021.016. http://fi.nm.cz/en/clanek/early-flowers-of-primuloid-ericales-from-the-late-cretaceous-of-portugal-and-their-ecological-and-phytogeographic-implications-2/.
- ↑ Xu, S.-L.; Kodrul, T. M.; Maslova, N. P.; Song, H.-Z.; Tobias, A. V.; Wu, X.-K.; Quan, C.; Jin, J.-H. (2021). "First occurrence of Nyssa endocarps and associated fungi in the Oligocene of South China: palaeogeographical and palaeoecological significance". Papers in Palaeontology 8. doi:10.1002/spp2.1408.
- ↑ 91.0 91.1 Striegler, U. (2021). "New leaf species from the upper Miocene flora of the leaf-bearing Wischgrund clay (Lower Lusatia, Brandenburg, Germany)". Fossil Imprint 77 (1): 102–110. doi:10.37520/fi.2021.009. http://fi.nm.cz/en/clanek/new-leaf-species-from-the-upper-miocene-flora-of-the-leaf-bearing-wischgrund-clay-lower-lusatia-brandenburg-germany-2/.
- ↑ 92.0 92.1 Hazra, T.; Hazra, M.; Spicer, R. A.; Spicer, T. E. V.; Mahato, S.; Bera, S.; Kumar, S.; Khan, M. A. (2021). "Pliocene Albizia (Fabaceae) from Jharkhand, eastern India: reappraisal of its biogeography during Cenozoic in Southeast Asia". Palaeoworld 31: 153–168. doi:10.1016/j.palwor.2021.03.004. http://oro.open.ac.uk/75930/1/1-s2.0-S1871174X21000263-main.pdf.
- ↑ Wang, Z.; Shi, G.; Sun, B.; Jia, H.; Dong, C.; Yin, S.; Wu, X. (2021). "A new Cercis (Leguminosae) from the middle Miocene of Fujian, China". Historical Biology: An International Journal of Paleobiology 34: 94–101. doi:10.1080/08912963.2021.1900170.
- ↑ Jia, L.-B.; Huang, J.; Su, T.; Spicer, R. A.; Zhang, S.-T.; Li, S.-F.; Pan, B.; Nam, G.-S. et al. (2021). "Fossil infructescence from southwestern China reveals Paleogene establishment of Cladrastis in Asia". Review of Palaeobotany and Palynology 292: Article 104456. doi:10.1016/j.revpalbo.2021.104456. Bibcode: 2021RPaPa.29204456J. http://oro.open.ac.uk/76470/1/1-s2.0-S0034666721000804-main.pdf.
- ↑ 95.0 95.1 Pérez-Lara, D. K.; Estrada-Ruiz, E.; Castañeda-Posadas, C. (2021). "Kingiodendron and Enterolobium Eocene woods from the El Bosque formation, Chiapas, Mexico". Journal of South American Earth Sciences 111: Article 103477. doi:10.1016/j.jsames.2021.103477. Bibcode: 2021JSAES.11103477P.
- ↑ Baez, J. (2021). "First fossil record in Tambería formation (Neogene) in Bolsón de Fiambalá, Catamarca province, Argentina: Palaeoenvironmental inferences through Leguminosae woods". Journal of South American Earth Sciences 110: Article 103403. doi:10.1016/j.jsames.2021.103403. Bibcode: 2021JSAES.11003403B.
- ↑ Li, X.; Manchester, S. R.; Correa-Narvaez, J. E.; Herendeen, P. S. (2021). "An Extinct Fruit Species of Fabaceae from the Early Eocene of Northwestern Wyoming, USA". International Journal of Plant Sciences 182 (8): 730–746. doi:10.1086/715634.
- ↑ Centeno-González, N. K.; Martínez-Cabrera, H. I.; Porras-Múzquiz, H.; Estrada-Ruiz, E. (2021). "Late Campanian fossil of a legume fruit supports Mexico as a center of Fabaceae radiation". Communications Biology 4 (1): Article number 41. doi:10.1038/s42003-020-01533-9. PMID 33446929.
- ↑ Hazra, T.; Hazra, M.; Bera, S.; Khan, M. A. (2021). "First Fossil Legume Flower of Papilionoid Affinity from India". Journal of the Geological Society of India 97 (3): 267–270. doi:10.1007/s12594-021-1677-3. ISSN 0016-7622.
- ↑ Li, X.-C.; Manchester, S. R.; Xiao, L.; Wang, Q.; Hu, Y.; Sun, B.-N. (2021). "Ormosia (Fabaceae: Faboideae) from the Miocene of southeastern China support historical expansion of the tropical genus in East Asia". Historical Biology: An International Journal of Paleobiology 33 (12): 3561–3578. doi:10.1080/08912963.2021.1877700.
- ↑ Hazra, T.; Hazra, M.; Bera, S.; Khan, M. A. (2021). "First fossil evidence of marginal winged fruits of Peltophorum (Caesalpinioideae: Fabaceae) from India". Brittonia 73 (3): 241–250. doi:10.1007/s12228-021-09679-4.
- ↑ Poinar, G. O.; Chambers, K. L. (2021). "Salpinganthium hispaniolanum gen. et sp. nov. (Fabaceae: Detarieae), a mid-Tertiary flower in Dominican amber". Journal of the Botanical Research Institute of Texas 15 (2): 559–567. doi:10.17348/jbrit.v15.i2.1161.
