Biology:2021 in paleobotany

From HandWiki
Revision as of 18:10, 11 February 2024 by Smart bot editor (talk | contribs) (fix)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

This article records new taxa of fossil plants that are scheduled to be described during the year 2021, as well as other significant discoveries and events related to paleobotany that are scheduled to occur in the year 2021.

Ferns and fern allies

Name Novelty Status Authors Age Type locality Location Notes Images

Arthropitys buritiranensis[1]

Sp. nov

In press

Neregato et al.

Permian

Motuca Formation

 Brazil

A member of Calamitales.

Azolla andreisii[2]

Sp. nov

In press

De Benedetti et al.

Late Cretaceous (Maastrichtian)

La Colonia Formation

 Argentina

A species of Azolla.

Caulopteris ellipticus[3]

Sp. nov

In press

Wang et al.

Early Permian

Taiyuan Formation

 China

A marattialean tree fern belonging to the family Psaroniaceae.

Caulopteris neimengensis[3]

Sp. nov

In press

Wang et al.

Early Permian

Taiyuan Formation

 China

A marattialean tree fern belonging to the family Psaroniaceae.

Caulopteris obovatus[3]

Sp. nov

In press

Wang et al.

Early Permian

Taiyuan Formation

 China

A marattialean tree fern belonging to the family Psaroniaceae.

Cicatricosisporites pseudograndiosus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Spores of a member of the genus Ceratopteris.

Cladarastega[5]

Gen. et sp. nov

Valid

Poinar

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A fern belonging to the family Dennstaedtiaceae. Genus includes new species C. burmanica.

Claytosmunda zhangii[6]

Sp. nov

In press

Tian, Wang & Jiang

Late Jurassic

Tiaojishan Formation

 China

A fern, a species of Claytosmunda.

Dennstaedtia christophelii[7]

Sp. nov

Valid

Pigg et al.

Early Eocene

Klondike Mountain Formation

 United States
( Washington)

A fern, a species of Dennstaedtia.

File:Dennstaedtia christophelii holotype SRIC SR 13-004-001 A img1.tif

Echinosporis densiechinatus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Spores of a member of the family Marattiaceae.

Eoangiopteris congestus[8]

Sp. nov

Valid

Sun et al.

Early Permian

Taiyuan Formation

 China

A fern belonging to the group Marattiales.

Hymenophyllum axsmithii[7]

Sp. nov

Valid

Pigg et al.

Early Eocene

Klondike Mountain Formation

 United States
( Washington)

A fern, a species of Hymenophyllum.

Iberisetum[9]

Gen. et sp. nov

In press

Correia, Šimůnek & Sá

Carboniferous (Gzhelian)

Douro Basin

 Portugal

A member of Equisetales. Genus includes new species I. wegeneri.

Laevigatosporites cultellus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Spores of a member of the family Polypodiaceae.

Marsileaceaephyllum ciliatum[10]

Sp. nov

In press

Wang et al.

Cretaceous

Burmese amber

 Myanmar

A member of the family Marsileaceae.

Nemejcopteris haiwangii[11]

Sp. nov

In press

Pšenička et al.

Permian (Asselian)

Taiyuan Formation

 China

A zygopterid fern.

Neocalamites iranensis[12]

Sp. nov

Valid

Kustatscher, Mazaheri-Johari & Roghi in Mazaheri-Johari et al.

Late Triassic (Carnian)

Miakuhi Formation

 Iran

A member of the family Equisetaceae.

Odontosoria marekgaltieri[13]

Sp. nov

In press

Pšenička, Sakala & Dašková

Early Miocene

Most Basin

 Czech Republic

A species of Odontosoria.

Oligosporangiopteris[14]

Gen. et sp. nov

In press

Votočková Frojdová et al.

Early Permian

Taiyuan Formation

 China

A leptosporangiate fern. Genus includes new species O. zhongxiangii.

Osmunda zhangpuensis[15]

Sp. nov

Wang & Sun in Wang et al.

Miocene

Fotan Group

 China

A fern, a species of Osmunda.

Patagoniapteris[16]

Gen. et sp. nov

Valid

Gnaedinger & Zavattieri

Late Triassic (Norian–Rhaetian)

Paso Flores Formation

 Argentina

A member of the family Dipteridaceae. Genus includes new species P. artabeae.

Pectinangium xuanweiense[17]

Sp. nov

In press

Zhou et al.

Permian (Lopingian)

 China

A fern belonging to the group Marattiales.

Polypodiisporites densus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Spores of a member of the family Polypodiaceae.

Polypodiisporites fossulatus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Spores of a member of the family Lomariopsidaceae.

Psilatriletes marginatus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Spores of a member of the genus Cyathea.

Qasimia yunnanica[18]

Sp. nov

In press

Guo et al.

Permian (Lopingian)

Xuanwei Formation

 China

A fern belonging to the group Marattiales.

Reticulosporis diversus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Spores of a member of the family Polypodiaceae.

Rothwellopteris sanjiaoshuensis[19]

Sp. nov

In press

He et al.

Late Permian

Xuanwei Formation

 China

A fern belonging to the group Marattiales.

Sphenophyllum fanwanense[20]

Sp. nov

In press

Huang et al.

Late Devonian

 China

A sphenophyllalean equisetid

Sphenophyllum parvifolium[21]

Sp. nov

In press

Libertín et al.

Early Permian

Taiyuan Formation

 China

A sphenophyllalean equisetid

Tapelrayen[22]

Gen. et sp. nov

In press

Machado et al.

Eocene

Huitrera Formation

 Argentina

Fertile remains of a fern comparable with Thelypteridaceae and Dryopteridaceae. Genus includes new species T. helgae.

Thyrsopteris cyathindusia[23]

Sp. nov

In press

Zhang et al.

Cretaceous

Burmese amber

 Myanmar

A tree fern, a species of Thyrsopteris.

Woodwardia changchangensis[24]

Sp. nov

In press

Naugolnykh & Song in Song et al.

Middle Eocene

Changchang Formation

 China

A fern, a species of Woodwardia.

Bennettitales

Name Novelty Status Authors Age Type locality Location Notes Images

Nilssoniopteris jogiana[25]

Sp. nov

Blomenkemper & Abu Hamad in Blomenkemper et al.

Permian (Changhsingian)

Umm Irna Formation

 Jordan

A member of Bennettitales.

Nilssoniopteris shanxiensis[25]

Sp. nov

Bäumer, Backer & Wang in Blomenkemper et al.

Permian (Cisuralian)

Upper Shihhotse Formation

 China

A member of Bennettitales.

Pterophyllum pottii[25]

Sp. nov

Bomfleur & Kerp in Blomenkemper et al.

Permian (Changhsingian)

Umm Irna Formation

 Jordan

A member of Bennettitales.

Weltrichia magna[26]

Sp. nov

Valid

Guzmán-Madrid & Velasco de León

Middle Jurassic (Bajocian)

Zorrillo Formation

 Mexico

Weltrichia xochitetlii[27]

Sp. nov

In press

Lozano-Carmona et al.

Middle Jurassic (Callovian)

Tecomazuchil Formation

 Mexico

A member of Bennettitales.

Williamsonia sanjuanensis[28]

Sp. nov

In press

Lozano-Carmona & Velasco-de León

Middle Jurassic

 Mexico

Cycadales

Name Novelty Status Authors Age Type locality Location Notes Images

Becklesia franconica[29]

Sp. nov

In press

Van Konijnenburg-van Cittert et al.

Late Triassic (Rhaetian)

Exter Formation

 Germany

A member of Cycadales of uncertain phylogenetic placement.

Iratinia[30]

Gen. et sp. nov

In press

Spiekermann et al.

Permian (Kungurian)

Irati Formation

 Brazil

A cycad-like plant. Genus includes new species I. australis.

Ginkgoales

Name Novelty Status Authors Age Type locality Location Notes Images

Eretmophyllum hamiensis[31]

Sp. nov

In press

Tang et al.

Middle Jurassic

Xishanyao Formation

 China

Ginkgoites villardeseoanii[32]

Sp. nov

In press

Andruchow-Colombo et al.

Late Cretaceous (Maastrichtian)

Lefipán Formation

 Argentina

Ginkgoxylon arcticum[33]

Sp. nov

In press

Afonin & Gromyko

Early Cretaceous

 Russia
(Template:Country data Arkhangelsk Oblast)

A member of Ginkgoales described on the basis of fossil wood.

Karkenia irkutensis[34]

Sp. nov

In press

Nosova, Crane & Shi

Middle Jurassic (Aalenian)

Prisayan Formation

 Russia

Vladimariales

Name Novelty Status Authors Age Type locality Location Notes Images

Pseudotorellia doludenkoae[35]

Sp. nov

Valid

Nosova, Kostina & Bugdaeva

Late Jurassic–Early Cretaceous (Oxfordian–Berriasian)

Dublikan Formation
Talyndzhan Formation

 Russia
(Template:Country data Khabarovsk Krai)

Pseudotorellia irkutensis[36]

Sp. nov

In press

Nosova

Middle Jurassic (Aalenian–Bajocian)

Prisayan Formation

 Russia

A Vladimariales foliage species

Umaltolepis irkutensis[36]

Sp. nov

In press

Nosova

Middle Jurassic (Aalenian–Bajocian)

Prisayan Formation

 Russia

A Vladimariales reproducive structure species

Conifers

Araucariaceae

Name Novelty Status Authors Age Type locality Location Notes Images

Agathoxylon mendezii[37]

Sp. nov

Valid

Del Fueyo et al.

Early Cretaceous (BerriasianValanginian)

Springhill Formation

 Argentina

An Araucariaceae fossil wood.

Agathoxylon santanensis[38]

Sp. nov

In press

Dos Santos et al.

Early Cretaceous (Aptian)

Crato Formation

 Brazil

Araucaria violetae[39]

Sp. nov

In press

Batista et al.

Early Cretaceous

 Brazil

A species of Araucaria.

Cheirolepidiaceae

Name Novelty Status Authors Age Type locality Location Notes Images

Brachyoxylon lalongense[40]

Sp. nov

In press

Yang & Li

Early Cretaceous (BerriasianBarremian)

Duoni Formation

 China

Brachyoxylon patagonicum[41]

Sp. nov

In press

Rombola et al.

Late Cretaceous

Cerro Fortaleza Formation

 Argentina

Fossil wood of a member of the family Cheirolepidiaceae.

Watsoniocladus cunhae[42]

Sp. nov

In press

Kvaček & Mendes

Early Cretaceous (AptianAlbian)

Almargem Formation

 Portugal

A member of the family Cheirolepidiaceae.

Cupressaceae

Name Novelty Status Authors Age Type locality Location Notes Images

Cupressinoxylon widdringtonioides[43]

Sp. nov

Valid

De Wit & Bamford

Late Cretaceous

 South Africa

Fossil wood of a member or a relative of the family Cupressaceae.

Fokienia tianpingensis[44]

Sp. nov

Valid

Wu & Jin in Wu et al.

Miocene

Erzitang Formation

 China

A species of Fokienia.

Nishidastrobus[45]

Gen. et sp. nov

Valid

Atkinson et al.

Late Cretaceous

 Japan

A member of the family Cupressaceae belonging to the subfamily Cunninghamioideae. Genus includes new species N. japonicum.

Ohanastrobus[45]

Gen. et sp. nov

Valid

Atkinson et al.

Late Cretaceous

 Japan

A member of the family Cupressaceae belonging to the subfamily Cunninghamioideae. Genus includes new species O. hokkaidoensis.

Protaxodioxylon metangulense[46]

Sp. nov

In press

Nhamutole, Bamford & Araújo

Permian (late Capitanian)

K5 Formation

 Mozambique

A member of the family Cupressaceae.

Protaxodioxylon verniersii[46]

Sp. nov

In press

Nhamutole & Bamford in Nhamutole, Bamford & Araújo

Permian (late Capitanian)

K5 Formation

 Mozambique

A member of the family Cupressaceae.

Thujopsoxylon[47]

Gen. et sp. nov

Valid

Dolezych, LePage & Williams

Oligocene (Chattian)

Korlikov Formation

 Russia
(Template:Country data Tomsk Oblast)

Genus includes new species T. schneiderianum.

Pinaceae

Name Novelty Status Authors Age Type locality Location Notes Images

Lepidocasus[48]

Gen. et sp. nov

Valid

Herrera et al.

Early Cretaceous (AptianAlbian)

 Mongolia

A member of the family Pinaceae. Genus includes new species L. mellonae.

Nothotsuga sinogaia[49]

Sp. nov

In press

Ding et al.

Late Miocene

 China

A species of Nothotsuga

Piceoxylon nikitinii[47]

Sp. nov

Valid

Dolezych, LePage & Williams

Oligocene (Chattian)

Korlikov Formation

 Russia
(Template:Country data Tomsk Oblast)

A Picea relative wood.

Pinus leptokrempfii[50]

Sp. nov

Valid

Zhang et al.

Early Oligocene

 China

A pine.

Pinus nongyaplongensis[51]

Sp. nov

In press

Grote in Grote & Srisuk

Oligocene-early Miocene

 Thailand

A pine.

Pinus weichangensis[52]

Sp. nov

In press

Li et al.

Early Miocene

 China

A pine.

Schizolepidopsis ediae[53]

Sp. nov

Valid

Matsunaga et al.

Early Cretaceous

Huolinhe Formation
Tevshiin Govi Formation

 China
 Mongolia

A member or a close relative of the family Pinaceae.

Podocarpaceae

Name Novelty Status Authors Age Type locality Location Notes Images

Podocarpus yunnanensis[54]

Sp. nov

In press

Wu et al.

Early Pliocene

 China

A species of Podocarpus.

Protophyllocladoxylon hilarioense[55]

Sp. nov

In press

Vallejos Leiz, Crisafulli & Gnaedinger

Late Triassic (Norian–Rhaetian)

Hilario Formation

 Argentina

A member of the family Podocarpaceae.

Protophyllocladoxylon yiwuense[56]

Sp. nov

In press

Gou & Feng in Gou et al.

Middle Jurassic

Xishanyao Formation

 China

A conifer of uncertain phylogenetic placement, possibly belonging or related to the family Podocarpaceae.

Other conifers

Name Novelty Status Authors Age Type locality Location Notes Images

Cargalostrobus[57]

Gen. et sp. nov

Valid

Gomankov

Permian

 Russia
(Template:Country data Orenburg Oblast)

A member of Pinales belonging to the family Sashiniaceae. Genus includes new species C. demetrii.

Megaporoxylon sinensis[58]

Sp. nov

In press

Wan et al.

Late Triassic (Carnian–Norian)

Huangshanjie Formation

 China

A coniferous trunk.

Taxus huolingolensis[59]

Sp. nov

In press

Dong et al.

Early Cretaceous

Huolinhe Formation

 China

A species of Taxus.

Voltzia edithae[60]

Sp. nov

Valid

Forte, Kustatscher & Van Konijnenburg-van Cittert

Middle Triassic (Anisian)

 Italy

A member of Voltziales.

Xenoxylon utahense[61]

Sp. nov

In press

Xie & Gee in Xie et al.

Late Jurassic

Morrison Formation

 United States
( Utah)

Fossil wood of a conifer.

Zhuotingoxylon[62]

Gen. et sp. nov

In press

Wan et al.

Permian (Changhsingian)

Guodikeng Formation

 China

A silicified trunk with coniferous affinities. Genus includes new species Z. liaoi.

Flowering plants

Basal angiosperms

Name Novelty Status Authors Age Type locality Location Notes Images

Allonymphaea[63]

Nom. nov

Valid

Doweld

Eocene

 Egypt

A replacement name for Thiebaudia Chandler (1954).

Unplaced non-eudicots

Name Novelty Status Authors Age Type locality Location Notes Images

Alcainea[64]

Gen. et sp. nov

Valid

Sender et al.

Early Cretaceous (Albian)

Escucha Formation

 Spain

A member of the family Chloranthaceae. Genus includes new species A. eklundiae.

Todziaphyllum[64]

Gen. et sp. nov

Valid

Sender et al.

Early Cretaceous (Albian)

Escucha Formation

 Spain

A member of the family Chloranthaceae. Genus includes new species T. elongatum.

Magnoliids

Canellales

Name Novelty Status Authors Age Type locality Location Notes Images

Aristolochia macginitieana[65]

Nom. nov

Valid

Freitas & Doweld

Oligocene

 United States
( California)

An Aristolochia species; a replacement name for Aristolochia triangularis MacGinitie (1937).

Cryptocaryoxylon grandoleaceum[66]

Sp. nov

Valid

Akkemik

Middle Miocene

Kesmekaya Volcanics

 Turkey

A member of the family Lauraceae.

Laurus elliptica[67]

Nom. nov

Valid

Winterscheid in Winterscheid & Kvaček

Oligocene

 Germany

A species of Laurus; a replacement name for Laurus obovata Weber (1852).

Rosarioxylon[68]

Gen. et sp. nov

In press

Cevallos-Ferriz, Catharina & Kneller

Late Cretaceous (Campanian)

Rosario Formation

 Mexico

A member of the family Lauraceae. Genus includes new species R. bajacaliforniensis.

Winteroxylon oleiferum[69]

Sp. nov

Valid

Brea et al.

Early Eocene

Huitrera Formation

 Argentina

A member of the family Winteraceae.

Monocots

Alismatid monocots

Name Novelty Status Authors Age Type locality Location Notes Images

Bognerospadix[70]

Gen. et sp. nov

Valid

Stockey, Hoffman & Rothwell

Paleocene

 Canada
( Alberta)

A member of the family Araceae. Genus includes new species B. speirsiae.

