Schrödinger–HJW theorem

From HandWiki
Short description: Concept in quantum information theory

In quantum information theory and quantum optics, the Schrödinger–HJW theorem is a result about the realization of a mixed state of a quantum system as an ensemble of pure quantum states and the relation between the corresponding purifications of the density operators. The theorem is named after physicists and mathematicians Erwin Schrödinger,[1] Lane P. Hughston, Richard Jozsa and William Wootters.[2] The result was also found independently (albeit partially) by Nicolas Gisin,[3] and by Nicolas Hadjisavvas building upon work by Ed Jaynes,[4][5] while a significant part of it was likewise independently discovered by N. David Mermin.[6] Thanks to its complicated history, it is also known by various other names such as the GHJW theorem,[7] the HJW theorem, and the purification theorem.

Purification of a mixed quantum state

Let [math]\displaystyle{ \mathcal H_S }[/math] be a finite-dimensional complex Hilbert space, and consider a generic (possibly mixed) quantum state [math]\displaystyle{ \rho }[/math] defined on [math]\displaystyle{ \mathcal H_S }[/math], and admitting a decomposition of the form [math]\displaystyle{ \rho=\sum_i p_i|\phi_i\rangle\!\langle\phi_i|, }[/math]for a collection of (not necessarily mutually orthogonal) states [math]\displaystyle{ |\phi_i\rangle\in\mathcal H_S }[/math], and coefficients [math]\displaystyle{ p_i\ge0 }[/math] such that [math]\displaystyle{ \sum_i p_i=1 }[/math]. Note that any quantum state can be written in such a way for some [math]\displaystyle{ \{|\phi_i\rangle\}_i }[/math] and [math]\displaystyle{ \{p_i\}_i }[/math].[8]

Any such [math]\displaystyle{ \rho }[/math] can be purified, that is, represented as the partial trace of a pure state defined in a larger Hilbert space. More precisely, it is always possible to find a (finite-dimensional) Hilbert space [math]\displaystyle{ \mathcal H_A }[/math] and a pure state [math]\displaystyle{ |\Psi_{SA}\rangle\in \mathcal H_S\otimes\mathcal H_A }[/math] such that [math]\displaystyle{ \rho = \operatorname{Tr}_A(|\Psi_{SA}\rangle\!\langle\Psi_{SA}|) }[/math]. Furthermore, the states [math]\displaystyle{ |\Psi_{SA}\rangle }[/math] satisfying this are all and only those of the form [math]\displaystyle{ |\Psi_{SA}\rangle=\sum_i\sqrt{p_i}|\phi_i\rangle \otimes |a_i\rangle, }[/math]for some orthonormal basis [math]\displaystyle{ \{|a_i\rangle\}_i\subset\mathcal H_A }[/math]. The state [math]\displaystyle{ |\Psi_{SA}\rangle }[/math] is then referred to as the "purification of [math]\displaystyle{ \rho }[/math]". Since the auxiliary space and the basis can be chosen arbitrarily, the purification of a mixed state is not unique; in fact, there are infinitely many purifications of a given mixed state.[9] Because all of them admit a decomposition in the form given above, given any pair of purifications [math]\displaystyle{ |\Psi\rangle, |\Psi'\rangle\in\mathcal H_S\otimes\mathcal H_A }[/math], there is always some unitary operation [math]\displaystyle{ U:\mathcal H_A\to \mathcal H_A }[/math] such that [math]\displaystyle{ |\Psi'\rangle = (I\otimes U) |\Psi\rangle. }[/math]

Theorem

Consider a mixed quantum state [math]\displaystyle{ \rho }[/math] with two different realizations as ensemble of pure states as [math]\displaystyle{ \rho = \sum_i p_i |\phi_i\rangle\langle\phi_i| }[/math] and [math]\displaystyle{ \rho = \sum_j q_j |\varphi_j\rangle\langle\varphi_j| }[/math]. Here both [math]\displaystyle{ |\phi_i\rangle }[/math]and [math]\displaystyle{ |\varphi_j\rangle }[/math] are not assumed to be mutually orthogonal. There will be two corresponding purifications of the mixed state [math]\displaystyle{ \rho }[/math] reading as follows:

  • Purification 1: [math]\displaystyle{ |\Psi_{SA}^1\rangle=\sum_i\sqrt{p_i}|\phi_i\rangle \otimes |a_i\rangle }[/math];
  • Purification 2: [math]\displaystyle{ |\Psi_{SA}^2\rangle=\sum_j\sqrt{q_j}|\varphi_j\rangle \otimes |b_j\rangle }[/math].

The sets [math]\displaystyle{ \{|a_i\rangle\} }[/math]and [math]\displaystyle{ \{|b_j\rangle\} }[/math] are two collections of orthonormal bases of the respective auxiliary spaces. These two purifications only differ by a unitary transformation acting on the auxiliary space, viz., there exists a unitary matrix [math]\displaystyle{ U_A }[/math]such that [math]\displaystyle{ |\Psi^1_{SA}\rangle = (I\otimes U_A)|\Psi^2_{SA}\rangle }[/math].[10] Therefore, [math]\displaystyle{ |\Psi_{SA}^1\rangle = \sum_j \sqrt{q_j}|\varphi_j\rangle\otimes U_A|b_j\rangle }[/math], which means that we can realize the different ensembles of a mixed state just by making different measurements on the purifying system.

References

  1. Schrödinger, Erwin (1936). "Probability relations between separated systems". Proceedings of the Cambridge Philosophical Society 32 (3): 446–452. doi:10.1017/S0305004100019137. Bibcode1936PCPS...32..446S. 
  2. Hughston, Lane P.; Jozsa, Richard; Wootters, William K. (November 1993). "A complete classification of quantum ensembles having a given density matrix". Physics Letters A 183 (1): 14–18. doi:10.1016/0375-9601(93)90880-9. ISSN 0375-9601. Bibcode1993PhLA..183...14H. 
  3. Gisin, N. (1989). “Stochastic quantum dynamics and relativity,” Helvetica Physica Acta 62, 363- 371.
  4. Hadjisavvas, Nicolas (1981). "Properties of mixtures on non-orthogonal states". Letters in Mathematical Physics 5 (4): 327–332. doi:10.1007/BF00401481. Bibcode1981LMaPh...5..327H. 
  5. Jaynes, E. T. (1957). "Information theory and statistical mechanics. II". Physical Review 108 (2): 171–190. doi:10.1103/PhysRev.108.171. Bibcode1957PhRv..108..171J. 
  6. Fuchs, Christopher A. (2011). Coming of Age with Quantum Information: Notes on a Paulian Idea. Cambridge: Cambridge University Press. ISBN 978-0-521-19926-1. OCLC 535491156. 
  7. Mermin, N. David (1999). "What Do These Correlations Know about Reality? Nonlocality and the Absurd". Foundations of Physics 29 (4): 571–587. doi:10.1023/A:1018864225930. Bibcode1998quant.ph..7055M. 
  8. Nielsen, Michael A.; Chuang, Isaac L., "The Schmidt decomposition and purifications", Quantum Computation and Quantum Information (Cambridge: Cambridge University Press): pp. 110–111, https://doi.org/10.1017/CBO9780511976667.006 
  9. Watrous, John (2018). The Theory of Quantum Information. Cambridge: Cambridge University Press. doi:10.1017/9781316848142. ISBN 978-1-107-18056-7. https://www.cambridge.org/core/books/theory-of-quantum-information/AE4AA5638F808D2CFEB070C55431D897. 
  10. Kirkpatrick, K. A. (February 2006). "The Schrödinger-HJW Theorem". Foundations of Physics Letters 19 (1): 95–102. doi:10.1007/s10702-006-1852-1. ISSN 0894-9875. Bibcode2006FoPhL..19...95K.