- ↑ 103.0 103.1 103.2 103.3 103.4 103.5 Wheeler, E. A.; Manchester, S. R. (2021). "A diverse assemblage of Late Eocene woods from Oregon, western USA". Fossil Imprint 77 (2): 299–329. doi:10.37520/fi.2021.022.
- ↑ 104.0 104.1 104.2 Wheeler, E. A.; Baas, P.; Manchester, S. R. (2021). "Wood Anatomy of Modern and Fossil Fagales in Relation to Phylogenetic Hypotheses, Familial Classification, and Patterns of Character Evolution". International Journal of Plant Sciences 183 (1): 61–86. doi:10.1086/717328.
- ↑ Wilde, V.; Frankenhäuser, H.; Lenz, O. K. (2021). "A myricaceous male inflorescence with pollen in situ from the middle Eocene of Europe". Palaeobiodiversity and Palaeoenvironments 101 (4): 873–883. doi:10.1007/s12549-020-00479-4.
- ↑ 106.0 106.1 106.2 Correa-Narvaez, J. E.; Manchester, S. R. (2021). "Distribution and Morphological Diversity of Palaeocarpinus (Betulaceae) from the Paleogene of the Northern Hemisphere.". The Botanical Review 88 (2): 161–203. doi:10.1007/s12229-021-09258-y.
- ↑ Hazra, T.; Hazra, M.; Kumar, S.; Mahato, S.; Bera, M.; Bera, S.; Khan, M. A. (2021). "First fossil evidence of Palaeocarya (Engelhardioideae: Juglandaceae) from India and its biogeographical implications". Journal of Systematics and Evolution 59 (6): 1307–1320. doi:10.1111/jse.12736.
- ↑ Reback, R. G.; Kapgate, D. K.; Wurdack, K.; Manchester, S. R. (2021). "Fruits of Euphorbiaceae from the Late Cretaceous Deccan Intertrappean Beds of India". International Journal of Plant Sciences 183 (2): 000. doi:10.1086/717691.
- ↑ Hermsen, E. J. (2021). "Review of the fossil record of Passiflora, with a description of new seeds from the Pliocene Gray Fossil Site, Tennessee, U.S.A.". International Journal of Plant Sciences 182 (6): 533–550. doi:10.1086/714282.
- ↑ Poinar, G. O.; Chambers, K. L.; Vega, F. E. (2021). "Tropidogyne euthystyla sp. nov., a new small-flowered addition to the genus from mid-Cretaceous Myanmar amber". Journal of the Botanical Research Institute of Texas 15 (1): 113–119. doi:10.17348/jbrit.v15.i1.1053.
- ↑ Patel, R.; Hazra, T.; Rana, R. S.; Hazra, M.; Bera, S.; Khan, M. A. (2021). "First fossil record of mulberry from Asia". Review of Palaeobotany and Palynology 292: Article 104459. doi:10.1016/j.revpalbo.2021.104459. Bibcode: 2021RPaPa.29204459P.
- ↑ Del Rio, C.; Wang, T.-X.; Xu, X.-T.; Sabroux, R.; Spicer, T. E. V.; Liu, J.; Chen, P.-R.; Wu, F.-X. et al. (2021). "Ventilago (Rhamnaceae) Fruit from the Middle Eocene of the Central Tibet, China". International Journal of Plant Sciences 182 (7): 638–648. doi:10.1086/715507.
- ↑ Wang, B.; Zhang, S.; Zhang, P.; Yang, Y.; Chen, J.; Zhang, Y.; Xie, S. (2021). "A new occurrence of Craigia (Malvaceae) from the Miocene of Yunnan and its biogeographic significance". Historical Biology: An International Journal of Paleobiology 33 (12): 3402–3412. doi:10.1080/08912963.2020.1867980.
- ↑ Chen, J.; Han, L.; Hua, Y.; Wu, G.; Sun, B. (2021). "Fruits and leaves of Dipterocarpus from the Miocene of Zhangpu, Fujian, and its geological significance". Arabian Journal of Geosciences 14 (13): Article 1270. doi:10.1007/s12517-021-07445-0.
- ↑ Jia, L.B.; Nam, G.S.; Su, T.; Stull, G.W.; Li, S.F.; Huang, Y.J.; Zhou, Z.K. (2021). "Fossil fruits of Firmiana and Tilia from the middle Miocene of South Korea and the efficacy of the Bering land bridge for the migration of mesothermal plants". Plant Diversity 43 (6): 480–491. doi:10.1016/j.pld.2020.12.006. PMID 35024517.
- ↑ Estrada-Ruiz, E.; Martínez-Cabrera, H. I.; García-Hernández, I. P. (2021). "New dicotyledonous woods from the San Carlos Formation (Upper Cretaceous) in Northern Mexico". IAWA Journal 43 (1–2): 66–79. doi:10.1163/22941932-bja10079.
- ↑ Vieira, M.; Zetter, R.; Coiro, M.; Grímsson, F. (2021). "Pliocene Lythrum (loosestrife, Lythraceae) pollen from Portugal and the Neogene establishment of European lineages". Review of Palaeobotany and Palynology 296: Article 104548. doi:10.1016/j.revpalbo.2021.104548. ISSN 0034-6667.
- ↑ Li, Y.; Huang, L.; Quan, C.; Jin, J.; Oskolski, A. A. (2021). "Fossil wood of Syzygium from the Miocene of Guangxi, South China: the earliest fossil evidence of the genus in eastern Asia". IAWA Journal 42 (4): 435–441. doi:10.1163/22941932-bja10069. ISSN 0928-1541.