Lilioid monocots

Name Novelty Status Authors Age Type locality Location Notes Images

Mirafloris[71]

Gen. et sp. nov

Valid

Poinar

Cretaceous

Burmese amber

 Myanmar

A member of the family Liliaceae. Genus includes new species M. burmitis.

Commelinid monocots

Name Novelty Status Authors Age Type locality Location Notes Images

Arecipites invaginatus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Pollen of a member of the family Arecaceae.

Arecocaryon[63]

Nom. nov

Valid

Doweld

Eocene

Messel pit

 Germany

A member of the family Arecaceae; a replacement name for Friedemannia Collinson, Manchester & Wilde (2012).

Cyperaceaepollis wesselinghii[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Pollen of a member of the family Cyperaceae.

Eograminis[72]

Gen. et sp. nov

Valid

Poinar & Soreng

Eocene

Baltic amber

 Russia
(Template:Country data Kaliningrad Oblast)

Grass belonging to the subfamily Arundinoideae. Genus includes new species E. balticus.

Luminidites amazonicus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Pollen of a member of the family Arecaceae.

Orthogonospermum[73]

Gen. et sp. nov

Valid

Smith et al.

Late Cretaceous (Maastrichtian)

Deccan Intertrappean Beds

 India

A member of the family Zingiberaceae. Genus includes new species O. patanense.

Sabalites colaniae[74]

Sp. nov

In press

Song, Su, Do & Zhou in Song et al.

Oligocene

Dong Ho Formation

 Vietnam

A member of the family Arecaceae belonging to the subfamily Coryphoideae.

Trichotomosulcites normalis[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Pollen of a member of the family Arecaceae.

Commelinid monocot research
  • A study on the evolutionary history of palms throughout the Cenozoic era, aiming to determine the impact of Cenozoic environmental changes on the diversification and biogeography of palms, is published by Lim et al. (2021).[75]
  • Pollens of member of the family Poaceae preserving the same morphological characteristics as that of modern cereal grains are described from a sedimentary core from Lake Acıgöl (Turkey) by Andrieu-Ponel et al. (2021), who interpret this finding as indicative of the presence of proto-cereals in Anatolia since 2.3 million years ago, likely evolving from wild Poaceae as a result of trampling, nitrogen enrichment of soils and browsing by large mammal herds, and evaluate possible benefits from the availability of these proto-cereals for early hominins.[76]

Basal eudicots

Proteales

Name Novelty Status Authors Age Type locality Location Notes Images

Platanocarpelia[77]

Gen. et sp. nov

Valid

Maslova, Kodrul & Kachkina

Late Cretaceous (Turonian)

 Kazakhstan

A member of the family Platanaceae. Genus includes new species P. kyzyljarica.

Proteacidites pseudodehaanii[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Pollen of a member of the family Proteaceae.

Superasterids

Campanulid euasterids

Name Novelty Status Authors Age Type locality Location Notes Images

Pittosporum ettingshausenii[78]

Nom. nov

Valid

Doweld

Miocene

 New Zealand

A species of Pittosporum; a replacement name for Pittosporum elegans (Ettingshausen) W.R.B. Oliver (1950).

Xenopanax[78]

Gen. et comb. nov

Valid

Doweld

Eocene

 Russia
(Template:Country data Kamchatka Krai)

A new genus for "Pittosporum" beringianum Chelebaeva & Akhmetiev (1983).

Lamiid euasterids

Name Novelty Status Authors Age Type locality Location Notes Images

Adina vastanenesis[79]

Sp. nov

Valid

Shukla et al.

Early Eocene

Cambay Shale Formation

 India

A species of Adina.

Dicolpopollis? costatus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Pollen of a member of the genus Macoubea.

Dolichandra pacei[80]

Sp. nov

Valid

Franco, Brea & Cerdeño

Miocene (Santacrucian)

Mariño Formation

 Argentina

A species of Dolichandra.

Fraxinoxylon beypazariense[66]

Sp. nov

Valid

Akkemik

Early Miocene

Hançili Formation

 Turkey

A member of the family Oleaceae.

Fraxinus eoemarginata[81]

Sp. nov

In press

Mathewes, Archibald & Lundgren

Early Eocene

Quilchena site

 Canada
( British Columbia)

A species of Fraxinus.

Kapgateophyllum[82]

Nom. nov

Valid

Deshmukh

Late Cretaceous (Maastrichtian) - early Eocene

Deccan Intertrappean Beds

 India

A member of the family Acanthaceae; a replacement name for Acanthophyllum Ramteke & Kapgate (2014).

Ladakhipollenites campbellii[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Pollen of a member of the genus Vitex.

Lymingtonia splendida[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Pollen of a member of the family Convolvulaceae.

Maryendressantha[83]

Gen. et sp. nov

Valid

Singh et al.

Early Eocene

Cambay amber

 India

A member of the family Apocynaceae. Genus includes new species M. succinifera.

Perfotricolpites hexacolpatus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Pollen of a member of the genus Merremia.

Verrustephanoporites intraverrucosus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Pollen of a member of the family Apocynaceae.


Non euasterids

Name Novelty Status Authors Age Type locality Location Notes Images

Anacolosidites reticulatus[84]

Sp. nov

In press

Morley, Huang & Hoorn in Huang et al.

Middle and late Eocene

Yaw Formation

Pollen probably derived from plants belonging to the genus Ptychopetalum.

Camptotheca manchesterii[85]

Sp. nov

In press

Xie et al.

Late Miocene

Bangmai Formation

 China

A species of Camptotheca.

Diospyros christensenii[86]

Sp. nov

Valid

Denk & Bouchal

Miocene

 Denmark

A species of Diospyros.

Halesia mosbruggeri[87]

Sp. nov

Valid

Kvaček

Early Miocene

Most Basin

 Czech Republic

A species of Halesia.

Loranthacites tabatingensis[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Pollen of a member of the genus Struthanthus.

Mecsekispermum[88]

Gen. et sp. nov

Valid

Hably & Erdei

Miocene (Burdigalian)

Feked Formation

 Hungary

Possibly a member of the family Theaceae. Genus includes new species M. gordonioides.

Miranthus[89]

Gen. et 2 sp. nov

Valid

Friis, Crane

Late Cretaceous (Campanian-Maastrichtian)

 Portugal

A Primulaceae genus. Genus includes new species M. elegans and M. kvacekii.

Nyssa nanningensis[90]

Sp. nov

In press

Xu & Jin in Xu et al.

Late Oligocene

Yongning Formation

 China

A tupelo.

Paranyssa[63]

Nom. nov

Valid

Doweld

Paleocene

 United States
( Montana)

A member of the family Nyssaceae; a replacement name for Browniea Manchester & Hickey (2007).

Parsonsidites? minibrenacii[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Pollen of a member of the family Amaranthaceae.

Ternstroemites klettwitzensis[91]

Sp. nov

Valid

Striegler

Miocene (Tortonian)

Rauno Formation

 Germany

A member of the family Theaceae.

Superrosids

Fabids

Fabales
Name Novelty Status Authors Age Type locality Location Notes Images

Albizia mahuadanrensis[92]

Sp. nov

In press

Hazra, Hazra & Khan in Hazra et al.

Pliocene

Rajdanda Formation

 India

A species of Albizia.

Albizia palaeoprocera[92]

Sp. nov

In press

Hazra, Hazra & Khan in Hazra et al.

Pliocene

Rajdanda Formation

 India

A species of Albizia.

Cercis zhangpuensis[93]

Sp. nov

In press

Wang et al.

Miocene

Fotan Group

 China

A species of Cercis.

Cladrastis haominiae[94]

Sp. nov

In press

Jia et al.

Paleogene

 China

A species of Cladrastis.

Enterolobiumoxylon[95]

Gen. et sp. nov

In press

Pérez-Lara, Estrada-Ruiz & Castañeda-Posadas

Eocene

El Bosque Formation

 Mexico

Fossil wood of a member of the family Fabaceae. Genus includes new species E. triserial.

Gleditsioxylon fiambalense[96]

Sp. nov

In press

Baez

Miocene

Tambería Formation

 Argentina

A member of Leguminosae.

Kingiodendron mexicanus[95]

Sp. nov

In press

Pérez-Lara, Estrada-Ruiz & Castañeda-Posadas

Eocene

El Bosque Formation

 Mexico

Fossil wood of a member of the family Fabaceae.

Ladakhipollenites? pseudocolpiconstrictus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Pollen of a member of the family Fabaceae.

Leguminocarpum lottii[97]

Sp. nov

Valid

Li & Manchester in Li et al.

Early Eocene

Tepee Trail Formation

 United States
( Wyoming)

A member of the family Fabaceae.

Leguminocarpum olmensis[98]

Sp. nov

Valid

Centeno-González et al.

Late Cretaceous (Campanian)

Olmos Formation

 Mexico

A member of the family Fabaceae.

Neopapilionia[99]

Gen. et sp. nov

Valid

Hazra, Hazra & Khan in Hazra et al.

Pliocene

Rajdanda Formation

 India

A member of the family Fabaceae. Genus includes new species N. indica.

Ormosia cyclocarpa[100]

Sp. nov

In press

Li et al.

Miocene

 China

A species of Ormosia.

Peltophorum asiatica[101]

Sp. nov

In press

Hazra, Hazra & Khan in Hazra et al.

Pliocene

Rajdanda Formation

 India

A species of Peltophorum.

Polyadopollenites minimus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Pollen of a member of the genus Mimosa.

Salpinganthium[102]

Gen. et sp. nov

Valid

Poinar & Chambers

Burdigalian

Dominican amber

 Dominican Republic

A member of the family Fabaceae belonging to the tribe Detarieae. Genus includes new species S. hispaniolanum.

Striatopollis crassitectatus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Pollen of a member of the genus Macrolobium.

Syncolporites foveolatus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Pollen of a member of the genus Swartzia.

Fagales
Name Novelty Status Authors Age Type locality Location Notes Images

Eucarpinoxylon kayacikii[66]

Sp. nov

Valid

Akkemik

Middle Miocene

Kesmekaya Volcanics

 Turkey

A member of the family Betulaceae.

Fagus dodgei[103]

Sp nov

Valid

Wheeler & Manchester

Late Eocene

John Day Formation

 USA
 Oregon

A Fagus species wood.

Lithocarpoxylon ashwillii[103]

Sp nov

Valid

Wheeler & Manchester

Late Eocene

John Day Formation

 USA
 Oregon

A Lithocarpoxylon species wood.

Morella absarokensis[104]

Comb nov

valid

(Wheeler, Scott, & Barghoorn) Wheeler & Manchester

Middle Eocene

Lamar River Formation

 USA
 Wyoming

Moved from Myrica absarokensis (1978)

Morella scalariformis[104]

Comb nov

valid

(Kruse) Wheeler, Baas, & Manchester

Middle Eocene

Eden Valley Formation

 USA
 Wyoming

Moved from Myrica scalariformis (1954)

Myricamentum[105]

Gen. et sp. nov

Valid

Wilde, Frankenhäuser & Lenz

Eocene

Eckfelder Maar

 Germany

A catkin-like male inflorescence, probably of myricaceous affinity. Genus includes new species M. eckfeldensis.

Ostryoxylon gokceadaense[66]

Sp. nov

Valid

Akkemik

Middle Miocene

Kesmekaya Volcanics

 Turkey

A member of the family Betulaceae.

Palaeocarpinus borealis[106]

Comb nov

Valid

(Heer)

Paleocene

Menat Formation

 France

A Coryloideae species.
Moved from Atriplex borealis (1912)

Palaeocarpinus parva[106]

Sp. nov

Valid

Manchester & Correa

Middle Eocene

Clarno Formation

 USA
 Oregon

A Coryloideae species.

Palaeocarpinus pteravestigia[106]

Sp. nov

Valid

Correa & Manchester

Paleocene

Fort Union Formation
"unnamed lower member"

 USA
 Wyoming

A Coryloideae species.

Palaeocarya indica[107]

Sp. nov

Valid

Hazra, Hazra & Khan in Hazra et al.

Pliocene

Rajdanda Formation

 India

A member of the family Juglandaceae.

Paralnoxylon[63]

Nom. nov

Valid

Doweld

Paleocene

 United Kingdom

A member of the family Betulaceae; a replacement name for Cantia Stopes (1915).

Quercoxylon yaltirikii[66]

Sp. nov

Valid

Akkemik

Early Miocene

Hançili Formation

 Turkey

A member of the family Fagaceae.

Fagalean research
  • A study on wood anatomy in extant and fossil members of Fagales is published by Wheeler, Baas & Manchester who transfer two Eocene species from Myrica to Morella.[104]
Malpighiales
Name Novelty Status Authors Age Type locality Location Notes Images

Euphorbiotheca deccanensis[108]

Sp. nov

In press

Reback et al.

Late Cretaceous (Maastrichtian)

Deccan Intertrappean Beds

 India

A member of the family Euphorbiaceae.

Passiflora appalachiana[109]

Sp. nov

Valid

Hermsen

Pliocene

Gray Fossil Site

 United States
( Tennessee)

A species of Passiflora.

Passifloriidites[4]

Gen. et sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Pollen of a member of the family Passifloraceae. Genus includes new species P. pseudoperculatus.

Populoxylon sebenense[66]

Sp. nov

Valid

Akkemik

Early Miocene

Hançili Formation

 Turkey

A member of the family Salicaceae.

Salicoxylon galatianum[66]

Sp. nov

Valid

Akkemik

Early Miocene

Hançili Formation

 Turkey

A member of the family Salicaceae.

Verrustephanoporites circularis[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Pollen of a member of the genus Mascagnia.

Oxalidales
Name Novelty Status Authors Age Type locality Location Notes Images

Tropidogyne euthystyla[110]

Sp. nov

Valid

Poinar, Chambers & Vega

Cretaceous

Burmese amber

 Myanmar

A possible member of Cunoniaceae.

Rosales
Name Novelty Status Authors Age Type locality Location Notes Images

Alloceltidoxylon[63]

Nom. nov

Valid

Doweld

Eocene

Clarno Formation

 United States
( Oregon)

A flowering plant with possible affinities with urticalean rosids; a replacement name for Scottoxylon Wheeler & Manchester (2002).

Celtis popsii[103]

Sp nov

Valid

Wheeler & Manchester

Late Eocene

John Day Formation

 USA
 Oregon

A Celtis species wood.

Crataegoxylon sibiricum[47]

Sp. nov

Valid

Dolezych, LePage & Williams

Oligocene (Chattian)

Korlikov Formation

 Russia
(Template:Country data Tomsk Oblast)

Morus asiatica[111]

Sp. nov

In press

Patel, Rana & Khan in Patel et al.

Early Eocene

 India

A species of Morus.

Prunoidoxylon prunoides[66]

Sp. nov

Valid

Akkemik

Early Miocene

Hançili Formation

 Turkey

A member of the family Rosaceae.

Psilatriporites minimus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Pollen of a member of the genus Celtis.

Pyracantha pseudococcinea[91]

Sp. nov

Valid

Striegler

Miocene (Tortonian)

Rauno Formation

 Germany

A species of Pyracantha.

Ulmoxylon kasapligilii[66]

Sp. nov

Valid

Akkemik

Early Miocene

Hançili Formation

 Turkey

A member of the family Ulmaceae.

Ventilago tibetensis[112]

Sp. nov

Valid

Del Rio et al.

Middle Eocene

 China

A species of Ventilago.

Zelkovoxylon crystalliferum[66]

Sp. nov

Valid

Akkemik

Early Miocene

Hançili Formation

 Turkey

A member of the family Ulmaceae.

Malvids

Malvales
Name Novelty Status Authors Age Type locality Location Notes Images

Bombacacidites hooghiemstrae[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Pollen of a member of the family Malvaceae.

Craigia lincangensis[113]

Sp. nov

In press

Wang & Xie in Wang et al.

Late Miocene

 China

A species of Craigia

Dipterocapus fotanensis[114]

Sp. nov

Valid

Chen et al.

Miocene

 China

A species of Dipterocarpus

Discoidites angulosus[84]

Sp. nov

In press

Huang, Morley & Hoorn in Huang et al.

Late Eocene

Yaw Formation

 Myanmar

Pollen probably derived from plants belonging to the genus Brownlowia.

Thymelipollis amazonicus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Pollen of a member of the family Thymelaeaceae.

Tilia asiatica[115]

Sp. nov

In press

Jia & Nam in Jia et al.

Middle Miocene

Pohang Basin

 South Korea

A species of Tilia

Wataria kvacekii[103]

Sp nov

Valid

Wheeler & Manchester

Late Eocene

John Day Formation

 USA
 Oregon

A Wataria species wood.

Myrtales
Name Novelty Status Authors Age Type locality Location Notes Images

Florschuetzia impostora[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen, possibly of a member of the family Lythraceae.

Lazarocardenasoxylon[116]

Gen. et sp. nov

In press

Estrada-Ruiz & Martínez-Cabrera in Estrada-Ruiz, Martínez-Cabrera & García-Hernández

Late Cretaceous

San Carlos Formation

 Mexico

Possibly a member of the family Myrtaceae. Genus includes new species L. aldamense.

Lythrum portugalliense[117]

Sp. nov

In press

Vieira et al.

Pliocene (Piacenzian)

 Portugal

A species of Lythrum.

Syzygium guipingensis[118]

Sp. nov

In press

Li et al.

Miocene

Erzitang Formation

 China

A species of Syzygium.

Terminalioxylon mozambicense[119]

Sp. nov

Valid

Bamford & Pickford

Probably late Eocene

 Mozambique

A member of the family Combretaceae.

