Biology:Chlamydiae: Difference between revisions

From HandWiki
imported>S.Timg
(change)
 
(No difference)

Latest revision as of 05:27, 21 May 2022

Short description: Phylum of bacteria

Chlamydiae
ChlamydiaTrachomatisEinschlusskörperchen.jpg
Chlamydia trachomatis
Scientific classification
Domain:
Superphylum:
PVC group
Phylum:
Chlamydiae

Garrity & Holt 2012
Class:
Chlamydiia

Gupta et al. 2016
Orders and families
Synonyms
  • Chlamydaeota Oren et al. 2015

The Chlamydiae are a bacterial phylum and class whose members are remarkably diverse, including pathogens of humans and animals, symbionts of ubiquitous protozoa,[1] and marine sediment forms not yet well understood.[2] All of the Chlamydiae that humans have known about for many decades are obligate intracellular bacteria; in 2020 many additional Chlamydiae were discovered in ocean-floor environments, and it is not yet known whether they all have hosts.[2] Historically it was believed that all Chlamydiae had a peptidoglycan-free cell wall, but studies in the 2010s demonstrated a detectable presence of peptidoglycan, as well as other important proteins.[3][4][5][6][7][8]

Among the Chlamydiae, all of the ones long known to science grow only by infecting eukaryotic host cells. They are as small as or smaller than many viruses. They are ovoid in shape and stain Gram-negative. They are dependent on replication inside the host cells; thus, some species are termed obligate intracellular pathogens and others are symbionts of ubiquitous protozoa. Most intracellular Chlamydiae are located in an inclusion body or vacuole. Outside cells, they survive only as an extracellular infectious form. These Chlamydiae can grow only where their host cells grow, and develop according to a characteristic biphasic developmental cycle.[9][10][11] Therefore, clinically relevant Chlamydiae cannot be propagated in bacterial culture media in the clinical laboratory. They are most successfully isolated while still inside their host cells.

Of various Chlamydiae that cause human disease, the two most important species are Chlamydia pneumoniae, which causes a type of pneumonia, and Chlamydia trachomatis, which causes chlamydia. Chlamydia is the most common bacterial sexually transmitted infection in the United States, and 2.86 million chlamydia infections are reported annually.

History

Chlamydia-like disease affecting the eyes of people was first described in ancient Chinese and Egyptian manuscripts. A modern description of chlamydia-like organisms was provided by Halberstaedrrter and von Prowazek in 1907. Chlamydial isolates cultured in the yolk sacs of embryonating eggs were obtained from a human pneumonitis outbreak in the late 1920s and early 1930s, and by the mid-20th century, isolates had been obtained from dozens of vertebrate species. The term chlamydia (a cloak) appeared in the literature in 1945, although other names continued to be used, including Bedsonia, Miyagawanella, ornithosis-, TRIC-, and PLT-agents. In 1956, Chlamydia trachomatis was first cultured by Tang Fei-fan, though they were not yet recognized as bacteria.[12]

Nomenclature

In 1966, Chlamydiae were recognized as bacteria and the genus Chlamydia was validated.[13] The order Chlamydiales was created by Storz and Page in 1971. The class Chlamydiia was recently validly published.[14][15][16] Between 1989 and 1999, new families, genera, and species were recognized. The phylum Chlamydiae was established in Bergey's Manual of Systematic Bacteriology.[17] By 2006, genetic data for over 350 chlamydial lineages had been reported.[18] Discovery of ocean-floor forms reported in 2020 involves new clades.[2]

Taxonomy and molecular signatures

The Chlamydiae currently contain eight validly named genera, and 14 genera.[19] The phylum presently consist of two orders (Chlamydiales, Parachlamydiales) and nine families within a single class (Chlamydiia).[14][15] Only four of these families are validly named (Chlamydiaceae, Parachlamydiaceae, Simkaniaceae, Waddliaceae)[20][21] while five are described as families (Clavichlamydiaceae, Criblamydiaceae, Parilichlamydiaceae, Piscichlamydiaceae, and Rhabdochlamydiaceae).[22][23][24] The Chlamydiales order as recently described contains the families Chlamydiaceae, and the Clanchiamydiaceae, while the new Parachlamydiales order harbors the remaining seven families.[14] This proposal is supported by the observation of two distinct phylogenetic clades that warrant taxonomic ranks above the family level. Molecular signatures in the form of conserved indels (CSIs) and proteins (CSPs) have been found to be uniquely shared by each separate order, providing a means of distinguishing each clade from the other and supporting the view of shared ancestry of the families within each order.[14][25] The distinctness of the two orders is also supported by the fact that no CSIs were found among any other combination of families.