- ↑ 119.0 119.1 Bamford, M.; Pickford, M. (2021). "Stratigraphy, chronology and palaeontology of the Tertiary rocks of the Cheringoma Plateau, Mozambique". Fossil Imprint 77 (1): 187–213. doi:10.37520/fi.2021.014. http://fi.nm.cz/en/clanek/stratigraphy-chronology-and-palaeontology-of-the-tertiary-rocks-of-the-cheringoma-plateau-mozambique-2/.
- ↑ Aung, A. T.; Del Rio, C.; Wang, T.-X.; Liu, J.; Spicer, T. E. V.; Su, T. (2021). "Fossil fruits and pollen grains of Trapa from the Upper Pliocene of the Sanying Formation (Yunnan, China)". Review of Palaeobotany and Palynology 293: Article 104498. doi:10.1016/j.revpalbo.2021.104498. Bibcode: 2021RPaPa.29304498A.
- ↑ Carvalho, M.; Herrera, F.; Gómez, S.; Martínez, C.; Jaramillo, C. (2021). "Early records of Melastomataceae from the middle-late Paleocene rainforests of South America conflict with Laurasian origins". International Journal of Plant Sciences 182 (5): 401–412. doi:10.1086/714053.
- ↑ Jud, N. A.; Allen, S. E.; Nelson, C. W.; Bastos, C. L.; Chery, J. G. (2021). "Climbing since the early Miocene: The fossil record of Paullinieae (Sapindaceae)". PLOS ONE 16 (4): e0248369. doi:10.1371/journal.pone.0248369. PMID 33826635. Bibcode: 2021PLoSO..1648369J.
- ↑ Rodríguez-Reyes, O.; Estrada-Ruiz, E.; Monje Dussán, C.; de Andrade Brito, L.; Terrazas, T. (2021). "A new Oligocene-Miocene tree from Panama and historical Anacardium migration patterns". PLOS ONE 16 (6): e0250721. doi:10.1371/journal.pone.0250721. PMID 34077439. Bibcode: 2021PLoSO..1650721R.
- ↑ Soomro, N.; Mangi, J.; Panhwer, M.; Jatoi, G.; Khuhro, S.; Khokhar, Q.; Khan, S.; Mengal, A. et al. (2021). "Anatomical characteristics of fossil wood collected from the Manchar Formation (Miocene), Thano Bula Khan, Sindh, Pakistan". Italian Botanist 11: 1–8. doi:10.3897/italianbotanist.11.60344.
- ↑ Liu, W.-Q.; Xu, S.-L.; Fu, Q.-Y.; Quan, C. L.; Jin, J.-H. (2021). "Late Oligocene Melia (Meliaceae) from the Nanning Basin of South China and it's biogeographical implication". Journal of Palaeogeography 10 (1): Article number 16. doi:10.1186/s42501-021-00097-x. Bibcode: 2021JPalG..10...16L.
- ↑ Huang, L.-L.; Jin, J.-H.; Quan, C.; Oskolski, A. A. (2021). "Earliest fossil record of the genus Tetradium (Rutaceae) in Asia: implications for its evolution and palaeoecology". Papers in Palaeontology 7 (4): 2065–2074. doi:10.1002/spp2.1394.
- ↑ Huang, L.-L.; Jin, J.-H.; Quan, C.; Oskolski, A. A. (2021). "New occurrences of Altingiaceae fossil woods from the Miocene and upper Pleistocene of South China with phytogeographic implications". Journal of Palaeogeography 10 (4): 482–493. doi:10.1016/j.jop.2021.11.001. Bibcode: 2021JPalG..10..482H. https://www.sciencedirect.com/science/article/pii/S2095383621000043.
- ↑ Kajita, Y.; Suzuki, M. H.; Nishida, H. (2021). "A Multicarpellary Apocarpous Gynoecium from the Late Cretaceous (Coniacian–Santonian) of the Upper Yezo Group of Obira, Hokkaido, Japan: Obirafructus kokubunii gen. & sp. nov.". Acta Phytotaxonomica et Geobotanica 72 (1): 1–21. doi:10.18942/apg.202009.
- ↑ Lai, Y.; Gandolfo, M. A.; Crepet, W. L.; Nixon, K. C. (2021). "Paleoaltingia gen. nov., a new genus of Altingiaceae from the Late Cretaceous of New Jersey". American Journal of Botany 108 (3): 461–471. doi:10.1002/ajb2.1618. PMID 33660257.
- ↑ Golovneva, L.; Bugdaeva, E.; Volynets, E.; Sun, Y.; Zolina, A. (2021). "Angiosperm diversification in the Early Cretaceous of Primorye, Far East of Russia". Fossil Imprint 77 (2): 231–255. doi:10.37520/fi.2021.017. http://fi.nm.cz/clanek/angiosperm-diversification-in-the-early-cretaceous-of-primorye-far-east-of-russia/.
- ↑ Pessoa, E. M.; Ribeiro, A. C.; Jud, N. A. (2021). "A eudicot leaf from the Lower Cretaceous (Aptian, Araripe Basin) Crato Konservat-Lagerstätte". American Journal of Botany 108 (10): 2055–2065. doi:10.1002/ajb2.1751. ISSN 0002-9122. PMID 34647319. https://bsapubs.onlinelibrary.wiley.com/doi/10.1002/ajb2.1751.
- ↑ Wang, X. (2021). "The Currently Earliest Angiosperm Fruit from the Jurassic of North America". Biosis: Biological Systems 2 (4): 416–422. doi:10.37819/biosis.001.04.0160.