Trapa sanyingensis[120]

Sp. nov

In press

Aung et al.

Late Pliocene

Sanying Formation

 China

A water caltrop.

Verrutricolporites pusillus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen, possibly of a member of the family Lythraceae.

Xystonia[121]

Gen. et sp. nov

Valid

Carvalho et al.

Paleocene

Bogotá Formation

 Colombia

A member of the family Melastomataceae. Genus includes new species X. simonae.

Sapindales
Name Novelty Status Authors Age Type locality Location Notes Images

Aceroxylon aceroides[66]

Sp. nov

Valid

Akkemik

Early Miocene

Hançili Formation

 Turkey

A member of the family Sapindaceae.

Ampelorhiza[122]

Gen. et sp. nov

Valid

Jud et al.

Early Miocene

Cucaracha Formation

 Panama

A member of the family Sapindaceae belonging to the subfamily Sapindoideae and the tribe Paullinieae. Genus includes new species A. heteroxylon.

Anacardium gassonii[123]

Sp. nov

Valid

Rodríguez-Reyes, Estrada-Ruiz & Terrazas in Rodríguez-Reyes et al.

Oligocene-Miocene

 Panama

A species of Anacardium.

Atalantioxylon thanobolensis[124]

Sp. nov

Valid

Soomro et al.

Miocene

Manchar Formation

 Pakistan

Fossil wood of a member of the family Rutaceae.

Melia santangensis[125]

Sp. nov

Valid

Liu, Xu & Jin in Liu et al.

Late Oligocene

Yongning Formation

 China

A species of Melia.

Pistacia terrazasae[103]

Sp nov

Valid

Wheeler & Manchester

Late Eocene

John Day Formation

 USA
 Oregon

A Pistacia species wood.

Proteacidites poriscabratus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Pollen of a member of the family Sapindaceae.

Sorindeioxylon[119]

Gen. et sp. nov

Valid

Bamford & Pickford

Probably late Eocene

Mazamba Formation

 Mozambique

A member of the family Anacardiaceae. Genus includes new species S. gorongosense.

Syncolporites tenuicolpatus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Pollen of a member of the genus Serjania.

Tetradium nanningense[126]

Sp. nov

Valid

Huang et al.

Late Oligocene

Yongning Formation

 China

A species of Tetradium.

Verrutricolporites simplex[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Pollen of a member of the family Simaroubaceae.

Non eurosid superrosids

Name Novelty Status Authors Age Type locality Location Notes Images

Hamamelidoxylon crystalliferum[103]

Sp nov

Valid

Wheeler & Manchester

Late Eocene

John Day Formation

 USA
 Oregon

A Hamamelidoxylon species wood.

Liquidambar guipingensis[127]

Sp. nov

In press

Huang et al.

Miocene

Erzitang Formation

 China

A species of Liquidambar.

Liquidambaroxylon efeae[66]

Sp. nov

Valid

Akkemik

Early Miocene

Hançili Formation

 Turkey

A member of the family Altingiaceae.

Obirafructus[128]

Gen. et sp. nov

Valid

Kajita & Nishida in Kajita, Suzuki & Nishida

Late Cretaceous (ConiacianSantonian)

Haborogawa Formation

 Japan

A member of Saxifragales of uncertain phylogenetic placement. Genus includes new species O. kokubunii.

Paleoaltingia[129]

Gen. nov

Valid

Lai et al.

Late Cretaceous (Turonian)

 United States
( New Jersey)

A member of Altingiaceae. Genus includes P. ovum-dinosauri and P. polyodonta.

Other angiosperms

Name Novelty Status Authors Age Type locality Location Notes Images

Araliaephyllum vittenburgii[130]

Sp. nov

Valid

Golovneva & Volynets in Golovneva et al.

Early Cretaceous (Albian)

Galenki Formation

 Russia
(Template:Country data Primorsky Krai)

A flowering plant of uncertain phylogenetic placement.

Baderadea[131]

Gen. et sp. nov

Valid

Pessoa, Ribeiro & Jud

Early Cretaceous (Aptian)

Crato Formation

 Brazil

A herbaceous eudicot similar to some members of Ranunculales. Genus includes new species B. pinnatissecta.

Byttneripollis rugulatus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Dilcherifructus[132]

Gen. et sp. nov

Valid

Wang

Middle Jurassic

Simón Formation

 Mexico

Possibly a fruit of an early flowering plant. Genus includes new species D. mexicana.

Farabeipollis deccanensis[133]

Sp. nov

Valid

Sonkusare, Samant & Mohabey

Late Cretaceous (Maastrichtian)

Deccan Intertrappean Beds

 India

Pollen of a flowering plant of uncertain affinity.

Florigerminis[134]

Gen. et sp. nov

In press

Cui et al.

Middle-Late Jurassic

Jiulongshan Formation

 China

A possible flower bud.
The type species is F. jurassica.
First announced online 2021, Final article published 2022.

Florigerminis jurassica

Gansufructus[135]

Gen. et sp. nov

In press

Du in Du et al.

Early Cretaceous (late Aptian-early Albian)

Zhonggou Formation

 China

A eudicot of uncertain phylogenetic placement. Genus includes new species G. saligna.

Inaperturopollenites tectatus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Ladakhipollenites? corvattatus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Ladakhipollenites? endoporatus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Ladakhipollenites nanus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Ladakhipollenites? sphaericus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Margocolporites bilinearis[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Margocolporites incertus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Multiporopollenites intermedius[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Nigericolpites[136]

Nom. nov

Valid

Hernández

Late Cretaceous (Maastrichtian)

 Nigeria

Pollen of a flowering plant; a replacement name for Clavatricolpites Hoeken-Klinkenberg (1964).

Psilaperiporites circinatus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Psilaperiporites depressus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Psilastephanocolporites ectoporatus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Psilastephanocolporites pseudomarinamensis[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Ranunculacidites pontoreticulatus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Retibrevitricolpites pseudoretibolus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Retiperiporites retiporatus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Retistephanocolpites liberalis[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Retistephanocolporites loxocolpatus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Retitrescolpites benjaminensis[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Retitrescolpites brevicolpatus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Retitrescolpites grossus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Retitrescolpites kriptoporus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Retitrescolpites marginatus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Retitriporites discretus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Retitriporites sifonis[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Rhoipites apertus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Rhoipites? colpiverrucosus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Rhoipites crassinexinicus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Rhoipites crassitectatus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Rhoipites grossomurus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Rhoipites guttatus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Rhoipites lolongatus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Rhoipites protoguttatus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Rhoipites pseudocrassopolaris[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Rhoipites pseudopilatus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Rhoipites pseudoscabratus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Rhoipites quantulus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Rhoipites vilis[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Tetracolporopollenites nanus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Tetracolporopollenites xatanawensis[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil pollen.

Other plants

Name Novelty Status Authors Age Type locality Location Notes Images

Adelocladoxis[137]

Gen. et sp. nov

Valid

Durieux et al.

Devonian (Emsian)

Battery Point Formation

 Canada
( Quebec)

A member of Cladoxylopsida. Genus includes new species A. praecox.

Baragwanathia brevifolioides[138]

Nom. nov

Valid

Kraft & Kvaček

Silurian (Přídolí)

Požáry Formation

 Czech Republic

A member of the family Drepanophycaceae; a replacement name for Baragwanathia brevifolia Kraft & Kvaček (2017).

Camarozonosporites fossulatus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Spores of a member of the family Lycopodiaceae.

Cingulatisporites cristatus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Spores of a member of the genus Selaginella.

Cingulatisporites matisiensis[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Spores of a member of the genus Phaeoceros.

Closterium mosbruggeri[139]

Sp. nov

Valid

Ivanov & Belkinova

Miocene (Serravallian)

 Bulgaria

A green alga, a species of Closterium.

Colpodexylon mergae[140]

Sp. nov

In press

Harris et al.

Devonian (Famennian)

Witpoort Formation

 South Africa

A member of Lycopsida.

Colpodexylon pullumpedes[140]

Sp. nov

In press

Harris et al.

Devonian (Famennian)

Witpoort Formation

 South Africa

A member of Lycopsida.

Cordaabaxicutis martii[141]

Sp. nov

Valid

Šimůnek & Lojka

Carboniferous (Pennsylvanian)

Kladno Formation

 Czech Republic

Cordaitalean cuticles.

Cordaabaxicutis papillosus[141]

Sp. nov

Valid

Šimůnek & Lojka

Carboniferous (Pennsylvanian)

Kladno Formation

 Czech Republic

Cordaitalean cuticles.

Cordaadaxicutis raristomatus[141]

Sp. nov

Valid

Šimůnek & Lojka

Carboniferous (Pennsylvanian)

Kladno Formation

 Czech Republic

Cordaitalean cuticles.

Cynodontium luthii[142]

Sp. nov

Valid

Bippus, Rothwell & Stockey

Late Cretaceous

 United States
( Alaska)

A moss belonging to the family Rhabdoweisiaceae, a species of Cynodontium.

Dayvaultia[143]

Gen. et sp. nov

Valid

Manchester et al.

Late Jurassic

Morrison Formation

 United States
( Utah)

A seed-bearing structure of gnetalean affinity. Genus includes new species D. tetragona.

Distefanopolia[144]

Gen. et comb. nov

Valid

Barattolo, Romano & Conrad

Late Triassic and possibly Early Jurassic

 Austria
 Czech Republic
 Germany
 Greece
 Italy
 Oman
 Slovakia

A green alga belonging to the group Dasycladales and the family Bornetelleae. Genus includes "Heteroporella" micropora Di Stefano & Senowbari-Daryan (1985), "Heteroporella" macropora Di Stefano, 1981 ex Di Stefano & Senowbari-Daryan (1985), "Chinianella" zanklii Ott (1967), "Chinianella" crosii Ott (1968) and "Heteroporella" carpatica Bystrický (1967).

Distichophytum mogilatii[145]

Sp. nov

Valid

Naugolnykh

Devonian

 Russia
(Template:Country data Krasnoyarsk Krai)

A member of the family Zosterophyllaceae.

Dragastanella[146]

Gen. et sp. et comb. nov

Valid

Barattolo, Bucur & Marian

Early Cretaceous

 Italy
 Romania
 Spain

A green alga belonging to the group Dasycladales. Genus includes new species D. transylvanica, as well as "Zittelina" hispanica Masse, Arias & Vilas (1993), "Zittelina" massei Bucur, Granier & Săsăran (2010) and "Triploporella" matesina Barattolo (1980).

Elandia[147]

Gen. et sp. nov

Valid

Gess & Prestianni

Devonian (Lochkovian?)

Baviaanskloof Formation

 South Africa

An early polysporangiophyte. Genus includes new species E. itshoba.

Flabellopteris[148]

Gen. et sp. nov

In press

Gess & Prestianni

Devonian (Famennian)

Witpoort Formation

 South Africa

A fern-like plant of uncertain affinities. Genus includes new species F. lococannensis.

Foraminisporis connexus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Spores of a member of the genus Anthoceros.

Frullania kachinensis[149]

Sp. nov

Valid

Li et al.

Cretaceous

Burmese amber

 Myanmar

A liverwort, a species of Frullania.

Frullania palaeoafricana[150]

Sp. nov

In press

Bouju et al.

Miocene

Ethiopian amber

 Ethiopia

A liverwort, a species of Frullania.

Frullania shewanensis[150]

Sp. nov

In press

Bouju et al.

Miocene

Ethiopian amber

 Ethiopia

A liverwort, a species of Frullania.

Gilboaphyton fuyunensis[151]

Sp. nov

In press

Liu et al.

Late Devonian

Kaxiweng Formation

 China

A member of Protolepidodendrales.

Guazia[152]

Gen. et sp. nov

In press

Wang et al.

Late Devonian

Wutong Formation

 China

A seed plant of uncertain phylogenetic placement. Genus includes new species G. dongzhiensis.

Ixostrobus daohugouensis[153]

Sp. nov

In press

Na & Sun in Na et al.

Middle Jurassic

 China

A member of Czekanowskiales.

Kenrickia[154]

Gen. et sp. nov

In press

Toledo et al.

Devonian (Emsian)

Battery Point Formation

 Canada

An early euphyllophyte belonging to the group Radiatopses. Genus includes new species K. bivena.

Krommia[147]

Gen. et sp. nov

Valid

Gess & Prestianni

Devonian (Lochkovian?)

Baviaanskloof Formation

 Brazil
 South Africa

An early polysporangiophyte. Genus includes new species K. parvapila.

Lejeunea abyssinicoides[150]

Sp. nov

In press

Bouju et al.

Miocene

Ethiopian amber

 Ethiopia

A liverwort, a species of Lejeunea.

Lycaugea[155]

Gen. et sp. nov

Valid

Meyer-Berthaud, Decombeix & Blanchard

Devonian (Famennian)

 Australia

A lycopsid. Genus includes new species L. edieae.

Lycopodiumsporites amazonicus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Spores of a member of the family Lycopodiaceae.

Melvillipteris sonidia[156]

Sp. nov

In press

Bai et al.

Devonian (probably Famennian)

 China

A member of Rhacophytales.

Mesochara adobensis[157]

Sp. nov

In press

De Sosa Tomas et al.

Early Cretaceous

Los Adobes Formation

 Argentina

A member of Charophyta.

Mesochara dobrogeica[158]

Sp. nov

In press

Sanjuan et al.

Early Cretaceous (Berriasian)

 Romania

A member of Charophyta.

Mixoxylon[159]

Gen. et sp. nov

In press

Chernomorets & Sakala

Early Cretaceous (Albian)

Whisky Bay Formation

Antarctica

A homoxylous wood of uncertain systematic affinities. Genus includes new species M. australe.

Mtshaelo[147]

Gen. et sp. nov

Valid

Gess & Prestianni

Devonian (Lochkovian?)

Baviaanskloof Formation

 South Africa

An early polysporangiophyte. Genus includes new species M. kougaensis.

Omniastrobus[160]

Gen. et sp. nov

Valid

Bonacorsi et al.

Devonian (Emsian)

Campbellton Formation

 Canada

A lycophyte. Genus includes new species O. dawsonii.

Palaeonitella trifurcata[161]

Sp. nov

Valid

Martín-Closas et al.

Early Cretaceous (BarremianAptian)

 Spain

A member of Charophyta belonging to the family Characeae.

Paratingia wuhaia[162]

Sp. nov

Valid

Wang et al.

Permian (Asselian)

Taiyuan Formation

 China

A progymnosperm belonging to the group Noeggerathiales and the family Tingiostachyaceae.

Permotheca? musaformis[163]

Sp. nov

Valid

Foraponova & Karasev

Permian

 Russia

A pteridosperm.

Radula heinrichsii[164]

Sp. nov

In press

Feldberg et al.

Cretaceous

Burmese amber

 Myanmar

A liverwort, a species of Radula.

Rehamnia[165]

Gen. et sp. nov

In press

Oukassou & Naugolnykh

Late Devonian

 Morocco

A member of Lycopodiophyta of uncertain phylogenetic placement. Genus includes new species R. michardis.

Ricciopsis baojishanensis[166]

Sp. nov

In press

Han & Yan in Han et al.

Late Triassic

Nanying'er Formation

 China

A liverwort.

Salopella laidae[167]

Sp. nov

Valid

McSweeney, Shimeta & Buckeridge

Devonian (Pragian)

Yea Formation

 Australia

An early land plant of uncertain affinities.

Skyttegaardia[168]

Gen. et sp. nov

In press

Friis, Crane & Pedersen

Early Cretaceous (Berriasian)

 Denmark

A plant of uncertain phylogenetic placement, possibly close to cycads. Genus includes new species S. galtieri.

Thysananthus aethiopicus[150]

Sp. nov

In press

Bouju et al.

Miocene

Ethiopian amber

 Ethiopia

A liverwort belonging to the family Lejeuneaceae.

Velascoa[169]

Gen. et sp. nov

Junior homonym

Flores Barragan, Velasco de León & Ortega Chavez

Permian

Matzitzi Formation

 Mexico

Fossil leaves of a plant of uncertain phylogenetic placement, with a morphology similar to Ginkgophyta. Genus includes new species V. pueblensis. The generic name is preoccupied by Velascoa Calderón & Rzedowski (1997).

Vitinellopsis[170]

Gen. et sp. nov

In press

Vachard, Bucur & Munnecke

Silurian

 Sweden

A green alga belonging to the group Bryopsidales. Genus includes new species V. gotlandica.

Zosterophyllum confertum[171]

Sp. nov

In press

Gossmann et al.

Early Devonian

 Germany

A zosterophyll.

Palynology

Name Novelty Status Authors Age Type locality Location Notes Images

Camarozonosporites trilobatus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

A spore of lycopodialean affinity.

Echinatisporis infantulus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil spores.

Erlansonisporites duwaensis[172]

Sp. nov

Valid

Li et al.

Mesozoic

 China

Erlansonisporites exquisitus[172]

Sp. nov

Valid

Li et al.

Mesozoic

 China

Erlansonisporites perbellus[172]

Sp. nov

Valid

Li et al.

Mesozoic

 China

Erlansonisporites textilis[172]

Sp. nov

Valid

Li et al.

Mesozoic

 China

Ginkgomonocolpites[173]

Nom. nov

Valid

Hernández

Paleogene

 India

A gymnosperm pollen; a replacement name for Psilamonocolpites Mathur (1966).

Hamulatisporis bareanus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil spores.

Henrisporites longibaculiformis[172]

Sp. nov

Valid

Li et al.