Molecular signatures have also been found that are exclusive for the family Chlamydiaceae.[14][25] The Chlamydiaceae originally consisted of one genus, Chlamydia, but in 1999 was split into two genera, Chlamydophila and Chlamydia. The genera have since 2015 been reunited where species belonging to the genus Chlamydophila have been reclassified as Chlamydia species.[26][27] However, CSIs and CSPs have been found specifically for Chlamydophila species, supporting their distinctness from Chlamydia, perhaps warranting additional consideration of two separate groupings within the family.[14][25] CSIs and CSPs have also been found that are exclusively shared by all Chlamydia that are further indicative of a lineage independent from Chlamydophila, supporting a means to distinguish Chlamydia species from neighbouring Chlamydophila members.

Phylogenetics

The Chlamydiae form a unique bacterial evolutionary group that separated from other bacteria about a billion years ago, and can be distinguished by the presence of several CSIs and CSPs.[14][25][28][29] The species from this group can be distinguished from all other bacteria by the presence of conserved indels in a number of proteins and by large numbers of signature proteins that are uniquely present in different Chlamydiae species.[30][31] Reports have varied as to whether the Chlamydiae are related to the Planctomycetales or Spirochaetes.[32][33] Genome sequencing, however, indicates that 11% of the genes in Protochlamydia amoebophila UWE25 and 4% in the Chlamydiaceae are most similar to chloroplast, plant, and cyanobacterial genes.[29] Cavalier-Smith has postulated that the Chlamydiae fall into the clade Planctobacteria in the larger clade Gracilicutes. However, phylogeny and shared presence of CSIs in proteins that are lineage-specific indicate that the Verrucomicrobia are the closest free-living relatives of these parasitic organisms.[34] Comparison of ribosomal RNA genes has provided a phylogeny of known strains within Chlamydiae.[18]

Human pathogens and diagnostics

Three species of Chlamydiae that commonly infect humans are described:

The unique physiological status of the Chlamydiae including their biphasic lifecycle and obligation to replicate within a eukaryotic host has enabled the use of DNA analysis for chlamydial diagnostics.[35] Horizontal transfer of genes is evident and complicates this area of research. In one extreme example, two genes encoding histone-like H1 proteins of eukaryotic origin have been found in the prokaryotic genome of C. trachomatis, an obligate intracellular pathogen.

Phylogeny

The phylogeny is based on 16S rRNA-based LTP release 123 by The All-Species Living Tree Project.[36]

Waddliaceae

Waddlia chondrophila Rurangirwa et al. 1999

Simkaniaceae

Simkania negevensis Everett, Bush & Andersen 1999

Parachlamydiaceae

Neochlamydia hartmannellae Horn et al. 2001

Parachlamydia acanthamoebae Everett, Bush & Andersen 1999

Chlamydiaceae

Chlamydophila pneumoniae (Grayston et al. 1989) Everett, Bush & Andersen 1999

Chlamydophila

C. felis Everett, Bush & Andersen 1999

C. psittaci (Lillie 1930) Everett, Bush & Andersen 1999

C. caviae Everett, Bush & Andersen 1999

C. abortus Everett, Bush & Andersen 1999

Chlamydia

C. pecorum Fukushi and Hirai 1992

C. muridarum Everett, Bush & Andersen 1999

C. suis Everett, Bush & Andersen 1999

C. trachomatis (Busacca 1935) Rake 1957 emend. Everett, Bush & Andersen 1999

Taxonomy

The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN)[37] and the NCBI[38]