- ↑ Sonkusare, H.; Samant, B.; Mohabey, D. M. (2021). "Palynoassemblage from intertrappean sediments of Satpura Group, Betul district, Madhya Pradesh: implications in understanding age and palaeoclimate". Journal of the Palaeontological Society of India 66 (1): 35–54. https://www.researchgate.net/publication/353006021.
- ↑ Cui, D.-F.; Hou, Y.; Yin, P.; Wang, X. (2021). "A Jurassic flower bud from the Jurassic of China". Mesozoic Biological Events and Ecosystems in East Asia. The Geological Society of London. doi:10.1144/SP521-2021-122.
- ↑ Du, B.; Zhang, M.; Sun, B.; Li, A.; Zhang, J.; Yan, D.; Xie, S.; Wu, J. (2021). "An Exceptionally Well-Preserved Herbaceous Eudicot from the Early Cretaceous (late Aptian-early Albian) of Northwest China". National Science Review 8 (12): nwab084. doi:10.1093/nsr/nwab084. PMID 34987839.
- ↑ Hernández, J. A. R. (2021). "Nigericolpites: a replacement name for the illegitimate Maastrichtian magnoliopsid pollen genus Clavatricolpites Hoeken-Klink. (Angiospermae: Magnoliopsida)". Grana 60 (5): 370–371. doi:10.1080/00173134.2020.1827025. ISSN 0017-3134.
- ↑ Durieux, T.; Lopez, M. A.; Bronson, A. W.; Tomescu, A. M. F. (2021). "A new phylogeny of the cladoxylopsid plexus: contribution of an early cladoxylopsid from the Lower Devonian (Emsian) of Quebec". American Journal of Botany 108 (10): 2066–2095. doi:10.1002/ajb2.1752. ISSN 0002-9122. PMID 34664712.
- ↑ Kraft, P.; Kvaček, Z. (2021). "Baragwanathia brevifolioides, a nomen novum for B. brevifolia P.Kraft et Kvaček, 2017". Fossil Imprint 77 (1): 53–54. doi:10.37520/fi.2021.006. http://fi.nm.cz/en/clanek/baragwanathia-brevifolioides-a-nomen-novum-for-b-brevifolia-p-kraft-et-kvacek-2017-2/.
- ↑ Ivanov, D.; Belkinova, D. (2021). "Closterium mosbruggeri sp. nov.: a new fossil species from the middle Miocene of Northwest Bulgaria". Palaeobiodiversity and Palaeoenvironments 101 (1): 69–74. doi:10.1007/s12549-020-00476-7.
- ↑ 140.0 140.1 Harris, C.; Gess, R. W.; Prestianni, C.; Bamford, M. K. (2021). "A Late Devonian refugium for Colpodexylon (Lycopsida) at high latitude". Review of Palaeobotany and Palynology 293: Article 104481. doi:10.1016/j.revpalbo.2021.104481. Bibcode: 2021RPaPa.29304481H. https://orbi.uliege.be/bitstream/2268/295475/1/Harris%20et%20al.%202021%20Colpodexylon.pdf.
- ↑ 141.0 141.1 141.2 Šimůnek, Z.; Lojka, R. (2021). "Carboniferous cuticles from the Lubná coal seam (Kladno Formation, Kladno-Rakovník Basin, Czech Republic)". Palaeontographica Abteilung B 303 (4–6): 77–117. doi:10.1127/palb/2021/0076. Bibcode: 2021PalAB.303...77S.
- ↑ Bippus, A. C.; Rothwell, G. W.; Stockey, R. A. (2021). "Cynodontium luthii sp. nov.: a permineralized moss gametophyte from the Late Cretaceous of the North Slope of Alaska". American Journal of Botany 108 (3): 495–504. doi:10.1002/ajb2.1617. PMID 33650114.
- ↑ Manchester, S. R.; Zhang, X.; Hotton, C. L.; Wing, S. L.; Crane, P. R. (2021). "Distinctive quadrangular seed-bearing structures of gnetalean affinity from the Late Jurassic Morrison Formation of Utah, USA". Journal of Systematic Palaeontology 19 (10): 743–760. doi:10.1080/14772019.2021.1968522. https://www.tandfonline.com/doi/abs/10.1080/14772019.2021.1968522.
- ↑ Barattolo, F.; Romano, R.; Conrad, M. (2021). "Evidence of external gametophores in puzzling Late Triassic–Early Jurassic dasycladalean green algae". Acta Palaeontologica Polonica 66 (4): 901–919. doi:10.4202/app.00883.2021.
- ↑ Naugolnykh, S. V. (2021). "A new species of Distichophytum Mägdefrau, 1938 from the Lower Devonian of Siberia (the Torgashino locality, Krasnojarsk krai, Russia)". Wulfenia 28: 141–150. https://www.researchgate.net/publication/356613631.
- ↑ Barattolo, F.; Bucur, I. I.; Marian, A. V. (2021). "Deciphering voids in Dasycladales, the case of Dragastanella transylvanica, a new Lower Cretaceous triploporellacean genus and species from Romania". Journal of Paleontology 95 (5): 889–905. doi:10.1017/jpa.2021.40. ISSN 0022-3360. Bibcode: 2021JPal...95..889B.
- ↑ 147.0 147.1 147.2 Gess, R. W.; Prestianni, C. (2021). "An early Devonian flora from the Baviaanskloof Formation (Table Mountain Group) of South Africa". Scientific Reports 11 (1): Article number 11859. doi:10.1038/s41598-021-90180-z. PMID 34088916. Bibcode: 2021NatSR..1111859G.