Mesozoic

 China

Horstisporites comitus[172]

Sp. nov

Valid

Li et al.

Mesozoic

 China

Horstisporites denticulatus[172]

Sp. nov

Valid

Li et al.

Mesozoic

 China

Horstisporites subtilis[172]

Sp. nov

Valid

Li et al.

Mesozoic

 China

Horstisporites tarimensis[172]

Sp. nov

Valid

Li et al.

Mesozoic

 China

Hughesisporites reticulatus[172]

Sp. nov

Valid

Li et al.

Mesozoic

 China

Hughesisporites unicus[172]

Sp. nov

Valid

Li et al.

Mesozoic

 China

Ischyosporites dubius[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

A spore of dicksoniaceous affinity.

Ischyosporites granulatus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil spores.

Laevigatosporites indigestus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil spores.

Luntaispora[172]

Gen. et sp. nov

Valid

Li et al.

Mesozoic

 China

Genus includes new species L. laevigata.

Microfoveolatosporis simplex[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil spores.

Minerisporites tarimensis[172]

Sp. nov

Valid

Li et al.

Mesozoic

 China

Minerisporites triangularis[172]

Sp. nov

Valid

Li et al.

Mesozoic

 China

Narkisporites conicus[172]

Sp. nov

Valid

Li et al.

Mesozoic

 China

Narkisporites densibaculatus[172]

Sp. nov

Valid

Li et al.

Mesozoic

 China

Narkisporites densiconicus[172]

Sp. nov

Valid

Li et al.

Mesozoic

 China

Narkisporites tarimensis[172]

Sp. nov

Valid

Li et al.

Mesozoic

 China

Neoraistrickia dubia[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil spores.

Noniasporites triassicus[174]

Sp. nov

Valid

Ghosh et al.

Early Triassic

Panchet Formation

 India

A megaspore.

Otynisporites tarimensis[172]

Sp. nov

Valid

Li et al.

Mesozoic

 China

Polypodiisporites discretus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil spores.

Psilatriletes delicatus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil spores.

Punctatosporites latrubessei[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil spores.

Rotverrusporites amazonicus[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil spores.

Stellibacutriletes[172]

Gen. et 4 sp. nov

Valid

Li et al.

Mesozoic

 China

Genus includes new species S. capillaris, S. gracilis, S. rarus and S. solidus.

Striatriletes inconspicuus[172]

Sp. nov

Valid

Li et al.

Mesozoic

 China

Tarimispora[172]

Gen. et 2 sp. nov

Valid

Li et al.

Mesozoic

 China

Genus includes new species T. auriculata and T. perfecta.

Tricristatispora trilobata[172]

Sp. nov

Valid

Li et al.

Mesozoic

 China

Tricristatispora yingmailensis[172]

Sp. nov

Valid

Li et al.

Mesozoic

 China

Trileites plicatilis[172]

Sp. nov

Valid

Li et al.

Mesozoic

 China

Verrucatotriletes pseudovirueloides[4]

Sp. nov

Valid

D'Apolito, Jaramillo & Harrington

Miocene

Solimões Formation

 Brazil

Fossil spores.

Palynological research

  • Strother & Foster (2021) describe an assemblage of fossil spores from the Ordovician (Tremadocian) of Australia , representing a morphology that was intermediate morphology between confirmed land plant spores and earlier forms of uncertain phylogenetic placement, and evaluate the implications of these fossils for the knowledge of the evolution of land plants from their algal ancestors.[175]
  • A study on the fossil pollen record from New Zealand, dating from 100 million years ago to the present, is published by Prebble et al. (2021), who report evidence indicating that Cretaceous diversification was closely followed by an increase in flowering plants frequency, but their maximum frequency did not occur until the Eocene.[176]
  • A study on changes of abundance in spores and pollen record from the Danish Basin, and on their implications for the knowledge of the impact of the Triassic–Jurassic extinction event on land plants, is published by Lindström (2021).[177]
  • A study on the vegetation history in the southwestern Balkans, as indicated by pollen from the sedimentary record in the Lake Ohrid extending to 1.36 million years ago, is published by Donders et al. (2021).[178]

Research

  • A study on changes of the morphological complexity of reproductive structures of land plants throughout their evolutionary history, based on data from fossil and extant land plants, is published by Leslie, Simpson & Mander (2021).[179]
  • Revision of Silurian (Wenlock to Přídolí) assemblages of polysporangiophytes with dispersed spores and cryptospores, aiming to determine the relationship between Silurian plant evolution and climate changes linked with perturbations of the global carbon cycle, is published by Pšenička et al. (2021).[180]
  • Reconstruction of the structure and development of the rooting system of Asteroxylon mackiei is presented by Hetherington et al. (2021).[181]
  • A study on factors influencing the extent of arboreal vegetation during the Late Paleozoic icehouse is published by Matthaeus et al. (2021), who interpret their findings as indicating that Pangaea could have supported widespread arboreal plant growth and forest cover based on leaf water constraints, but the forest extent was restricted because of impact of freezing on plants, and estimate that contracting forest cover increased net global surface runoff by up to 6.1%.[182]
  • Description of the reproductive organs of the lycopsids from the Upper Devonian Wutong Formation (China), and a study on the ability of the sporophyll units for wind dispersal, is published by Zhou et al. (2021), who name new form species Lepidophylloides longshanensis and Lepidophylloides changxingensis.[183]
  • An exceptionally well preserved Brasilodendron-like lycopsid forest containing over 150 upright stumps is described from an early Permian postglacial landscape of western Gondwana (Paraná Basin, Brazil ) by Mottin et al. (2021).[184]
  • A study on the anatomy of Stigmaria asiatica is published by Chen et al. (2021).[185]
  • Stump casts of Sigillaria, preserving traces of internal anatomy, are described from the earliest Permian Wuda Tuff (China) by D'Antonio et al. (2021).[186]
  • A study aiming to determine probable causes of the world-wide proliferation of members of Isoetales, particularly Pleuromeia, during and in the aftermath of the Permian–Triassic extinction event, and evaluating the implications of this proliferation for the knowledge of environmental stresses during and in the aftermath of this extinction event, is published by Looy, van Konijnenburg-van Cittert & Duijnstee (2021).[187]
  • New fossil material of Saportaea salisburioides, providing new information on leaf morphology and growth of this plant, is described from the Permian Umm Irna Formation (Jordan) by Kerp et al. (2021), who interpret their findings as indicating that Saportaea grandifolia and Baiera virginiana were synonyms of S. salisburioides, and possibly indicating that the fructification belonging to the genus Nystroemia is a part of Saportaea.[188]
  • Description of Geinitzia reichenbachii from its gross morphology to the cellular scale, and a study on the likely ecology of this conifer, is published by Moreau et al. (2021).[189]
  • A study on the evolutionary history of the family Cycadaceae, based on genomic data and fossil record, is published by Liu et al. (2021).[190]
  • Well-preserved recurved cupules of seed plants are described from the Lower Cretaceous of China by Shi et al. (2021), who interpret the structure of these cupules as consistent with the recurved form and development of the second integument in the bitegmic anatropous ovules of flowering plants, and evaluate the implications of these fossils for the knowledge of the origin of the flowering plants.[191]
  • Taxonomically diverse flora from the Seafood Salad locality, found ~65 m below the Cretaceous-Paleogene boundary in the Hell Creek Formation (Montana, United States ), is described by Wilson, Wilson Mantilla & Strӧmberg (2021), who study the affinities of plants of this locality and compare them with other Late Cretaceous floras of the Western Interior.[192]
  • A study on the timing of the origin of the flowering plants, based on data from fossil record and from the diversity of extant members of this group, is published by Silvestro et al. (2021), who interpret their findings as indicating that several flowering plant families originated in the Jurassic.[193]
  • A study on the diversity of insect damage types in fossil plants from the Cretaceous (Albian to Cenomanian) Dakota Formation (United States), evaluating their implications for the knowledge of the early evolution of angiosperm florivory and associated pollination, is published by Xiao et al. (2021).[194]
  • New fossil material of Callianthus dilae is described from the Lower Cretaceous Yixian Formation (China) by Wang et al. (2021), who reconstruct the whole plant of Callianthus, interpreting it as an aquatic flowering plant.[195]
  • A study on the anatomy of the epidermal features of the floating leaves of Quereuxia angulata from the Upper Cretaceous Yong'ancun Formation (China) is published by Liang et al. (2021).[196]
  • A study on plant extinction and ecological change in tropical forests resulting from the Cretaceous–Paleogene extinction event, based on data from fossil pollen and leaves from Colombia, is published by Carvalho et al. (2021), who report evidence indicative of a long interval of low plant diversity in the Neotropics after the end-Cretaceous extinction, and the emergence of forests with a structure resembling modern Neotropical rainforests, with a closed canopy and multistratal structure dominated by flowering plants, during the Paleocene.[197]
  • A study on the impact of the mid-Eocene greenhouse warming event on floras from southernmost South America is published by Fernández et al. (2021).[198]
  • Evidence from middle Eocene-middle Miocene tuffaceous deposits of central and northern Patagonia, indicating that soils, vegetation, insects and mammal herbivores began to record diverse traits related to the presence of grasslands with mosaic vegetation since middle Eocene, is presented by Bellosi et al. (2021).[199]
  • A study on Middle Miocene microfloral assemblages from ten localities in the Madrid Basin (Spain ), providing evidence of prevalence of open habitats with grass-dominated, savannah-like vegetation under a warm and semi-arid climatic regime in the Iberian Peninsula in the Middle Miocene, is published by Casas-Gallego et al. (2021).[200]
  • Crump et al. (2021) present a record of vegetation from the Last Interglacial based on ancient DNA from lake sediment from the Baffin Island (Canada ), and report evidence of major ecosystem changes in the Arctic in response to warmth, including a ~400 km northward range shift of dwarf birch relative to today.[201]

Deaths

  • Alan Graham (1934–2021), passed away on 8 July 2021. Graham earned his PhD in 1962 under the guidance of Chester A. Arnold, and was noted for a career studying the Cenozoic paleobotany of the Caribbean and Central America. [202]