  • Genus ? Piscichlamydia Draghi et al. 2004
    • Species Piscichlamydia salmonis Draghi et al. 2004
  • Family ? Actinochlamydiaceae Steigen et al. 2013
    • Genus Actinochlamydia Steigen et al. 2013
      • Species Actinochlamydia clariae Steigen et al. 2013
  • Family ? Clavichlamydiaceae Horn 2011
    • Genus Clavichlamydia corrig. Karlsen et al. 2008
      • Species Clavichlamydia salmonicola corrig. Karlsen et al. 2008
  • Family ? Parilichlamydiaceae Stride et al. 2013
    • Genus Parilichlamydia Stride et al. 2013
      • Species Parilichlamydia carangidicola Stride et al. 2013
    • Genus Similichlamydia Stride et al. 2013
      • Species S. latridicola Stride et al. 2013
      • Species S. labri Steigen et al. 2015
  • Family Criblamydiaceae Thomas, Casson & Greub 2006
    • Criblamydia Thomas, Casson & Greub 2006
      • Species Criblamydia sequanensis Thomas, Casson & Greub 2006
    • Estrella Thomas et al. 2006
      • Species Estrella lausannensis Corsaro, Feroldi & Greub 2007
  • Family Rhabdochlamydiaceae Corsaro et al. 2009
    • Genus Renichlamydia Corsaro & Work 2012
      • Species Renichlamydia lutjani Corsaro & Work 2012
    • Genus Rhabdochlamydia Kostanjsek et al. 2004
      • Species R. crassificans Corsaro et al. 2007
      • Species R. porcellionis Kostanjsek et al. 2004
  • Family Chlamydiaceae Rake 1957 emend. Everett, Bush & Andersen 1999
    • Genus Amphibiichlamydia Martel et al. 2012
      • Species A. ranarum Martel et al. 2013
      • Species A. salamandrae Martel et al. 2012
    • Genus Rubidus Pagnier et al. 2015
      • Species Rubidus massiliensis Pagnier et al. 2015
    • Genus Chlamydia Jones et al. 1945 emend. Everett, Bush & Andersen 1999
      • Species ? C. ibidis Vorimore et al. 2013
      • Species C. avium Sachse et al. 2015
      • Species C. gallinacea Sachse et al. 2015
      • Species C. pecorum Fukushi & Hirai 1992
      • Species C. muridarum Everett, Bush & Andersen 1999
      • Species C. trachomatis (Busacca 1935) Rake 1957 emend. Everett, Bush & Andersen 1999
      • Species Chlamydia pneumoniae Grayston et al. 1989
    • Genus Chlamydophila Everett, Bush & Andersen 1999
      • Species C. felis Everett et al. 1999
      • Species C. psittaci (Lillie 1930) Everett, Bush & Andersen 1999
      • Species C. abortus Everett, Bush & Andersen 1999
      • Species C. caviae Everett, Bush & Andersen 1999
  • Family Parachlamydiaceae Everett, Bush & Andersen 1999
    • Genus ? Mesochlamydia Corsaro et al. 2012
      • Species Mesochlamydia elodeae Corsaro et al. 2012
    • Genus ? Metachlamydia Corsaro et al. 2010
      • Species Metachlamydia lacustris Corsaro et al. 2010
    • Genus ? Protochlamydia Collingro et al. 2005
      • Species P. amoebophila Collingro et al. 2005
      • Species P. naegleriophila Casson et al. 2006
    • Genus Neochlamydia Horn et al. 2001
    • Genus Parachlamydia Everett, Bush & Andersen 1999
  • Family Simkaniaceae Everett, Bush & Andersen 1999
    • Genus ? Fritschea Everett et al. 2005
      • Species F. bemisiae Everett et al. 2005
      • Species F. eriococci Everett et al. 2005
    • Genus ? Neptunochlamydia Pizzetti et al. 2016
      • Species Neptunochlamydia vexilliferae Pizzetti et al. 2016
    • Genus ? Syngnamydia Fehr et al. 2013
      • Species S. salmonis Nylund et al. 2015
      • Species S. venezia Fehr et al. 2013
    • Genus Simkania Everett, Bush & Andersen 1999
      • Species Simkania negevensis Everett, Bush & Andersen 1999
  • Family Waddliaceae Rurangirwa et al. 1999
    • Genus Waddlia Rurangirwa et al. 1999
      • Species W. chondrophila Rurangirwa et al. 1999
      • Species W. malaysiensis Chua et al. 2005