- ↑ Gess, R. W.; Prestianni, C. (2021). "Flabellopteris lococannensis gen. et sp. nov.: A new fern-like plant from the Famennian of South Africa". Review of Palaeobotany and Palynology 297: Article 104585. doi:10.1016/j.revpalbo.2021.104585. https://orbi.uliege.be/bitstream/2268/302493/1/1-s2.0-S0034666721002098-main.pdf.
- ↑ Li, Y.; Wang, Y.-D.; Feldberg, K.; Wang, Q.; Yang, X.-J. (2021). "A new leafy liverwort of Frullania (Frullaniaceae, Porellales) from the mid-Cretaceous Kachin amber, Myanmar". Geological Journal 56 (10): 5046–5057. doi:10.1002/gj.4222.
- ↑ 150.0 150.1 150.2 150.3 Bouju, V.; Feldberg, K.; Kaasalainen, U.; Schäfer-Verwimp, A.; Hedenäs, L.; Buck, W. R.; Wang, B.; Perrichot, V. et al. (2022). "Miocene Ethiopian amber: a new source of fossil cryptogams". Journal of Systematics and Evolution 60 (4): 932–954. doi:10.1111/jse.12796. https://hal-insu.archives-ouvertes.fr/insu-03231697/file/BOUJU-2021.pdf.
- ↑ Liu, B.-C.; Bai, J.; Wang, Y.; Yang, N.; Xu, H.-H. (2021). "On the discovery of Gilboaphyton (Lycopsida) from the Upper Devonian of East Junggar, Xinjiang, and its global distribution". Review of Palaeobotany and Palynology 292: Article 104473. doi:10.1016/j.revpalbo.2021.104473. Bibcode: 2021RPaPa.29204473L.
- ↑ Wang, D.-M.; Liu, L.; Zhou, Y.; Qin, M.; Meng, M.-C.; Guo, Y.; Xue, J.-Z. (2021). "Guazia, the earliest ovule without cupule but with unique integumentary lobes". National Science Review 9 (4): nwab196. doi:10.1093/nsr/nwab196. PMID 35386924.
- ↑ Na, Y.; Sun, C.; Wang, H.; Huang, T.; Bevitt, J.; Li, Y.; Li, T.; Zhao, Y. et al. (2021). "Application of neutron tomography in studying new material of Ixostrobus Raciborski from the Middle Jurassic of Inner Mongolia, China". Geological Journal 56 (9): 4618–4626. doi:10.1002/gj.4196.
- ↑ Toledo, S.; Bippus, A. C.; Atkinson, B. A.; Bronson, A. W.; Tomescu, A. M. F. (2021). "Taxon sampling and alternative hypotheses of relationships in the euphyllophyte plexus that gave rise to seed plants: insights from an Early Devonian radiatopsid". New Phytologist 232 (2): 914–927. doi:10.1111/nph.17511. PMID 34031894.
- ↑ Meyer-Berthaud, B.; Decombeix, A.-L.; Blanchard, R. (2021). "Lycaugea edieae gen. et sp. nov., a Late Devonian lycopsid from New South Wales, Australia". International Journal of Plant Sciences 182 (6): 418–429. doi:10.1086/714350. https://hal.inrae.fr/hal-03231982/file/2021%20Meyer%20Berthaud%20et%20al%20Lycaugea%20.pdf.
- ↑ Bai, L.; Huang, P.; Yang, N.; Ju, W.; Liu, J.; Basinger, J. F.; Xu, H.; Xue, J. (2021). "A new Late Devonian flora from Sonid Zuoqi, Inner Mongolia, northeastern China". Journal of Paleontology 96 (2): 462–484. doi:10.1017/jpa.2021.93. https://zenodo.org/record/5301469.
- ↑ De Sosa Tomas, A.; Martín-Closas, C.; Vallati, P.; Krause, M. (2021). "Early Cretaceous Mesochara-rich assemblages from central Patagonia, Argentina, predate the origin of homogenous Charoidean floras by about 30 million years". Cretaceous Research 129: Article 105017. doi:10.1016/j.cretres.2021.105017. ISSN 0195-6671.
- ↑ Sanjuan, J.; Vicente, A.; Pérez-Cano, J.; Stoica, M.; Martín-Closas, C. (2021). "Early Cretaceous charophytes from south Dobrogea (Romania). Biostratigraphy and palaeobiogeography". Cretaceous Research 122: Article 104762. doi:10.1016/j.cretres.2021.104762. Bibcode: 2021CrRes.12204762S.
- ↑ Chernomorets, O.; Sakala, J. (2021). "Mixoxylon australe gen. et sp. nov., a unique homoxylous wood with non-angiosperm affinity from the Lower Cretaceous of Antarctica (Albian, James Ross Island)". Antarctic Science 33 (5): 493–501. doi:10.1017/S0954102021000389. Bibcode: 2021AntSc..33..493C.
- ↑ Bonacorsi, N. K.; Gensel, P. G.; Hueber, F. M.; Leslie, A. B. (2021). "Omniastrobus gen. nov., an Emsian plant with implications for the evolution of heterospory in the Early Devonian". International Journal of Plant Sciences 182 (3): 198–209. doi:10.1086/712356.
- ↑ Martín-Closas, C.; Segura-Altés, R.; Pérez-Cano, J.; Bover-Arnal, T.; Sanjuan, J. (2021). "Palaeonitella trifurcata n. sp., a cortoid-building charophyte from the Lower Cretaceous of Catalonia". Review of Palaeobotany and Palynology 295: Article 104523. doi:10.1016/j.revpalbo.2021.104523. Bibcode: 2021RPaPa.29504523M.