References

  1. Neregato, R.; Rößler, R.; Noll, R.; Rohn, R. (2021). "New petrified calamitaleans from the Permian of the Parnaíba Basin, central-north Brazil, part III, with some concerns regarding anatomical features of Paleozoic petrified sphenophytes". Review of Palaeobotany and Palynology 293: Article 104499. doi:10.1016/j.revpalbo.2021.104499. Bibcode2021RPaPa.29304499N. 
  2. De Benedetti, F.; Zamaloa, M. C.; Gandolfo, M. A.; Cúneo, N. R. (2021). "Water fern spores (Salviniales) from the Late Cretaceous of Patagonia, Argentina". Review of Palaeobotany and Palynology 290: Article 104428. doi:10.1016/j.revpalbo.2021.104428. Bibcode2021RPaPa.29004428D. 
  3. 3.0 3.1 3.2 Wang, S.-J.; Wang, J.; Liu, L.; Hilton, J. (2021). "Stem diversity of the marattialean tree fern family Psaroniaceae from the earliest Permian Wuda Tuff Flora". Review of Palaeobotany and Palynology 294: Article 104378. doi:10.1016/j.revpalbo.2021.104378. Bibcode2021RPaPa.29404378W. 
  4. 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.20 4.21 4.22 4.23 4.24 4.25 4.26 4.27 4.28 4.29 4.30 4.31 4.32 4.33 4.34 4.35 4.36 4.37 4.38 4.39 4.40 4.41 4.42 4.43 4.44 4.45 4.46 4.47 4.48 4.49 4.50 4.51 4.52 4.53 4.54 4.55 4.56 4.57 4.58 4.59 4.60 4.61 4.62 4.63 4.64 4.65 4.66 4.67 4.68 4.69 4.70 4.71 4.72 4.73 4.74 4.75 4.76 4.77 4.78 4.79 4.80 4.81 4.82 4.83 4.84 4.85 4.86 4.87 4.88 4.89 4.90 D'Apolito, C.; Jaramillo, C.; Harrington, G. (2021). "Miocene Palynology of the Solimões Formation (Well 1-AS-105-AM), Western Brazilian Amazonia". Smithsonian Contributions to Paleobiology 105 (105): iv-134. doi:10.5479/si.16803493. https://figshare.com/articles/book/Miocene_Palynology_of_the_Solim_es_Formation_Well_1-AS-105-AM_Western_Brazilian_Amazonia/16803493. 
  5. Poinar, G. (2021). "A new fern, Cladarastega burmanica gen. et sp. nov. (Dennstaedtiaceae: Polypodiales) in mid-Cretaceous Burmese amber". Palaeodiversity 14 (1): 153–160. doi:10.18476/pale.v14.a7. 
  6. Tian, N.; Wang, Y.-D.; Jiang, Z.-K. (2021). "A new permineralized osmundaceous rhizome with fungal remains from the Jurassic of western Liaoning, NE China". Review of Palaeobotany and Palynology 290: Article 104414. doi:10.1016/j.revpalbo.2021.104414. ISSN 0034-6667. Bibcode2021RPaPa.29004414T. 
  7. 7.0 7.1 Pigg, K. B.; DeVore, M. L.; Greenwood, D. R.; Sundue, M. A.; Schwartsburd, P.; Basinger, J. F. (2021). "Fossil Dennstaedtiaceae and Hymenophyllaceae from the Early Eocene of the Pacific Northwest". International Journal of Plant Sciences 182 (9): 793–807. doi:10.1086/715633. 
  8. Sun, W.; Li, D.; Zhou, W.; Bek, J.; Liu, L.; Wang, J. (2021). "Eoangiopteris congestus sp. nov., a marattialean fern from the Lower Permian Taiyuan Formation of Wuda Coalfield, Inner Mongolia". Acta Palaeontologica Sinica 60 (2): 224–242. doi:10.19800/j.cnki.aps.2020012. http://gswxb.cnjournals.cn/gswxb/article/abstract/20210203. 
  9. Correia, P.; Šimůnek, Z.; Sá, A. A. (2021). "The equisetalean Iberisetum wegeneri gen. nov., sp. nov. from the Upper Pennsylvanian of Portugal". Historical Biology: An International Journal of Paleobiology 33 (12): 3495–3505. doi:10.1080/08912963.2021.1874373. 
  10. Wang, S.; Long, X.; Zhang, H.; Cai, H.; Engel, M. S.; Shi, C. (2021). "A semi-aquatic fern (Marsileaceae) from the mid-Cretaceous amber of northern Myanmar". Cretaceous Research 133: Article 105119. doi:10.1016/j.cretres.2021.105119. 
  11. Pšenička, J.; Wang, J.; Bek, J.; Pfefferkorn, H. W.; Opluštil, S.; Zhou, W.; Frojdová, J.; Libertín, M. (2021). "A zygopterid fern with fertile and vegetative parts in anatomical and compression preservation from the earliest Permian of Inner Mongolia, China". Review of Palaeobotany and Palynology 294: Article 104382. doi:10.1016/j.revpalbo.2021.104382. Bibcode2021RPaPa.29404382P. 
  12. Mazaheri-Johari, M.; Kustatscher, E.; Roghi, G.; Ghasemi-Nejad, E.; Gianolla, P. (2021). "A monotypic stand of Neocalamites iranensis n. sp. from the Carnian Pluvial Episode (Late Triassic) of the Aghdarband area, NE Iran (Turan Plate)". Rivista Italiana di Paleontologia e Stratigrafia 127 (2): 189–209. doi:10.13130/2039-4942/15646. 
  13. Pšenička, J.; Sakala, J.; Dašková, J. (2021). "Odontosoria marekgaltieri sp. nov. (Lindsaeaceae), a new fern from the early Miocene of the Czech Republic: First evidence of the genus in the fossil record". Review of Palaeobotany and Palynology 297: Article 104580. doi:10.1016/j.revpalbo.2021.104580. 
  14. Votočková Frojdová, J.; Wang, J.; Pšenička, J.; Bek, J.; Opluštil, S.; Libertín, M. (2021). "A new leptosporangiate fern Oligosporangiopteris zhongxiangii gen. and sp. nov. from the lowermost Permian of Inner Mongolia, China – morphology, anatomy and reproductive organs". Review of Palaeobotany and Palynology 294: Article 104479. doi:10.1016/j.revpalbo.2021.104479. Bibcode2021RPaPa.29404479V. 
  15. Wang, Z.; Shi, G.; Sun, B.; Dong, C.; Yin, S.; Wu, X. (2021). "A new species of Osmunda L. (Osmundaceae) from the middle Miocene of Fujian, Southeast China". Acta Palaeontologica Sinica 60 (3): Article 2021045. doi:10.19800/j.cnki.aps.2021045. http://gswxb.cnjournals.cn/gswxb/article/abstract/20210306. 
  16. Gnaedinger, S. C.; Zavattieri, A. M. (2021). "A new Late Triassic dipteridacean fern from the Paso Flores Formation, Neuquén Basin, Argentina". Acta Palaeontologica Polonica 66 (4): 885–900. doi:10.4202/app.00864.2020. 
  17. Zhou, Y.; Guo, Y.; Pšenička, J.; Bek, J.; Yang, S.-L.; Feng, Z. (2021). "A new marattialean fern, Pectinangium xuanweiense sp. nov., from the Lopingian of Southwest China". Review of Palaeobotany and Palynology 295: Article 104500. doi:10.1016/j.revpalbo.2021.104500. Bibcode2021RPaPa.29504500Z. 
  18. Guo, Y.; Zhou, Y.; Bek, J.; Yang, S.-L.; Feng, Z. (2021). "Qasimia yunnanica sp. nov., a marattialean fern with bivalvate synangia from the Lopingian of Southwest China". Review of Palaeobotany and Palynology 293: Article 104497. doi:10.1016/j.revpalbo.2021.104497. Bibcode2021RPaPa.29304497G. 
  19. He, X.-Y.; Hilton, J.; Wang, S.-J.; Cheng, X.-S. (2021). "Exploring the stem to crown group transition in Marattiales: A new species of frond from the late Permian of China with features of the Psaroniaceae and Marattiaceae". Review of Palaeobotany and Palynology 295: Article 104506. doi:10.1016/j.revpalbo.2021.104506. Bibcode2021RPaPa.29504506H. 
  20. Huang, P.; Liu, L.; Liu, L.; Wang, J.-S.; Xue, J.-Z. (2022). "Sphenophyllum Brongniart (Sphenopsida) from the Upper Devonian of South China". Palaeoworld 31 (3): 402–418. doi:10.1016/j.palwor.2021.09.007. 
  21. Libertín, M.; Bek, J.; Wang, J.; Opluštil, S.; Pšenička, J.; Votočková Frojdová, J. (2021). "New data about three sphenophylls and their spores from the volcanic tuff of Wuda, Taiyuan Formation, earliest Permian, China". Review of Palaeobotany and Palynology 294: Article 104484. doi:10.1016/j.revpalbo.2021.104484. Bibcode2021RPaPa.29404484L. 
  22. Machado, M. A.; Vera, E. I.; Passalia, M. G.; Ponce, M. M. (2021). "Eupolypod ferns with dryopteroid/thelypteroid traits from Arroyo Chacay (Huitrera Formation, Eocene), Río Negro Province, Argentina". Review of Palaeobotany and Palynology 287: Article 104381. doi:10.1016/j.revpalbo.2021.104381. Bibcode2021RPaPa.28704381M. http://rid.unrn.edu.ar/handle/20.500.12049/6970. 
  23. Zhang, H.-R.; Shi, C.; Long, X.-X.; Feng, Q.; Cai, H.-H.; Lü, Y.-T.; Wang, S. (2022). "A new fossil record of Thyrsopteridaceae (Cyatheales) from the mid-Cretaceous amber of Myanmar". Palaeoworld 31 (3): 478–484. doi:10.1016/j.palwor.2021.09.002. 
  24. Song, H.-Z.; Naugolnykh, S. V.; Wu, X.-K.; Liu, X.-Y.; Jin, J.-H. (2022). "Fertile Woodwardia from the middle Eocene of South China and its implications for palaeogeography and palaeoclimate". Plant Diversity 44 (6): 565–576. doi:10.1016/j.pld.2021.09.003. ISSN 2468-2659. PMID 36540713. 
  25. 25.0 25.1 25.2 Blomenkemper, P.; Bäumer, R.; Backer, M.; Abu Hamad, A.; Wang, J.; Kerp, H.; Bomfleur, B. (2021). "Bennettitalean Leaves From the Permian of Equatorial Pangea—The Early Radiation of an Iconic Mesozoic Gymnosperm Group". Frontiers in Earth Science 9: Article 652699. doi:10.3389/feart.2021.652699. Bibcode2021FrEaS...9..162B. 
  26. Guzmán-Madrid, D. S.; Velasco de León, M. P. (2021). "Weltrichia magna sp. nov., a new record for the Middle Jurassic of Oaxaca, México". Acta Palaeobotanica 61 (1): 95–106. doi:10.35535/acpa-2021-0005. 
  27. Lozano-Carmona, D. E.; Corro-Ortiz, M. G.; Morales, R. L.; Velasco-de León, M. P. (2021). "Weltrichia xochitetlii sp. nov. (Bennettitales) from the Middle Jurassic of northwestern Oaxaca, Mexico: First paleobotanical evidence from the Tecomazúchil formation". Journal of South American Earth Sciences 108: Article 103230. doi:10.1016/j.jsames.2021.103230. ISSN 0895-9811. Bibcode2021JSAES.10803230L. 
  28. Lozano-Carmona, D. E.; Velasco-de León, M. P. (2021). "Bennettitales from the Middle Jurassic of northwestern Oaxaca, Mexico: Diversity, sedimentary environments, and phytogeography". Journal of South American Earth Sciences 110: Article 103404. doi:10.1016/j.jsames.2021.103404. ISSN 0895-9811. Bibcode2021JSAES.11003404L. 
  29. Van Konijnenburg-van Cittert, J. H. A.; Pott, C.; Schmeißner, S.; Dütsch, G.; Kustatscher, E. (2021). "The Rhaetian flora of Wüstenwelsberg, Bavaria, Germany: Description of selected gymnosperms (Ginkgoales, Cycadales, Coniferales) together with an ecological assessment of the locally prevailing vegetation". Review of Palaeobotany and Palynology 288: Article 104398. doi:10.1016/j.revpalbo.2021.104398. Bibcode2021RPaPa.28804398V. 
  30. Spiekermann, R.; Jasper, A.; Siegloch, A. M.; Guerra-Sommer, M.; Uhl, D. (2021). "Not a lycopsid but a cycad-like plant: Iratinia australis gen. nov. et sp. nov. from the Irati Formation, Kungurian of the Paraná Basin, Brazil". Review of Palaeobotany and Palynology 289: Article 104415. doi:10.1016/j.revpalbo.2021.104415. Bibcode2021RPaPa.28904415S. 
  31. Tang, D.-L.; Wang, Z.-E.; Huang, Y.-T.; Ding, H.; Ding, S.-T.; Wu, J.-Y. (2022). "A new species of Eretmophyllum (Ginkgoales) from the Middle Jurassic of Turpan-Hami Basin, Xinjiang, China". Palaeoworld 31 (4): 646–657. doi:10.1016/j.palwor.2021.12.001. 
  32. Andruchow-Colombo, A.; Gandolfo, M. A.; Cúneo, N. R.; Escapa, I. H. (2021). "Ginkgoites villardeseoanii sp. nov., a ginkgophyte with insect damage from the Upper Cretaceous (Maastrichtian) Lefipán Formation (Chubut, Patagonia, Argentina)". Cretaceous Research 133: Article 105124. doi:10.1016/j.cretres.2021.105124. 
  33. Afonin, M.; Gromyko, D. (2021). "First record of Ginkgoxylon (Ginkgoales) fossil wood in the Lower Cretaceous of the Arctic region". Cretaceous Research 125: Article 104868. doi:10.1016/j.cretres.2021.104868. Bibcode2021CrRes.12504868A. 
  34. Nosova, N.; Crane, P. R.; Shi, G. (2021). "Ovule-bearing structures of Karkenia Archangelsky, associated dispersed seeds and Sphenobaiera leaves from the Middle Jurassic of East Siberia, Russia". Review of Palaeobotany and Palynology 295: Article 104522. doi:10.1016/j.revpalbo.2021.104522. Bibcode2021RPaPa.29504522N. 
  35. Nosova, N. V.; Kostina, E. I.; Bugdaeva, E. V. (2021). "Pseudotorellia Florin from the Upper Jurassic–Lower Cretaceous of the Bureya Basin, Russian Far East". Stratigraphy and Geological Correlation 29 (4): 434–449. doi:10.1134/S0869593821040031. Bibcode2021SGC....29..434N. 
  36. 36.0 36.1 Nosova, N. (2021). "Female reproductive structures of Umaltolepis Krassilov and associated leaves of Pseudotorellia Florin from the Middle Jurassic of East Siberia, Russia". Review of Palaeobotany and Palynology 289: Article 104412. doi:10.1016/j.revpalbo.2021.104412. Bibcode2021RPaPa.28904412N. 
  37. Del Fueyo, G. M.; Carrizo, A.; Poiré, D. G.; Lafuente Diaz, M. A. (2021). "Recurrent volcanic activity recorded in araucarian wood from the Lower Cretaceous Springhill Formation, Patagonia, Argentina: Palaeoenvironmental interpretations". Acta Palaeontologica Polonica 66 (1): 231–253. doi:10.4202/app.00783.2020. 
  38. dos Santos, Â. C. S.; Siegloch, A. M.; Guerra-Sommer, M.; Degani-Schmidt, I.; Carvalho, I. S. (2021). "Agathoxylon santanensis sp. nov. from the Aptian Crato fossil Lagerstätte, Santana Formation, Araripe Basin, Brazil". Journal of South American Earth Sciences 112, Part 2: Article 103633. doi:10.1016/j.jsames.2021.103633. Bibcode2021JSAES.11203633S. 
  39. Batista, M. E. P.; Loiola, M. I. B.; Soares, A. A.; Mastroberti, A. A.; Sá, A. A.; Nascimento Jr., D. R.; Silva Filho, W. F.; Kunzmann, L. (2021). "New Insights into the Evolution of Mucilage Cells in Araucariaceae: Araucaria violetae sp. nov. from the Early Cretaceous Araripe Basin (Northeast Brazil)". International Journal of Plant Sciences 183 (1): 43–60. doi:10.1086/717104. 
  40. Yang, X.-J.; Li, J.-G. (2021). "A petrified wood Brachyoxylon from the Lower Cretaceous of Bangoin, Tibet (Xizang), Southwest China". Cretaceous Research 130: Article 105064. doi:10.1016/j.cretres.2021.105064. 
  41. Rombola, C. F.; Greppi, C. D.; Pujana, R. R.; García Massini, J. L.; Bellosi, E. S.; Marenssi, S. A. (2021). "Brachyoxylon fossil woods with traumatic resin canals from the Upper Cretaceous Cerro Fortaleza Formation, southern Patagonia (Santa Cruz Province, Argentina)". Cretaceous Research 130: Article 105065. doi:10.1016/j.cretres.2021.105065. https://www.sciencedirect.com/science/article/abs/pii/S019566712100313X. 
  42. Kvaček, J.; Mendes, M. M. (2021). "A new Cheirolepidiaceae conifer Watsoniocladus cunhae sp. nov. from the Early Cretaceous (late Aptian–early Albian) of western Portugal". Review of Palaeobotany and Palynology 295: Article 104519. doi:10.1016/j.revpalbo.2021.104519. Bibcode2021RPaPa.29504519K. 
  43. de Wit, M.; Bamford, M. (2021). "Fossil wood from the Upper Cretaceous crater sediments of the Salpeterkop volcano, North West Province, South Africa". South African Journal of Geology 124 (3): 751–760. doi:10.25131/sajg.124.0028. Bibcode2021SAJG..124..751D. 
  44. Wu, X.; Zhang, H.; Kodrul, T. M.; Maslova, N. P.; Jiang, S.; Yin, Q.; Quan, C.; Jin, J. (2021). "First Fossil Fokienia (Cupressaceae) in South China and Its Palaeogeographic and Palaeoecological Implications". Frontiers in Earth Science 9: Article 709663. doi:10.3389/feart.2021.709663. Bibcode2021FrEaS...9..555W. 
  45. 45.0 45.1 Atkinson, B. A.; Contreras, D. L.; Stockey, R. A.; Rothwell, G. W. (2021). "Ancient diversity and turnover of cunninghamioid conifers (Cupressaceae): two new genera from the Upper Cretaceous of Hokkaido, Japan". Botany 99 (8): 457–473. doi:10.1139/cjb-2021-0005. 
  46. 46.0 46.1 Nhamutole, N.; Bamford, M.; Araújo, R. (2021). "New species of Protaxodioxylon (conifer wood) from the Middle Permian of the Metangula Graben (Niassa Province, Mozambique) and their implications". Journal of African Earth Sciences 183: Article 104323. doi:10.1016/j.jafrearsci.2021.104323. Bibcode2021JAfES.18304323N. 
  47. 47.0 47.1 47.2 Dolezych, M.; LePage, B. A.; Williams, C. J. (2021). "A Chattian-Aquitanian wood flora from the West Siberian Plain: Implications for regional palaeobiogeography". Palaeontographica Abteilung B 302 (1–6): 37–169. doi:10.1127/palb/2021/0074. Bibcode2021PalAB.302...37D. 