- ↑ Wang, J.; Hilton, J.; Pfefferkorn, H. W.; Wang, S.; Zhang, Y.; Bek, J.; Pšenička, J.; Seyfullah, L. J. et al. (2021). "Ancient noeggerathialean reveals the seed plant sister group diversified alongside the primary seed plant radiation". Proceedings of the National Academy of Sciences of the United States of America 118 (11): e2013442118. doi:10.1073/pnas.2013442118. ISSN 0027-8424. PMID 33836571. Bibcode: 2021PNAS..11813442W.
- ↑ Foraponova, T. S.; Karasev, E. V. (2021). "Systematic problems of pollen organs of the genus Permotheca Zalessky from the Permian of Subangara". Paleontological Journal 55 (6): 691–706. doi:10.1134/S0031030121060058. https://www.elibrary.ru/item.asp?id=46621802.
- ↑ Feldberg, K.; Schäfer-Verwimp, A.; Renner, M. A. M.; von Konrat, M.; Bechteler, J.; Müller, P.; Wang, Y.-D.; Schneider, H. et al. (2021). "Liverworts from Cretaceous amber". Cretaceous Research 128: Article 104987. doi:10.1016/j.cretres.2021.104987. Bibcode: 2021CrRes.12804987F.
- ↑ Oukassou, M.; Naugolnykh, S. V. (2021). "Rehamnia (Lycopodiophyta), a new enigmatic Late Devonian plant from Morocco". Journal of African Earth Sciences 182: Article 104274. doi:10.1016/j.jafrearsci.2021.104274. Bibcode: 2021JAfES.18204274O.
- ↑ Han, L.; Yang, T.; Wang, H.-J.; Cai, J.-H.; Liang, W.-Y.; Bao, L.; Chen, H.-Y.; Zhang, L. et al. (2021). "Liverwort fossils from the Late Triassic of Baiyin, Gansu, and their geological significance". Palaeoworld in press. doi:10.1016/j.palwor.2021.09.009.
- ↑ McSweeney, F. R.; Shimeta, J.; Buckeridge, J. S. (2021). "Early land plants from the Lower Devonian of central Victoria, Australia, including a new species of Salopella". Memoirs of Museum Victoria 80: 193–205. doi:10.24199/j.mmv.2021.80.11.
- ↑ Friis, E. M.; Crane, P. R.; Pedersen, K. R. (2021). "Microsporangiophores from the Early Cretaceous (Berriasian) of Bornholm, Denmark, with comments on a pre-angiosperm xerophytic flora". Review of Palaeobotany and Palynology 293: Article 104487. doi:10.1016/j.revpalbo.2021.104487. Bibcode: 2021RPaPa.29304487F.
- ↑ Flores Barragan, M. A.; Velasco de León, M. P.; Ortega Chavez, E. (2021). "New genus for megaphyllous leaves from the Upper Paleozoic of Mexico Velascoa pueblensis gen. nov". Journal of South American Earth Sciences 110: Article 103408. doi:10.1016/j.jsames.2021.103408. Bibcode: 2021JSAES.11003408F.
- ↑ Vachard, D.; Bucur, I. I.; Munnecke, A. (2021). "Vitinellopsis nov. gen., a new calcareous alga (Chlorophyta, Bryopsidales) from the Silurian of Gotland (Sweden), and the tribe Vitinelleae nov. nom". Geobios 70: 75–85. doi:10.1016/j.geobios.2021.10.001.
- ↑ Gossmann, R.; Poschmann, M. J.; Giesen, P.; Schultka, S. (2022). "A stratigraphically significant new zosterophyllopsid from the Rhenish Lower Devonian (W Germany)". Palaeobiodiversity and Palaeoenvironments 102 (3): 503–519. doi:10.1007/s12549-021-00509-9. https://link.springer.com/article/10.1007/s12549-021-00509-9.
- ↑ 172.00 172.01 172.02 172.03 172.04 172.05 172.06 172.07 172.08 172.09 172.10 172.11 172.12 172.13 172.14 172.15 172.16 172.17 172.18 172.19 172.20 172.21 172.22 172.23 172.24 Li, W.B.; Batten, D. J.; Li, J.G.; Peng, J.G. (2021). Mesozoic Megaspores and Palynomorphs from Tarim Basin, Northwest China. 202. 1–250. ISBN 978-7030696526.
- ↑ Hernández, J. A. R. (2021). "A replacement name for the poorly known illegitimate Paleogene genus Psilamonocolpites Y.K.Mathur (Ginkgoales)". Phytotaxa 500 (1): 57–58. doi:10.11646/phytotaxa.500.1.10.
- ↑ Ghosh, A. K.; Chatterjee, R.; Pramanik, S.; Kar, R. (2021). "Radiation of Flora in the Early Triassic Succeeding the End Permian Crisis: Evidences from the Gondwana Supergroup of Peninsular India". Mesozoic Stratigraphy of India. Society of Earth Scientists Series. Springer. pp. 87–113. doi:10.1007/978-3-030-71370-6_3. ISBN 978-3-030-71369-0.
- ↑ Strother, P. K.; Foster, C. (2021). "A fossil record of land plant origins from charophyte algae". Science 373 (6556): 792–796. doi:10.1126/science.abj2927. PMID 34385396. Bibcode: 2021Sci...373..792S.