  48. Herrera, F.; Shi, G.; Bickner, M. A.; Ichinnorov, N.; Leslie, A. B.; Crane, P. R.; Herendeen, P. S. (2021). "Early Cretaceous abietoid Pinaceae from Mongolia and the history of seed scale shedding". American Journal of Botany 108 (8): 1483–1499. doi:10.1002/ajb2.1713. ISSN 0002-9122. PMID 34458982. 
  49. Ding, S.-T.; Chen, S.-Y.; Ruan, S.-C.; Yang, M.; Han, Y.; Wang, X.-H.; Zhang, T.-H.; Sun, B.-N. (2021). "First fossil record of Nothotsuga (Pinaceae) in China: implications for palaeobiogeography and palaeoecology". Historical Biology: An International Journal of Paleobiology 33 (12): 3617–3624. doi:10.1080/08912963.2021.1881781. 
  50. Zhang, J.-W.; Wang, L.; D'Rozario, A.; Liang, X.-Q.; Huang, J.; Zhou, Z.-K. (2021). "Pinus leptokrempfii, an Oligocene Relative of the Flat-Needled Pine P. krempfii (Pinaceae) from China: Implications for Paleogeographic Origin". International Journal of Plant Sciences 182 (5): 389–400. doi:10.1086/713957. 
  51. Grote, P. J.; Srisuk, P. (2021). "Fossil Pinus from the Cenozoic of Thailand". Review of Palaeobotany and Palynology 295: Article 104501. doi:10.1016/j.revpalbo.2021.104501. ISSN 0034-6667. Bibcode2021RPaPa.29504501G. 
  52. Li, Y.; Yi, T.-M.; Grote, P. J.; An, P.-C.; Zhu, Y.-B.; Zhang, Z.-Y.; Li, C.-S. (2021). "A new species of Pinus (Pinaceae) from the Miocene of Weichang, Hebei Province, China and its evolutionary significance". Historical Biology: An International Journal of Paleobiology 34 (5): 885–896. doi:10.1080/08912963.2021.1952197. 
  53. Matsunaga, K. K. S.; Herendeen, P. S.; Herrera, F.; Ichinnorov, N.; Crane, P. R.; Shi, G. (2021). "Ovulate Cones of Schizolepidopsis ediae sp. nov. Provide Insights into the Evolution of Pinaceae". International Journal of Plant Sciences 182 (6): 490–507. doi:10.1086/714281. 
  54. Wu, J.; Chen, H.; Ruan, S.; Yang, M.; Mo, L.; Ji, B.; Zhang, J.; Ding, S. (2021). "Fossil leaves of Podocarpus subgenus Foliolatus (Podocarpaceae) from the Pliocene of southwestern China and biogeographic history of Podocarpus". Review of Palaeobotany and Palynology 287: Article 104380. doi:10.1016/j.revpalbo.2021.104380. Bibcode2021RPaPa.28704380W. 
  55. Vallejos Leiz, L.; Crisafulli, A.; Gnaedinger, S. (2022). "New records of Late Triassic wood from Argentina and their biostratigraphic, paleoclimatic, and paleoecological implications". Acta Palaeontologica Polonica 67 (2): 329–340. doi:10.4202/app.00939.2021. 
  56. Gou, X.-D.; Feng, Z.; Wei, H.-B.; Lv, Y.; Yang, S.-L. (2021). "A new Protophyllocladoxylon stem from the Xishanyao Formation (Middle Jurassic) in the Santanghu Basin, Xinjiang, Northwest China". Review of Palaeobotany and Palynology 292: Article 104474. doi:10.1016/j.revpalbo.2021.104474. Bibcode2021RPaPa.29204474G. 
  57. Gomankov, A. V. (2021). "On conifer fructifications from the Cargala Mines (the Kazanian of the Southern Fore-Urals)". Lethaea Rossica 23: 21–31. http://paleobot.ru/pdf/02_2021_23.pdf. 
  58. Wan, M.; Wang, J.; Shi, T.; Wang, K.; Tang, P.; Wang, J. (2021). "Megaporoxylon sinensis sp. nov., a new coniferous trunk from the Upper Triassic of northern Bogda Mountains, northwestern China". Review of Palaeobotany and Palynology 295: Article 104536. doi:10.1016/j.revpalbo.2021.104536. Bibcode2021RPaPa.29504536W. 
  59. Dong, C.; Shi, G.; Herrera, F.; Wang, Y.; Wang, Z.; Zhang, B.; Xu, X.; Herendeen, P. S. et al. (2021). "Leaves of Taxus with cuticle micromorphology from the Early Cretaceous of eastern Inner Mongolia, Northeast China". Review of Palaeobotany and Palynology 298: Article 104588. doi:10.1016/j.revpalbo.2021.104588. 
  60. Forte, G.; Kustatscher, E.; Van Konijnenburg-van Cittert, J. H. A. (2021). "Conifer diversity in the Middle Triassic: new data from the Fossillagerstätte Kühwiesenkopf/Monte Prà della Vacca (Pelsonian, Anisian) in the Dolomites (NE Italy)". International Journal of Plant Sciences 182 (6): 445–467. doi:10.1086/714280. 
  61. Xie, A.; Gee, C. T.; Bennis, M. B.; Gray, D.; Sprinkel, D. A. (2021). "A more southerly occurrence of Xenoxylon in North America: X. utahense Xie et Gee sp. nov. from the Upper Jurassic Morrison Formation in Utah, USA, and its paleobiogeographic and paleoclimatic significance". Review of Palaeobotany and Palynology 291: Article 104451. doi:10.1016/j.revpalbo.2021.104451. Bibcode2021RPaPa.29104451X. 
  62. Wan, M.; Yang, W.; Wang, K.; Liu, L.; Wang, J. (2021). "Zhuotingoxylon liaoi gen. et sp. nov., a silicified coniferous trunk from the Changhsingian (Permian) of southern Bogda Mountains, northwestern China". Geological Journal 56 (12): 6135–6150. doi:10.1002/gj.4189. 
  63. 63.0 63.1 63.2 63.3 63.4 Doweld, A. B. (2021). "Fossil Alloceltidoxylon, Allonymphaea, Arecocaryon, Paralnoxylon and Paranyssa and extant Komaroviopsis, Marcanodendron, and Papyrocactus (Magnoliophyta), new replacement generic names". Phytotaxa 524 (2): 92–98. doi:10.11646/phytotaxa.524.2.3. 
  64. 64.0 64.1 Sender, L. M.; Doyle, J. A.; Upchurch, G. R.; Endress, P. K.; Villanueva-Amadoz, U.; Diez, J. B. (2021). "Evidence on vegetative and inflorescence morphology of Chloranthaceae (Angiospermae) from the Early Cretaceous (middle–late Albian) of Spain". Journal of Systematic Palaeontology 18 (24): 2015–2042. doi:10.1080/14772019.2021.1873434. https://figshare.com/articles/dataset/Evidence_on_vegetative_and_inflorescence_morphology_of_Chloranthaceae_Angiospermae_from_the_Early_Cretaceous_middle_late_Albian_of_Spain/14138245. 
  65. Freitas, J.; Doweld, A. B. (2021). "Aristolochia macginitieana (Aristolochiaceae), a replacement name for Aristolochia triangularis MacGinitie non Aristolochia triangularis Chamisso". Phytotaxa 500 (1): 59–60. doi:10.11646/phytotaxa.500.1.11. 
  66. 66.00 66.01 66.02 66.03 66.04 66.05 66.06 66.07 66.08 66.09 66.10 66.11 Akkemik, Ü. (2021). "A re-examination of the angiosperm wood record from the early and middle Miocene of Turkey, and new species descriptions". Acta Palaeobotanica 61 (1): 42–94. doi:10.35535/acpa-2021-0004. 
  67. Winterscheid, H.; Kvaček, Z. (2021). "Systematic-taxonomic revision of the flora from the late Oligocene Fossillagerstätte Rott near Bonn (Germany). Part 2: Magnoliidae: Basal angiosperms and magnoliids". Palaeontographica Abteilung B 303 (4–6): 119–155. doi:10.1127/palb/2021/0077. Bibcode2021PalAB.303..119W. 
  68. Cevallos-Ferriz, S. R. S.; Catharina, A. S.; Kneller, B. (2021). "Cretaceous Lauraceae wood from El Rosario, Baja California, Mexico". Review of Palaeobotany and Palynology 292: Article 104478. doi:10.1016/j.revpalbo.2021.104478. Bibcode2021RPaPa.29204478C. 
  69. Brea, M.; Iglesias, A.; Wilf, P.; Moya, E.; Gandolfo, M. A. (2021). "First South American Record of Winteroxylon, Eocene of Laguna del Hunco (Chubut, Patagonia, Argentina): New Link to Australasia and Malesia". International Journal of Plant Sciences 182 (3): 185–197. doi:10.1086/712427. ISSN 1058-5893. 
  70. Stockey, R. A.; Hoffman, G. L.; Rothwell, G. W. (2021). "Fossil evidence for Paleocene diversification of Araceae: Bognerospadix gen. nov. and Orontiophyllum grandifolium comb. nov.". American Journal of Botany 108 (8): 1417–1440. doi:10.1002/ajb2.1707. PMID 34431509. 
  71. Poinar, G. O. (2021). "A Monocot Flower, Mirafloris burmitis gen. et sp. nov. (Monocots: Angiospermae), in Burmese Amber". Biosis: Biological Systems 2 (3): 342–348. doi:10.37819/biosis.002.03.0126. 
  72. Poinar, G.; Soreng, R. J. (2021). "A New Genus and Species of Grass, Eograminis balticus (Poaceae: Arundinoideae) in Baltic Amber". International Journal of Plant Sciences 182 (9): 808–816. doi:10.1086/716781. 
  73. Smith, S. Y.; Kapgate, D. K.; Robinson, S.; Srivastava, R.; Benedict, J. C.; Manchester, S. R. (2021). "Fossil fruits and seeds of Zingiberales from the Late Cretaceous–early Cenozoic Deccan Intertrappean Beds of India". International Journal of Plant Sciences 182 (2): 91–108. doi:10.1086/711474. 
  74. Song, A.; Liu, J.; Liang, S.-Q.; Do, T. V.; Nguyen, H. B.; Deng, W.-Y.-D.; Jia, L.-B.; Del Rio, C. et al. (2022). "Leaf fossils of Sabalites (Arecaceae) from the Oligocene of northern Vietnam and their paleoclimatic implications". Plant Diversity 44 (4): 406–416. doi:10.1016/j.pld.2021.08.003. PMID 35967257. 
  75. Lim, J. Y.; Huang, H.; Farnsworth, A.; Lunt, D. J.; Baker, W. J.; Morley, R. J.; Kissling, W. D.; Hoorn, C. (2021). "The Cenozoic history of palms: Global diversification, biogeography and the decline of megathermal forests". Global Ecology and Biogeography 31 (3): 425–439. doi:10.1111/geb.13436. https://research-information.bris.ac.uk/ws/files/308458806/Full_text_PDF_final_published_version_.pdf. 
  76. Andrieu-Ponel, V.; Rochette, P.; Demory, F.; Alçiçek, H.; Boulbes, N.; Bourlès, D.; Helvacı, C.; Lebatard, A.-E. et al. (2021). "Continuous presence of proto-cereals in Anatolia since 2.3 Ma, and their possible co-evolution with large herbivores and hominins". Scientific Reports 11 (1): Article number 8914. doi:10.1038/s41598-021-86423-8. PMID 33903602. Bibcode2021NatSR..11.8914A. 
  77. Maslova, N. P.; Kodrul, T. M.; Kachkina, V. V. (2021). "Leaves of Ettingshausenia cuneifolia (Bronn) Stiehler (Angiospermae) and Associated Carpels and Stamens from the Turonian of Southern Kazakhstan". Paleontological Journal 55 (10): 1193–1214. doi:10.1134/S0031030121100063. 
  78. 78.0 78.1 Doweld, A. B. (2021). "New names in Pittosporum, extant and fossil (Pittosporaceae)". Phytotaxa 498 (4): 298–300. doi:10.11646/phytotaxa.498.4.9. 
  79. Shukla, A.; Mehrotra, R. C.; Verma, P.; Chandra, K.; Singh, A. (2021). ""Out-of-India" dispersal for Adina (tribe Naucleeae; family Rubiaceae): evidence from the early Eocene fossil record from India". Palaeoworld 30 (4): 737–745. doi:10.1016/j.palwor.2021.01.001. 
  80. Franco, M. J.; Brea, M.; Cerdeño, E. (2021). "First Bignoniaceae liana from the Miocene of South America and its evolutionary significance". American Journal of Botany 108 (9): 1761–1774. doi:10.1002/ajb2.1736. PMID 34591314. 
  81. Mathewes, R.; Archibald, S. B.; Lundgren, A. (2021). "Tips and identification of early Eocene Fraxinus L. samaras from the Quilchena locality, Okanagan Highlands, British Columbia, Canada". Review of Palaeobotany and Palynology 293: Article 104480. doi:10.1016/j.revpalbo.2021.104480. Bibcode2021RPaPa.29304480M. 
  82. Deshmukh, U. B. (2021). "Kapgateophyllum gen. nov. (Acanthaceae)". Phytotaxa 500 (2): 147–148. doi:10.11646/phytotaxa.500.2.8. 
  83. Singh, H.; Judd, W. S.; Samant, B.; Agnihotri, P.; Grimaldi, D. A.; Manchester, S. R. (2021). "Flowers of Apocynaceae in amber from the early Eocene of India". American Journal of Botany 108 (5): 883–892. doi:10.1002/ajb2.1651. ISSN 0002-9122. PMID 34018178. 
  84. 84.0 84.1 Huang, H.; Pérez-Pinedo, D.; Morley, R. J.; Dupont-Nivet, G.; Philip, A.; Win, Z.; Aung, D. W.; Licht, A. et al. (2021). "At a crossroads: The late Eocene flora of central Myanmar owes its composition to plate collision and tropical climate". Review of Palaeobotany and Palynology 291: Article 104441. doi:10.1016/j.revpalbo.2021.104441. Bibcode2021RPaPa.29104441H. 
  85. Xie, S.-P.; Zhang, S.-H.; McElwain, J. C.; Zhang, P.; Wang, B.; Zhang, Y.; Yang, Y.-H.; Chen, J.-Y. (2021). "First occurrence of Camptotheca fruits from late Miocene of southwestern China". Historical Biology: An International Journal of Paleobiology 33 (12): 3625–3632. doi:10.1080/08912963.2021.1881782. 
  86. Denk, T.; Bouchal, J. M. (2021). "Dispersed pollen and calyx remains of Diospyros (Ebenaceae) from the middle Miocene "Plant beds" of Søby, Denmark". GFF 143 (2–3): 292–304. doi:10.1080/11035897.2021.1907443. Bibcode2021GFF...143..292D. http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-4502. 
  87. Kvaček, Z. (2021). "Halesia mosbruggeri Kvaček, sp. nov., a new fossil fruit of Halesia L. (Styracaceae) from the Bohemian Miocene (Czech Republic)". Palaeobiodiversity and Palaeoenvironments 101 (1): 75–78. doi:10.1007/s12549-020-00463-y. 
  88. Erdei, B.; Hably, L. (2021). "Fossil Gordonia (s.l.)–like (Theaceae) winged seeds from the early Miocene of the Mecsek Mts, W Hungary". Palaeobiodiversity and Palaeoenvironments 101 (1): 59–67. doi:10.1007/s12549-020-00461-0. 
  89. Friis, E. M.; Crane, P. R.; Pedersen, K. R. (2021). "Early flowers of primuloid Ericales from the Late Cretaceous of Portugal and their ecological and phytogeographic implications". Fossil Imprint 77 (2): 214–230. doi:10.37520/fi.2021.016. http://fi.nm.cz/en/clanek/early-flowers-of-primuloid-ericales-from-the-late-cretaceous-of-portugal-and-their-ecological-and-phytogeographic-implications-2/. 
  90. Xu, S.-L.; Kodrul, T. M.; Maslova, N. P.; Song, H.-Z.; Tobias, A. V.; Wu, X.-K.; Quan, C.; Jin, J.-H. (2021). "First occurrence of Nyssa endocarps and associated fungi in the Oligocene of South China: palaeogeographical and palaeoecological significance". Papers in Palaeontology 8. doi:10.1002/spp2.1408. 
  91. 91.0 91.1 Striegler, U. (2021). "New leaf species from the upper Miocene flora of the leaf-bearing Wischgrund clay (Lower Lusatia, Brandenburg, Germany)". Fossil Imprint 77 (1): 102–110. doi:10.37520/fi.2021.009. http://fi.nm.cz/en/clanek/new-leaf-species-from-the-upper-miocene-flora-of-the-leaf-bearing-wischgrund-clay-lower-lusatia-brandenburg-germany-2/. 
  92. 92.0 92.1 Hazra, T.; Hazra, M.; Spicer, R. A.; Spicer, T. E. V.; Mahato, S.; Bera, S.; Kumar, S.; Khan, M. A. (2021). "Pliocene Albizia (Fabaceae) from Jharkhand, eastern India: reappraisal of its biogeography during Cenozoic in Southeast Asia". Palaeoworld 31: 153–168. doi:10.1016/j.palwor.2021.03.004. http://oro.open.ac.uk/75930/1/1-s2.0-S1871174X21000263-main.pdf. 
  93. Wang, Z.; Shi, G.; Sun, B.; Jia, H.; Dong, C.; Yin, S.; Wu, X. (2021). "A new Cercis (Leguminosae) from the middle Miocene of Fujian, China". Historical Biology: An International Journal of Paleobiology 34: 94–101. doi:10.1080/08912963.2021.1900170. 
  94. Jia, L.-B.; Huang, J.; Su, T.; Spicer, R. A.; Zhang, S.-T.; Li, S.-F.; Pan, B.; Nam, G.-S. et al. (2021). "Fossil infructescence from southwestern China reveals Paleogene establishment of Cladrastis in Asia". Review of Palaeobotany and Palynology 292: Article 104456. doi:10.1016/j.revpalbo.2021.104456. Bibcode2021RPaPa.29204456J. http://oro.open.ac.uk/76470/1/1-s2.0-S0034666721000804-main.pdf. 
  95. 95.0 95.1 Pérez-Lara, D. K.; Estrada-Ruiz, E.; Castañeda-Posadas, C. (2021). "Kingiodendron and Enterolobium Eocene woods from the El Bosque formation, Chiapas, Mexico". Journal of South American Earth Sciences 111: Article 103477. doi:10.1016/j.jsames.2021.103477. Bibcode2021JSAES.11103477P. 
  96. Baez, J. (2021). "First fossil record in Tambería formation (Neogene) in Bolsón de Fiambalá, Catamarca province, Argentina: Palaeoenvironmental inferences through Leguminosae woods". Journal of South American Earth Sciences 110: Article 103403. doi:10.1016/j.jsames.2021.103403. Bibcode2021JSAES.11003403B. 
  97. Li, X.; Manchester, S. R.; Correa-Narvaez, J. E.; Herendeen, P. S. (2021). "An Extinct Fruit Species of Fabaceae from the Early Eocene of Northwestern Wyoming, USA". International Journal of Plant Sciences 182 (8): 730–746. doi:10.1086/715634. 
  98. Centeno-González, N. K.; Martínez-Cabrera, H. I.; Porras-Múzquiz, H.; Estrada-Ruiz, E. (2021). "Late Campanian fossil of a legume fruit supports Mexico as a center of Fabaceae radiation". Communications Biology 4 (1): Article number 41. doi:10.1038/s42003-020-01533-9. PMID 33446929. 
  99. Hazra, T.; Hazra, M.; Bera, S.; Khan, M. A. (2021). "First Fossil Legume Flower of Papilionoid Affinity from India". Journal of the Geological Society of India 97 (3): 267–270. doi:10.1007/s12594-021-1677-3. ISSN 0016-7622. 
  100. Li, X.-C.; Manchester, S. R.; Xiao, L.; Wang, Q.; Hu, Y.; Sun, B.-N. (2021). "Ormosia (Fabaceae: Faboideae) from the Miocene of southeastern China support historical expansion of the tropical genus in East Asia". Historical Biology: An International Journal of Paleobiology 33 (12): 3561–3578. doi:10.1080/08912963.2021.1877700. 
  101. Hazra, T.; Hazra, M.; Bera, S.; Khan, M. A. (2021). "First fossil evidence of marginal winged fruits of Peltophorum (Caesalpinioideae: Fabaceae) from India". Brittonia 73 (3): 241–250. doi:10.1007/s12228-021-09679-4. 
  102. Poinar, G. O.; Chambers, K. L. (2021). "Salpinganthium hispaniolanum gen. et sp. nov. (Fabaceae: Detarieae), a mid-Tertiary flower in Dominican amber". Journal of the Botanical Research Institute of Texas 15 (2): 559–567. doi:10.17348/jbrit.v15.i2.1161. 
  103. 103.0 103.1 103.2 103.3 103.4 103.5 Wheeler, E. A.; Manchester, S. R. (2021). "A diverse assemblage of Late Eocene woods from Oregon, western USA". Fossil Imprint 77 (2): 299–329. doi:10.37520/fi.2021.022. 
  104. 104.0 104.1 104.2 Wheeler, E. A.; Baas, P.; Manchester, S. R. (2021). "Wood Anatomy of Modern and Fossil Fagales in Relation to Phylogenetic Hypotheses, Familial Classification, and Patterns of Character Evolution". International Journal of Plant Sciences 183 (1): 61–86. doi:10.1086/717328. 
  105. Wilde, V.; Frankenhäuser, H.; Lenz, O. K. (2021). "A myricaceous male inflorescence with pollen in situ from the middle Eocene of Europe". Palaeobiodiversity and Palaeoenvironments 101 (4): 873–883. doi:10.1007/s12549-020-00479-4. 
  106. 106.0 106.1 106.2 Correa-Narvaez, J. E.; Manchester, S. R. (2021). "Distribution and Morphological Diversity of Palaeocarpinus (Betulaceae) from the Paleogene of the Northern Hemisphere.". The Botanical Review 88 (2): 161–203. doi:10.1007/s12229-021-09258-y. 
  107. Hazra, T.; Hazra, M.; Kumar, S.; Mahato, S.; Bera, M.; Bera, S.; Khan, M. A. (2021). "First fossil evidence of Palaeocarya (Engelhardioideae: Juglandaceae) from India and its biogeographical implications". Journal of Systematics and Evolution 59 (6): 1307–1320. doi:10.1111/jse.12736. 
  108. Reback, R. G.; Kapgate, D. K.; Wurdack, K.; Manchester, S. R. (2021). "Fruits of Euphorbiaceae from the Late Cretaceous Deccan Intertrappean Beds of India". International Journal of Plant Sciences 183 (2): 000. doi:10.1086/717691. 
  109. Hermsen, E. J. (2021). "Review of the fossil record of Passiflora, with a description of new seeds from the Pliocene Gray Fossil Site, Tennessee, U.S.A.". International Journal of Plant Sciences 182 (6): 533–550. doi:10.1086/714282. 
  110. Poinar, G. O.; Chambers, K. L.; Vega, F. E. (2021). "Tropidogyne euthystyla sp. nov., a new small-flowered addition to the genus from mid-Cretaceous Myanmar amber". Journal of the Botanical Research Institute of Texas 15 (1): 113–119. doi:10.17348/jbrit.v15.i1.1053. 
  111. Patel, R.; Hazra, T.; Rana, R. S.; Hazra, M.; Bera, S.; Khan, M. A. (2021). "First fossil record of mulberry from Asia". Review of Palaeobotany and Palynology 292: Article 104459. doi:10.1016/j.revpalbo.2021.104459. Bibcode2021RPaPa.29204459P. 
  112. Del Rio, C.; Wang, T.-X.; Xu, X.-T.; Sabroux, R.; Spicer, T. E. V.; Liu, J.; Chen, P.-R.; Wu, F.-X. et al. (2021). "Ventilago (Rhamnaceae) Fruit from the Middle Eocene of the Central Tibet, China". International Journal of Plant Sciences 182 (7): 638–648. doi:10.1086/715507. 
  113. Wang, B.; Zhang, S.; Zhang, P.; Yang, Y.; Chen, J.; Zhang, Y.; Xie, S. (2021). "A new occurrence of Craigia (Malvaceae) from the Miocene of Yunnan and its biogeographic significance". Historical Biology: An International Journal of Paleobiology 33 (12): 3402–3412. doi:10.1080/08912963.2020.1867980. 
  114. Chen, J.; Han, L.; Hua, Y.; Wu, G.; Sun, B. (2021). "Fruits and leaves of Dipterocarpus from the Miocene of Zhangpu, Fujian, and its geological significance". Arabian Journal of Geosciences 14 (13): Article 1270. doi:10.1007/s12517-021-07445-0. 
  115. Jia, L.B.; Nam, G.S.; Su, T.; Stull, G.W.; Li, S.F.; Huang, Y.J.; Zhou, Z.K. (2021). "Fossil fruits of Firmiana and Tilia from the middle Miocene of South Korea and the efficacy of the Bering land bridge for the migration of mesothermal plants". Plant Diversity 43 (6): 480–491. doi:10.1016/j.pld.2020.12.006. PMID 35024517. 
  116. Estrada-Ruiz, E.; Martínez-Cabrera, H. I.; García-Hernández, I. P. (2021). "New dicotyledonous woods from the San Carlos Formation (Upper Cretaceous) in Northern Mexico". IAWA Journal 43 (1–2): 66–79. doi:10.1163/22941932-bja10079. 
  117. Vieira, M.; Zetter, R.; Coiro, M.; Grímsson, F. (2021). "Pliocene Lythrum (loosestrife, Lythraceae) pollen from Portugal and the Neogene establishment of European lineages". Review of Palaeobotany and Palynology 296: Article 104548. doi:10.1016/j.revpalbo.2021.104548. ISSN 0034-6667. 
  118. Li, Y.; Huang, L.; Quan, C.; Jin, J.; Oskolski, A. A. (2021). "Fossil wood of Syzygium from the Miocene of Guangxi, South China: the earliest fossil evidence of the genus in eastern Asia". IAWA Journal 42 (4): 435–441. doi:10.1163/22941932-bja10069. ISSN 0928-1541. 
  119. 119.0 119.1 Bamford, M.; Pickford, M. (2021). "Stratigraphy, chronology and palaeontology of the Tertiary rocks of the Cheringoma Plateau, Mozambique". Fossil Imprint 77 (1): 187–213. doi:10.37520/fi.2021.014. http://fi.nm.cz/en/clanek/stratigraphy-chronology-and-palaeontology-of-the-tertiary-rocks-of-the-cheringoma-plateau-mozambique-2/. 
  120. Aung, A. T.; Del Rio, C.; Wang, T.-X.; Liu, J.; Spicer, T. E. V.; Su, T. (2021). "Fossil fruits and pollen grains of Trapa from the Upper Pliocene of the Sanying Formation (Yunnan, China)". Review of Palaeobotany and Palynology 293: Article 104498. doi:10.1016/j.revpalbo.2021.104498. Bibcode2021RPaPa.29304498A. 
  121. Carvalho, M.; Herrera, F.; Gómez, S.; Martínez, C.; Jaramillo, C. (2021). "Early records of Melastomataceae from the middle-late Paleocene rainforests of South America conflict with Laurasian origins". International Journal of Plant Sciences 182 (5): 401–412. doi:10.1086/714053. 
  122. Jud, N. A.; Allen, S. E.; Nelson, C. W.; Bastos, C. L.; Chery, J. G. (2021). "Climbing since the early Miocene: The fossil record of Paullinieae (Sapindaceae)". PLOS ONE 16 (4): e0248369. doi:10.1371/journal.pone.0248369. PMID 33826635. Bibcode2021PLoSO..1648369J. 
  123. Rodríguez-Reyes, O.; Estrada-Ruiz, E.; Monje Dussán, C.; de Andrade Brito, L.; Terrazas, T. (2021). "A new Oligocene-Miocene tree from Panama and historical Anacardium migration patterns". PLOS ONE 16 (6): e0250721. doi:10.1371/journal.pone.0250721. PMID 34077439. Bibcode2021PLoSO..1650721R. 
  124. Soomro, N.; Mangi, J.; Panhwer, M.; Jatoi, G.; Khuhro, S.; Khokhar, Q.; Khan, S.; Mengal, A. et al. (2021). "Anatomical characteristics of fossil wood collected from the Manchar Formation (Miocene), Thano Bula Khan, Sindh, Pakistan". Italian Botanist 11: 1–8. doi:10.3897/italianbotanist.11.60344. 
  125. Liu, W.-Q.; Xu, S.-L.; Fu, Q.-Y.; Quan, C. L.; Jin, J.-H. (2021). "Late Oligocene Melia (Meliaceae) from the Nanning Basin of South China and it's biogeographical implication". Journal of Palaeogeography 10 (1): Article number 16. doi:10.1186/s42501-021-00097-x. Bibcode2021JPalG..10...16L. 
  126. Huang, L.-L.; Jin, J.-H.; Quan, C.; Oskolski, A. A. (2021). "Earliest fossil record of the genus Tetradium (Rutaceae) in Asia: implications for its evolution and palaeoecology". Papers in Palaeontology 7 (4): 2065–2074. doi:10.1002/spp2.1394. 
  127. Huang, L.-L.; Jin, J.-H.; Quan, C.; Oskolski, A. A. (2021). "New occurrences of Altingiaceae fossil woods from the Miocene and upper Pleistocene of South China with phytogeographic implications". Journal of Palaeogeography 10 (4): 482–493. doi:10.1016/j.jop.2021.11.001. Bibcode2021JPalG..10..482H. https://www.sciencedirect.com/science/article/pii/S2095383621000043. 
  128. Kajita, Y.; Suzuki, M. H.; Nishida, H. (2021). "A Multicarpellary Apocarpous Gynoecium from the Late Cretaceous (Coniacian–Santonian) of the Upper Yezo Group of Obira, Hokkaido, Japan: Obirafructus kokubunii gen. & sp. nov.". Acta Phytotaxonomica et Geobotanica 72 (1): 1–21. doi:10.18942/apg.202009. 
  129. Lai, Y.; Gandolfo, M. A.; Crepet, W. L.; Nixon, K. C. (2021). "Paleoaltingia gen. nov., a new genus of Altingiaceae from the Late Cretaceous of New Jersey". American Journal of Botany 108 (3): 461–471. doi:10.1002/ajb2.1618. PMID 33660257. 
  130. Golovneva, L.; Bugdaeva, E.; Volynets, E.; Sun, Y.; Zolina, A. (2021). "Angiosperm diversification in the Early Cretaceous of Primorye, Far East of Russia". Fossil Imprint 77 (2): 231–255. doi:10.37520/fi.2021.017. http://fi.nm.cz/clanek/angiosperm-diversification-in-the-early-cretaceous-of-primorye-far-east-of-russia/. 
  131. Pessoa, E. M.; Ribeiro, A. C.; Jud, N. A. (2021). "A eudicot leaf from the Lower Cretaceous (Aptian, Araripe Basin) Crato Konservat-Lagerstätte". American Journal of Botany 108 (10): 2055–2065. doi:10.1002/ajb2.1751. ISSN 0002-9122. PMID 34647319. https://bsapubs.onlinelibrary.wiley.com/doi/10.1002/ajb2.1751. 
  132. Wang, X. (2021). "The Currently Earliest Angiosperm Fruit from the Jurassic of North America". Biosis: Biological Systems 2 (4): 416–422. doi:10.37819/biosis.001.04.0160. 
  133. Sonkusare, H.; Samant, B.; Mohabey, D. M. (2021). "Palynoassemblage from intertrappean sediments of Satpura Group, Betul district, Madhya Pradesh: implications in understanding age and palaeoclimate". Journal of the Palaeontological Society of India 66 (1): 35–54. https://www.researchgate.net/publication/353006021. 
  134. Cui, D.-F.; Hou, Y.; Yin, P.; Wang, X. (2021). "A Jurassic flower bud from the Jurassic of China". Mesozoic Biological Events and Ecosystems in East Asia. The Geological Society of London. doi:10.1144/SP521-2021-122. 
  135. Du, B.; Zhang, M.; Sun, B.; Li, A.; Zhang, J.; Yan, D.; Xie, S.; Wu, J. (2021). "An Exceptionally Well-Preserved Herbaceous Eudicot from the Early Cretaceous (late Aptian-early Albian) of Northwest China". National Science Review 8 (12): nwab084. doi:10.1093/nsr/nwab084. PMID 34987839. 
  136. Hernández, J. A. R. (2021). "Nigericolpites: a replacement name for the illegitimate Maastrichtian magnoliopsid pollen genus Clavatricolpites Hoeken-Klink. (Angiospermae: Magnoliopsida)". Grana 60 (5): 370–371. doi:10.1080/00173134.2020.1827025. ISSN 0017-3134. 
  137. Durieux, T.; Lopez, M. A.; Bronson, A. W.; Tomescu, A. M. F. (2021). "A new phylogeny of the cladoxylopsid plexus: contribution of an early cladoxylopsid from the Lower Devonian (Emsian) of Quebec". American Journal of Botany 108 (10): 2066–2095. doi:10.1002/ajb2.1752. ISSN 0002-9122. PMID 34664712. 
  138. Kraft, P.; Kvaček, Z. (2021). "Baragwanathia brevifolioides, a nomen novum for B. brevifolia P.Kraft et Kvaček, 2017". Fossil Imprint 77 (1): 53–54. doi:10.37520/fi.2021.006. http://fi.nm.cz/en/clanek/baragwanathia-brevifolioides-a-nomen-novum-for-b-brevifolia-p-kraft-et-kvacek-2017-2/. 
  139. Ivanov, D.; Belkinova, D. (2021). "Closterium mosbruggeri sp. nov.: a new fossil species from the middle Miocene of Northwest Bulgaria". Palaeobiodiversity and Palaeoenvironments 101 (1): 69–74. doi:10.1007/s12549-020-00476-7. 
  140. 140.0 140.1 Harris, C.; Gess, R. W.; Prestianni, C.; Bamford, M. K. (2021). "A Late Devonian refugium for Colpodexylon (Lycopsida) at high latitude". Review of Palaeobotany and Palynology 293: Article 104481. doi:10.1016/j.revpalbo.2021.104481. Bibcode2021RPaPa.29304481H. https://orbi.uliege.be/bitstream/2268/295475/1/Harris%20et%20al.%202021%20Colpodexylon.pdf. 
  141. 141.0 141.1 141.2 Šimůnek, Z.; Lojka, R. (2021). "Carboniferous cuticles from the Lubná coal seam (Kladno Formation, Kladno-Rakovník Basin, Czech Republic)". Palaeontographica Abteilung B 303 (4–6): 77–117. doi:10.1127/palb/2021/0076. Bibcode2021PalAB.303...77S. 
  142. Bippus, A. C.; Rothwell, G. W.; Stockey, R. A. (2021). "Cynodontium luthii sp. nov.: a permineralized moss gametophyte from the Late Cretaceous of the North Slope of Alaska". American Journal of Botany 108 (3): 495–504. doi:10.1002/ajb2.1617. PMID 33650114. 
  143. Manchester, S. R.; Zhang, X.; Hotton, C. L.; Wing, S. L.; Crane, P. R. (2021). "Distinctive quadrangular seed-bearing structures of gnetalean affinity from the Late Jurassic Morrison Formation of Utah, USA". Journal of Systematic Palaeontology 19 (10): 743–760. doi:10.1080/14772019.2021.1968522. https://www.tandfonline.com/doi/abs/10.1080/14772019.2021.1968522. 
  144. Barattolo, F.; Romano, R.; Conrad, M. (2021). "Evidence of external gametophores in puzzling Late Triassic–Early Jurassic dasycladalean green algae". Acta Palaeontologica Polonica 66 (4): 901–919. doi:10.4202/app.00883.2021. 
  145. Naugolnykh, S. V. (2021). "A new species of Distichophytum Mägdefrau, 1938 from the Lower Devonian of Siberia (the Torgashino locality, Krasnojarsk krai, Russia)". Wulfenia 28: 141–150. https://www.researchgate.net/publication/356613631. 
  146. Barattolo, F.; Bucur, I. I.; Marian, A. V. (2021). "Deciphering voids in Dasycladales, the case of Dragastanella transylvanica, a new Lower Cretaceous triploporellacean genus and species from Romania". Journal of Paleontology 95 (5): 889–905. doi:10.1017/jpa.2021.40. ISSN 0022-3360. Bibcode2021JPal...95..889B. 
  147. 147.0 147.1 147.2 Gess, R. W.; Prestianni, C. (2021). "An early Devonian flora from the Baviaanskloof Formation (Table Mountain Group) of South Africa". Scientific Reports 11 (1): Article number 11859. doi:10.1038/s41598-021-90180-z. PMID 34088916. Bibcode2021NatSR..1111859G. 
  148. Gess, R. W.; Prestianni, C. (2021). "Flabellopteris lococannensis gen. et sp. nov.: A new fern-like plant from the Famennian of South Africa". Review of Palaeobotany and Palynology 297: Article 104585. doi:10.1016/j.revpalbo.2021.104585. https://orbi.uliege.be/bitstream/2268/302493/1/1-s2.0-S0034666721002098-main.pdf. 
  149. Li, Y.; Wang, Y.-D.; Feldberg, K.; Wang, Q.; Yang, X.-J. (2021). "A new leafy liverwort of Frullania (Frullaniaceae, Porellales) from the mid-Cretaceous Kachin amber, Myanmar". Geological Journal 56 (10): 5046–5057. doi:10.1002/gj.4222. 
  150. 150.0 150.1 150.2 150.3 Bouju, V.; Feldberg, K.; Kaasalainen, U.; Schäfer-Verwimp, A.; Hedenäs, L.; Buck, W. R.; Wang, B.; Perrichot, V. et al. (2022). "Miocene Ethiopian amber: a new source of fossil cryptogams". Journal of Systematics and Evolution 60 (4): 932–954. doi:10.1111/jse.12796. https://hal-insu.archives-ouvertes.fr/insu-03231697/file/BOUJU-2021.pdf. 
  151. Liu, B.-C.; Bai, J.; Wang, Y.; Yang, N.; Xu, H.-H. (2021). "On the discovery of Gilboaphyton (Lycopsida) from the Upper Devonian of East Junggar, Xinjiang, and its global distribution". Review of Palaeobotany and Palynology 292: Article 104473. doi:10.1016/j.revpalbo.2021.104473. Bibcode2021RPaPa.29204473L. 
  152. Wang, D.-M.; Liu, L.; Zhou, Y.; Qin, M.; Meng, M.-C.; Guo, Y.; Xue, J.-Z. (2021). "Guazia, the earliest ovule without cupule but with unique integumentary lobes". National Science Review 9 (4): nwab196. doi:10.1093/nsr/nwab196. PMID 35386924. 