- ↑ Prebble, J. G.; Kennedy, E. M.; Reichgelt, T.; Clowes, C.; Womack, T.; Mildenhall, D. C.; Raine, J. I.; Crouch, E. M. (2021). "A 100 million year composite pollen record from New Zealand shows maximum angiosperm abundance delayed until Eocene". Palaeogeography, Palaeoclimatology, Palaeoecology 566: Article 110207. doi:10.1016/j.palaeo.2020.110207. Bibcode: 2021PPP...56610207P.
- ↑ Lindström, S. (2021). "Two-phased Mass Rarity and Extinction in Land Plants During the End-Triassic Climate Crisis". Frontiers in Earth Science 9: Article 780343. doi:10.3389/feart.2021.780343. Bibcode: 2021FrEaS...9.1079L.
- ↑ Donders, T.; Panagiotopoulos, K.; Koutsodendris, A.; Bertini, A.; Mercuri, A. M.; Masi, A.; Combourieu-Nebout, N.; Joannin, S. et al. (2021). "1.36 million years of Mediterranean forest refugium dynamics in response to glacial–interglacial cycle strength". Proceedings of the National Academy of Sciences of the United States of America 118 (34): e2026111118. doi:10.1073/pnas.2026111118. PMID 34400496. Bibcode: 2021PNAS..11826111D.
- ↑ Leslie, A. B.; Simpson, C.; Mander, L. (2021). "Reproductive innovations and pulsed rise in plant complexity". Science 373 (6561): 1368–1372. doi:10.1126/science.abi6984. PMID 34529461. Bibcode: 2021Sci...373.1368L. http://oro.open.ac.uk/79109/1/Leslie%20et%20al%20accepted%20manuscript.pdf.
- ↑ Pšenička, J.; Bek, J.; Frýda, J.; Žárský, V.; Uhlířová, M.; Štorch, P. (2021). "Dynamics of Silurian Plants as Response to Climate Changes". Life 11 (9): Article 906. doi:10.3390/life11090906. PMID 34575055. Bibcode: 2021Life...11..906P.
- ↑ Hetherington, A. J.; Bridson, S. L.; Jones, A. L.; Hass, H.; Kerp, H.; Dolan, L. (2021). "An evidence-based 3D reconstruction of Asteroxylon mackiei, the most complex plant preserved from the Rhynie chert". eLife 10: e69447. doi:10.7554/eLife.69447. PMID 34425940.
- ↑ Matthaeus, W. J.; Macarewich, S. I.; Richey, J. D.; Wilson, J. P.; McElwain, J. C.; Montañez, I. P.; DiMichele, W. A.; Hren, M. T. et al. (2021). "Freeze tolerance influenced forest cover and hydrology during the Pennsylvanian". Proceedings of the National Academy of Sciences of the United States of America 118 (42): e2025227118. doi:10.1073/pnas.2025227118. PMID 34635589. Bibcode: 2021PNAS..11825227M.
- ↑ Zhou, Y.; Wang, D.-M.; Liu, L.; Huang, P. (2021). "The morphometric of lycopsid sporophylls and the evaluation of their dispersal potential: an example from the Upper Devonian of Zhejiang Province, China". BMC Ecology and Evolution 21 (1): Article number 198. doi:10.1186/s12862-021-01933-3. PMID 34732141.
- ↑ Mottin, T. E.; Iannuzzi, R.; Vesely, F. F.; Montañez, I. P.; Griffis, N.; Canata, R. E.; Barão, L. M.; da Silveira, D. M. et al. (2021). "A glimpse of a Gondwanan postglacial fossil forest". Palaeogeography, Palaeoclimatology, Palaeoecology 588: Article 110814. doi:10.1016/j.palaeo.2021.110814.
- ↑ Chen, B.-Y.; Wan, M.-L.; Zhou, W.-M.; Wang, S.-J.; Wang, J. (2021). "Anatomy of Stigmaria asiatica Jongmans et Gothan from the Asselian (lowermost Permian) of Wuda Coalfield, Inner Mongolia, North China". Palaeoworld 31 (2): 311–323. doi:10.1016/j.palwor.2021.05.001. ISSN 1871-174X.
- ↑ D'Antonio, M. P.; Boyce, C. K.; Zhou, W.-M.; Pfefferkorn, H. W.; Wang, J. (2021). "Primary tissues dominated ground-level trunk diameter in Sigillaria: evidence from the Wuda Tuff, Inner Mongolia". Journal of the Geological Society 179 (2). doi:10.1144/jgs2021-021.
- ↑ Looy, C. V.; van Konijnenburg-van Cittert, J. H. A.; Duijnstee, I. A. P. (2021). "Proliferation of Isoëtalean Lycophytes During the Permo-Triassic Biotic Crises: A Proxy for the State of the Terrestrial Biosphere". Frontiers in Earth Science 9: Article 615370. doi:10.3389/feart.2021.615370. Bibcode: 2021FrEaS...9...55L.
- ↑ Kerp, H.; Blomenkemper, P.; Hamad, A. A.; Bomfleur, B. (2021). "Saportaea Fontaine et White 1880 – An enigmatic, long-ranging, widely distributed but rare type of late Palaeozoic and early Mesozoic foliage". Review of Palaeobotany and Palynology 296: Article 104542. doi:10.1016/j.revpalbo.2021.104542.
- ↑ Moreau, J.-D.; Philippe, M.; Néraudeau, D.; Dépré, E.; Le Couls, M.; Fernandez, V.; Beurel, S. (2021). "Paleohistology of the Cretaceous resin-producing conifer Geinitzia reichenbachii using X-ray synchrotron microtomography". American Journal of Botany 108 (9): 1745–1760. doi:10.1002/ajb2.1722. PMID 34495546.