  153. Na, Y.; Sun, C.; Wang, H.; Huang, T.; Bevitt, J.; Li, Y.; Li, T.; Zhao, Y. et al. (2021). "Application of neutron tomography in studying new material of Ixostrobus Raciborski from the Middle Jurassic of Inner Mongolia, China". Geological Journal 56 (9): 4618–4626. doi:10.1002/gj.4196. 
  154. Toledo, S.; Bippus, A. C.; Atkinson, B. A.; Bronson, A. W.; Tomescu, A. M. F. (2021). "Taxon sampling and alternative hypotheses of relationships in the euphyllophyte plexus that gave rise to seed plants: insights from an Early Devonian radiatopsid". New Phytologist 232 (2): 914–927. doi:10.1111/nph.17511. PMID 34031894. 
  155. Meyer-Berthaud, B.; Decombeix, A.-L.; Blanchard, R. (2021). "Lycaugea edieae gen. et sp. nov., a Late Devonian lycopsid from New South Wales, Australia". International Journal of Plant Sciences 182 (6): 418–429. doi:10.1086/714350. https://hal.inrae.fr/hal-03231982/file/2021%20Meyer%20Berthaud%20et%20al%20Lycaugea%20.pdf. 
  156. Bai, L.; Huang, P.; Yang, N.; Ju, W.; Liu, J.; Basinger, J. F.; Xu, H.; Xue, J. (2021). "A new Late Devonian flora from Sonid Zuoqi, Inner Mongolia, northeastern China". Journal of Paleontology 96 (2): 462–484. doi:10.1017/jpa.2021.93. https://zenodo.org/record/5301469. 
  157. De Sosa Tomas, A.; Martín-Closas, C.; Vallati, P.; Krause, M. (2021). "Early Cretaceous Mesochara-rich assemblages from central Patagonia, Argentina, predate the origin of homogenous Charoidean floras by about 30 million years". Cretaceous Research 129: Article 105017. doi:10.1016/j.cretres.2021.105017. ISSN 0195-6671. 
  158. Sanjuan, J.; Vicente, A.; Pérez-Cano, J.; Stoica, M.; Martín-Closas, C. (2021). "Early Cretaceous charophytes from south Dobrogea (Romania). Biostratigraphy and palaeobiogeography". Cretaceous Research 122: Article 104762. doi:10.1016/j.cretres.2021.104762. Bibcode2021CrRes.12204762S. 
  159. Chernomorets, O.; Sakala, J. (2021). "Mixoxylon australe gen. et sp. nov., a unique homoxylous wood with non-angiosperm affinity from the Lower Cretaceous of Antarctica (Albian, James Ross Island)". Antarctic Science 33 (5): 493–501. doi:10.1017/S0954102021000389. Bibcode2021AntSc..33..493C. 
  160. Bonacorsi, N. K.; Gensel, P. G.; Hueber, F. M.; Leslie, A. B. (2021). "Omniastrobus gen. nov., an Emsian plant with implications for the evolution of heterospory in the Early Devonian". International Journal of Plant Sciences 182 (3): 198–209. doi:10.1086/712356. 
  161. Martín-Closas, C.; Segura-Altés, R.; Pérez-Cano, J.; Bover-Arnal, T.; Sanjuan, J. (2021). "Palaeonitella trifurcata n. sp., a cortoid-building charophyte from the Lower Cretaceous of Catalonia". Review of Palaeobotany and Palynology 295: Article 104523. doi:10.1016/j.revpalbo.2021.104523. Bibcode2021RPaPa.29504523M. 
  162. Wang, J.; Hilton, J.; Pfefferkorn, H. W.; Wang, S.; Zhang, Y.; Bek, J.; Pšenička, J.; Seyfullah, L. J. et al. (2021). "Ancient noeggerathialean reveals the seed plant sister group diversified alongside the primary seed plant radiation". Proceedings of the National Academy of Sciences of the United States of America 118 (11): e2013442118. doi:10.1073/pnas.2013442118. ISSN 0027-8424. PMID 33836571. Bibcode2021PNAS..11813442W. 
  163. Foraponova, T. S.; Karasev, E. V. (2021). "Systematic problems of pollen organs of the genus Permotheca Zalessky from the Permian of Subangara". Paleontological Journal 55 (6): 691–706. doi:10.1134/S0031030121060058. https://www.elibrary.ru/item.asp?id=46621802. 
  164. Feldberg, K.; Schäfer-Verwimp, A.; Renner, M. A. M.; von Konrat, M.; Bechteler, J.; Müller, P.; Wang, Y.-D.; Schneider, H. et al. (2021). "Liverworts from Cretaceous amber". Cretaceous Research 128: Article 104987. doi:10.1016/j.cretres.2021.104987. Bibcode2021CrRes.12804987F. 
  165. Oukassou, M.; Naugolnykh, S. V. (2021). "Rehamnia (Lycopodiophyta), a new enigmatic Late Devonian plant from Morocco". Journal of African Earth Sciences 182: Article 104274. doi:10.1016/j.jafrearsci.2021.104274. Bibcode2021JAfES.18204274O. 
  166. Han, L.; Yang, T.; Wang, H.-J.; Cai, J.-H.; Liang, W.-Y.; Bao, L.; Chen, H.-Y.; Zhang, L. et al. (2021). "Liverwort fossils from the Late Triassic of Baiyin, Gansu, and their geological significance". Palaeoworld in press. doi:10.1016/j.palwor.2021.09.009. 
  167. McSweeney, F. R.; Shimeta, J.; Buckeridge, J. S. (2021). "Early land plants from the Lower Devonian of central Victoria, Australia, including a new species of Salopella". Memoirs of Museum Victoria 80: 193–205. doi:10.24199/j.mmv.2021.80.11. 
  168. Friis, E. M.; Crane, P. R.; Pedersen, K. R. (2021). "Microsporangiophores from the Early Cretaceous (Berriasian) of Bornholm, Denmark, with comments on a pre-angiosperm xerophytic flora". Review of Palaeobotany and Palynology 293: Article 104487. doi:10.1016/j.revpalbo.2021.104487. Bibcode2021RPaPa.29304487F. 
  169. Flores Barragan, M. A.; Velasco de León, M. P.; Ortega Chavez, E. (2021). "New genus for megaphyllous leaves from the Upper Paleozoic of Mexico Velascoa pueblensis gen. nov". Journal of South American Earth Sciences 110: Article 103408. doi:10.1016/j.jsames.2021.103408. Bibcode2021JSAES.11003408F. 
  170. Vachard, D.; Bucur, I. I.; Munnecke, A. (2021). "Vitinellopsis nov. gen., a new calcareous alga (Chlorophyta, Bryopsidales) from the Silurian of Gotland (Sweden), and the tribe Vitinelleae nov. nom". Geobios 70: 75–85. doi:10.1016/j.geobios.2021.10.001. 
  171. Gossmann, R.; Poschmann, M. J.; Giesen, P.; Schultka, S. (2022). "A stratigraphically significant new zosterophyllopsid from the Rhenish Lower Devonian (W Germany)". Palaeobiodiversity and Palaeoenvironments 102 (3): 503–519. doi:10.1007/s12549-021-00509-9. https://link.springer.com/article/10.1007/s12549-021-00509-9. 
  172. 172.00 172.01 172.02 172.03 172.04 172.05 172.06 172.07 172.08 172.09 172.10 172.11 172.12 172.13 172.14 172.15 172.16 172.17 172.18 172.19 172.20 172.21 172.22 172.23 172.24 Li, W.B.; Batten, D. J.; Li, J.G.; Peng, J.G. (2021). Mesozoic Megaspores and Palynomorphs from Tarim Basin, Northwest China. 202. 1–250. ISBN 978-7030696526. 
  173. Hernández, J. A. R. (2021). "A replacement name for the poorly known illegitimate Paleogene genus Psilamonocolpites Y.K.Mathur (Ginkgoales)". Phytotaxa 500 (1): 57–58. doi:10.11646/phytotaxa.500.1.10. 
  174. Ghosh, A. K.; Chatterjee, R.; Pramanik, S.; Kar, R. (2021). "Radiation of Flora in the Early Triassic Succeeding the End Permian Crisis: Evidences from the Gondwana Supergroup of Peninsular India". Mesozoic Stratigraphy of India. Society of Earth Scientists Series. Springer. pp. 87–113. doi:10.1007/978-3-030-71370-6_3. ISBN 978-3-030-71369-0. 
  175. Strother, P. K.; Foster, C. (2021). "A fossil record of land plant origins from charophyte algae". Science 373 (6556): 792–796. doi:10.1126/science.abj2927. PMID 34385396. Bibcode2021Sci...373..792S. 
  176. Prebble, J. G.; Kennedy, E. M.; Reichgelt, T.; Clowes, C.; Womack, T.; Mildenhall, D. C.; Raine, J. I.; Crouch, E. M. (2021). "A 100 million year composite pollen record from New Zealand shows maximum angiosperm abundance delayed until Eocene". Palaeogeography, Palaeoclimatology, Palaeoecology 566: Article 110207. doi:10.1016/j.palaeo.2020.110207. Bibcode2021PPP...56610207P. 
  177. Lindström, S. (2021). "Two-phased Mass Rarity and Extinction in Land Plants During the End-Triassic Climate Crisis". Frontiers in Earth Science 9: Article 780343. doi:10.3389/feart.2021.780343. Bibcode2021FrEaS...9.1079L. 
  178. Donders, T.; Panagiotopoulos, K.; Koutsodendris, A.; Bertini, A.; Mercuri, A. M.; Masi, A.; Combourieu-Nebout, N.; Joannin, S. et al. (2021). "1.36 million years of Mediterranean forest refugium dynamics in response to glacial–interglacial cycle strength". Proceedings of the National Academy of Sciences of the United States of America 118 (34): e2026111118. doi:10.1073/pnas.2026111118. PMID 34400496. Bibcode2021PNAS..11826111D. 
  179. Leslie, A. B.; Simpson, C.; Mander, L. (2021). "Reproductive innovations and pulsed rise in plant complexity". Science 373 (6561): 1368–1372. doi:10.1126/science.abi6984. PMID 34529461. Bibcode2021Sci...373.1368L. http://oro.open.ac.uk/79109/1/Leslie%20et%20al%20accepted%20manuscript.pdf. 
  180. Pšenička, J.; Bek, J.; Frýda, J.; Žárský, V.; Uhlířová, M.; Štorch, P. (2021). "Dynamics of Silurian Plants as Response to Climate Changes". Life 11 (9): Article 906. doi:10.3390/life11090906. PMID 34575055. Bibcode2021Life...11..906P. 
  181. Hetherington, A. J.; Bridson, S. L.; Jones, A. L.; Hass, H.; Kerp, H.; Dolan, L. (2021). "An evidence-based 3D reconstruction of Asteroxylon mackiei, the most complex plant preserved from the Rhynie chert". eLife 10: e69447. doi:10.7554/eLife.69447. PMID 34425940. 
  182. Matthaeus, W. J.; Macarewich, S. I.; Richey, J. D.; Wilson, J. P.; McElwain, J. C.; Montañez, I. P.; DiMichele, W. A.; Hren, M. T. et al. (2021). "Freeze tolerance influenced forest cover and hydrology during the Pennsylvanian". Proceedings of the National Academy of Sciences of the United States of America 118 (42): e2025227118. doi:10.1073/pnas.2025227118. PMID 34635589. Bibcode2021PNAS..11825227M. 
  183. Zhou, Y.; Wang, D.-M.; Liu, L.; Huang, P. (2021). "The morphometric of lycopsid sporophylls and the evaluation of their dispersal potential: an example from the Upper Devonian of Zhejiang Province, China". BMC Ecology and Evolution 21 (1): Article number 198. doi:10.1186/s12862-021-01933-3. PMID 34732141. 
  184. Mottin, T. E.; Iannuzzi, R.; Vesely, F. F.; Montañez, I. P.; Griffis, N.; Canata, R. E.; Barão, L. M.; da Silveira, D. M. et al. (2021). "A glimpse of a Gondwanan postglacial fossil forest". Palaeogeography, Palaeoclimatology, Palaeoecology 588: Article 110814. doi:10.1016/j.palaeo.2021.110814. 
  185. Chen, B.-Y.; Wan, M.-L.; Zhou, W.-M.; Wang, S.-J.; Wang, J. (2021). "Anatomy of Stigmaria asiatica Jongmans et Gothan from the Asselian (lowermost Permian) of Wuda Coalfield, Inner Mongolia, North China". Palaeoworld 31 (2): 311–323. doi:10.1016/j.palwor.2021.05.001. ISSN 1871-174X. 
  186. D'Antonio, M. P.; Boyce, C. K.; Zhou, W.-M.; Pfefferkorn, H. W.; Wang, J. (2021). "Primary tissues dominated ground-level trunk diameter in Sigillaria: evidence from the Wuda Tuff, Inner Mongolia". Journal of the Geological Society 179 (2). doi:10.1144/jgs2021-021. 
  187. Looy, C. V.; van Konijnenburg-van Cittert, J. H. A.; Duijnstee, I. A. P. (2021). "Proliferation of Isoëtalean Lycophytes During the Permo-Triassic Biotic Crises: A Proxy for the State of the Terrestrial Biosphere". Frontiers in Earth Science 9: Article 615370. doi:10.3389/feart.2021.615370. Bibcode2021FrEaS...9...55L. 
  188. Kerp, H.; Blomenkemper, P.; Hamad, A. A.; Bomfleur, B. (2021). "Saportaea Fontaine et White 1880 – An enigmatic, long-ranging, widely distributed but rare type of late Palaeozoic and early Mesozoic foliage". Review of Palaeobotany and Palynology 296: Article 104542. doi:10.1016/j.revpalbo.2021.104542. 
  189. Moreau, J.-D.; Philippe, M.; Néraudeau, D.; Dépré, E.; Le Couls, M.; Fernandez, V.; Beurel, S. (2021). "Paleohistology of the Cretaceous resin-producing conifer Geinitzia reichenbachii using X-ray synchrotron microtomography". American Journal of Botany 108 (9): 1745–1760. doi:10.1002/ajb2.1722. PMID 34495546. 
  190. Liu, J.; Lindstrom, A. J.; Marler, T. E.; Gong, X. (2021). "Not that young: combining plastid phylogenomic, plate tectonic and fossil evidence indicates a Palaeogene diversification of Cycadaceae". Annals of Botany 129 (2): 217–230. doi:10.1093/aob/mcab118. PMID 34520529. 
  191. Shi, G.; Herrera, F.; Herendeen, P. S.; Clark, E. G.; Crane, P. R. (2021). "Mesozoic cupules and the origin of the angiosperm second integument". Nature 594 (7862): 223–226. doi:10.1038/s41586-021-03598-w. PMID 34040260. Bibcode2021Natur.594..223S. 
  192. Wilson, P. K.; Wilson Mantilla, G. P.; Strӧmberg, C. A. E. (2021). "Seafood Salad: A diverse latest Cretaceous flora from eastern Montana". Cretaceous Research 121: Article 104734. doi:10.1016/j.cretres.2020.104734. Bibcode2021CrRes.12104734W. 
  193. Silvestro, D.; Bacon, C. D.; Dong, W.; Zhang, Q.; Donoghue, P. C. J.; Antonelli, A.; Xing, Y. (2021). "Fossil data support a pre-Cretaceous origin of flowering plants". Nature Ecology & Evolution 5 (4): 449–457. doi:10.1038/s41559-020-01387-8. PMID 33510432. https://research-information.bris.ac.uk/ws/files/264149147/Silvestro_et_al_AF.pdf. 
  194. Xiao, L.; Labandeira, C.; Dilcher, D.; Ren, D. (2021). "Florivory of Early Cretaceous flowers by functionally diverse insects: implications for early angiosperm pollination". Proceedings of the Royal Society B: Biological Sciences 288 (1953): Article ID 20210320. doi:10.1098/rspb.2021.0320. PMID 34132112. 
  195. Wang, X.; Shih, C.; Liu, Z.-J.; Lin, L.; Singh, K. J. (2021). "Reconstructing the Callianthus plant – an early aquatic angiosperm from the Lower Cretaceous of China". Cretaceous Research 128: Article 104983. doi:10.1016/j.cretres.2021.104983. ISSN 0195-6671. Bibcode2021CrRes.12804983W. 
  196. Liang, F.; Tian, N.; Sun, W.; Wu, Q.; Liu, B.; Wang, H. (2021). "Epidermal features of the floating leaves of Quereuxia angulata (Newberry) Krištofovič, an aquatic angiosperm from the Upper Cretaceous of Northeast China". Cretaceous Research 125: Article 104835. doi:10.1016/j.cretres.2021.104835. Bibcode2021CrRes.12504835L. 
  197. Carvalho, M. R; Jaramillo, C.; de la Parra, F.; Caballero-Rodríguez, D.; Herrera, F.; Wing, S.; Turner, B. L.; D'Apolito, C. et al. (2021). "Extinction at the end-Cretaceous and the origin of modern Neotropical rainforests". Science 372 (6537): 63–68. doi:10.1126/science.abf1969. PMID 33795451. Bibcode2021Sci...372...63C. 
  198. Fernández, D. A.; Palazzesi, L.; González Estebenet, M. S.; Tellería, M. C.; Barreda, V. D. (2021). "Impact of mid Eocene greenhouse warming on America's southernmost floras". Communications Biology 4 (1): Article number 176. doi:10.1038/s42003-021-01701-5. PMID 33564110. 
  199. Bellosi, E.; Genise, J. F.; Zucol, A.; Bond, M.; Kramarz, A.; Sánchez, M. V.; Krause, J. M. (2021). "Diverse evidence for grasslands since the Eocene in Patagonia". Journal of South American Earth Sciences 108: Article 103357. doi:10.1016/j.jsames.2021.103357. Bibcode2021JSAES.10803357B. 
  200. Casas-Gallego, M.; Postigo-Mijarra, J. M.; Rivas-Carballo, M. R.; Valle-Hernández, M. F.; Morín-de Pablos, J.; Barrón, E. (2021). "Early evidence of continental aridity and open-habitat grasslands in Europe as revealed by the Middle Miocene microflora of the Madrid Basin". Palaeogeography, Palaeoclimatology, Palaeoecology 581: Article 110603. doi:10.1016/j.palaeo.2021.110603. Bibcode2021PPP...58110603C. 
  201. Crump, S. E.; Fréchette, B.; Power, M.; Cutler, S.; de Wet, G.; Raynolds, M. K.; Raberg, J. H.; Briner, J. P. et al. (2021). "Ancient plant DNA reveals High Arctic greening during the Last Interglacial". Proceedings of the National Academy of Sciences of the United States of America 118 (13): e2019069118. doi:10.1073/pnas.2019069118. PMID 33723011. Bibcode2021PNAS..11819069C. 
  202. Jaramillo, C.; Jarzen, D. M. (2022). "Alan Keith Graham (1934–2021)". Palynology 46 (1): 1–4. doi:10.1080/01916122.2021.1971121. Bibcode2022Paly...4671121J. https://www.tandfonline.com/doi/full/10.1080/01916122.2021.1971121.