- ↑ Liu, J.; Lindstrom, A. J.; Marler, T. E.; Gong, X. (2021). "Not that young: combining plastid phylogenomic, plate tectonic and fossil evidence indicates a Palaeogene diversification of Cycadaceae". Annals of Botany 129 (2): 217–230. doi:10.1093/aob/mcab118. PMID 34520529.
- ↑ Shi, G.; Herrera, F.; Herendeen, P. S.; Clark, E. G.; Crane, P. R. (2021). "Mesozoic cupules and the origin of the angiosperm second integument". Nature 594 (7862): 223–226. doi:10.1038/s41586-021-03598-w. PMID 34040260. Bibcode: 2021Natur.594..223S.
- ↑ Wilson, P. K.; Wilson Mantilla, G. P.; Strӧmberg, C. A. E. (2021). "Seafood Salad: A diverse latest Cretaceous flora from eastern Montana". Cretaceous Research 121: Article 104734. doi:10.1016/j.cretres.2020.104734. Bibcode: 2021CrRes.12104734W.
- ↑ Silvestro, D.; Bacon, C. D.; Dong, W.; Zhang, Q.; Donoghue, P. C. J.; Antonelli, A.; Xing, Y. (2021). "Fossil data support a pre-Cretaceous origin of flowering plants". Nature Ecology & Evolution 5 (4): 449–457. doi:10.1038/s41559-020-01387-8. PMID 33510432. https://research-information.bris.ac.uk/ws/files/264149147/Silvestro_et_al_AF.pdf.
- ↑ Xiao, L.; Labandeira, C.; Dilcher, D.; Ren, D. (2021). "Florivory of Early Cretaceous flowers by functionally diverse insects: implications for early angiosperm pollination". Proceedings of the Royal Society B: Biological Sciences 288 (1953): Article ID 20210320. doi:10.1098/rspb.2021.0320. PMID 34132112.
- ↑ Wang, X.; Shih, C.; Liu, Z.-J.; Lin, L.; Singh, K. J. (2021). "Reconstructing the Callianthus plant – an early aquatic angiosperm from the Lower Cretaceous of China". Cretaceous Research 128: Article 104983. doi:10.1016/j.cretres.2021.104983. ISSN 0195-6671. Bibcode: 2021CrRes.12804983W.
- ↑ Liang, F.; Tian, N.; Sun, W.; Wu, Q.; Liu, B.; Wang, H. (2021). "Epidermal features of the floating leaves of Quereuxia angulata (Newberry) Krištofovič, an aquatic angiosperm from the Upper Cretaceous of Northeast China". Cretaceous Research 125: Article 104835. doi:10.1016/j.cretres.2021.104835. Bibcode: 2021CrRes.12504835L.
- ↑ Carvalho, M. R; Jaramillo, C.; de la Parra, F.; Caballero-Rodríguez, D.; Herrera, F.; Wing, S.; Turner, B. L.; D'Apolito, C. et al. (2021). "Extinction at the end-Cretaceous and the origin of modern Neotropical rainforests". Science 372 (6537): 63–68. doi:10.1126/science.abf1969. PMID 33795451. Bibcode: 2021Sci...372...63C.
- ↑ Fernández, D. A.; Palazzesi, L.; González Estebenet, M. S.; Tellería, M. C.; Barreda, V. D. (2021). "Impact of mid Eocene greenhouse warming on America's southernmost floras". Communications Biology 4 (1): Article number 176. doi:10.1038/s42003-021-01701-5. PMID 33564110.
- ↑ Bellosi, E.; Genise, J. F.; Zucol, A.; Bond, M.; Kramarz, A.; Sánchez, M. V.; Krause, J. M. (2021). "Diverse evidence for grasslands since the Eocene in Patagonia". Journal of South American Earth Sciences 108: Article 103357. doi:10.1016/j.jsames.2021.103357. Bibcode: 2021JSAES.10803357B.
- ↑ Casas-Gallego, M.; Postigo-Mijarra, J. M.; Rivas-Carballo, M. R.; Valle-Hernández, M. F.; Morín-de Pablos, J.; Barrón, E. (2021). "Early evidence of continental aridity and open-habitat grasslands in Europe as revealed by the Middle Miocene microflora of the Madrid Basin". Palaeogeography, Palaeoclimatology, Palaeoecology 581: Article 110603. doi:10.1016/j.palaeo.2021.110603. Bibcode: 2021PPP...58110603C.
- ↑ Crump, S. E.; Fréchette, B.; Power, M.; Cutler, S.; de Wet, G.; Raynolds, M. K.; Raberg, J. H.; Briner, J. P. et al. (2021). "Ancient plant DNA reveals High Arctic greening during the Last Interglacial". Proceedings of the National Academy of Sciences of the United States of America 118 (13): e2019069118. doi:10.1073/pnas.2019069118. PMID 33723011. Bibcode: 2021PNAS..11819069C.
- ↑ Jaramillo, C.; Jarzen, D. M. (2022). "Alan Keith Graham (1934–2021)". Palynology 46 (1): 1–4. doi:10.1080/01916122.2021.1971121. Bibcode: 2022Paly...4671121J. https://www.tandfonline.com/doi/full/10.1080/01916122.2021.1971121.
Original source: https://en.wikipedia.org/wiki/2021 in paleobotany.
Read more |