References

  1. "Metabolic features of Protochlamydia amoebophila elementary bodies--a link between activity and infectivity in Chlamydiae". PLoS Pathogens 9 (8): e1003553. 2013. doi:10.1371/journal.ppat.1003553. PMID 23950718. 
  2. 2.0 2.1 2.2 "Marine Sediments Illuminate Chlamydiae Diversity and Evolution". Current Biology 30 (6): 1032–1048.e7. March 2020. doi:10.1016/j.cub.2020.02.016. PMID 32142706. 
  3. "Discovery of chlamydial peptidoglycan reveals bacteria with murein sacculi but without FtsZ". Nature Communications 4 (1): 2856. 2013-12-02. doi:10.1038/ncomms3856. PMID 24292151. 
  4. "The role of peptidoglycan in chlamydial cell division: towards resolving the chlamydial anomaly". FEMS Microbiology Reviews 39 (2): 262–275. March 2015. doi:10.1093/femsre/fuv001. PMID 25670734. 
  5. "Genital Chlamydia trachomatis: an update". The Indian Journal of Medical Research 138 (3): 303–316. September 2013. PMID 24135174. 
  6. "A new metabolic cell-wall labelling method reveals peptidoglycan in Chlamydia trachomatis". Nature 506 (7489): 507–510. February 2014. doi:10.1038/nature12892. PMID 24336210. 
  7. "Pathogenic Chlamydia Lack a Classical Sacculus but Synthesize a Narrow, Mid-cell Peptidoglycan Ring, Regulated by MreB, for Cell Division". PLoS Pathogens 12 (5): e1005590. May 2016. doi:10.1371/journal.ppat.1005590. PMID 27144308. 
  8. "Origin of diderm (Gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes". Antonie Van Leeuwenhoek 100 (2): 171–182. August 2011. doi:10.1007/s10482-011-9616-8. PMID 21717204. 
  9. "Chlamydiae as symbionts in eukaryotes". Annual Review of Microbiology 62: 113–131. 2008. doi:10.1146/annurev.micro.62.081307.162818. PMID 18473699. 
  10. "The chlamydial developmental cycle". FEMS Microbiology Reviews 29 (5): 949–959. November 2005. doi:10.1016/j.femsre.2005.03.002. PMID 16043254. 
  11. "Illuminating the evolutionary history of chlamydiae". Science 304 (5671): 728–730. April 2004. doi:10.1126/science.1096330. PMID 15073324. Bibcode2004Sci...304..728H. 
  12. Philip S. Brachman and Elias Abrutyn (2009-07-23). Bacterial Infections of Humans: Epidemiology and Control. ISBN 9780387098425. 
  13. "The relation of the psittacosis group (Chlamydiae) to bacteria and viruses". Annual Review of Microbiology 20: 107–130. 1966. doi:10.1146/annurev.mi.20.100166.000543. PMID 5330228. 
  14. 14.0 14.1 14.2 14.3 14.4 14.5 14.6 "A phylogenomic and molecular markers based analysis of the phylum Chlamydiae: proposal to divide the class Chlamydiia into two orders, Chlamydiales and Parachlamydiales ord. nov., and emended description of the class Chlamydiia". Antonie Van Leeuwenhoek 108 (3): 765–781. September 2015. doi:10.1007/s10482-015-0532-1. PMID 26179278. 
  15. 15.0 15.1 "List of new names and new combinations previously effectively, but not validly, published". International Journal of Systematic and Evolutionary Microbiology 66 (7): 2463–2466. July 2016. doi:10.1099/ijsem.0.001149. PMID 27530111. 
  16. "Taxonomy of the Chlamydiae: reasons for classifying organisms of the genus Chlamydia, family Chlamydiaceae, in a separate order, Chlamydiales ord. nov". International Journal of Systematic Bacteriology 21 (4): 332–334. 1971. doi:10.1099/00207713-21-4-332. 
  17. Bergey's Manual of Systematic Bacteriology Volume 1: The Archaea and the Deeply Branching and Phototrophic Bacteria (2nd ed.). Springer. 2001. ISBN 978-0-387-98771-2. https://archive.org/details/bergeysmanualofs00boon. 
  18. 18.0 18.1 "Novel chlamydiae in whiteflies and scale insects: endosymbionts 'Candidatus Fritschea bemisiae' strain Falk and 'Candidatus Fritschea eriococci' strain Elm". International Journal of Systematic and Evolutionary Microbiology 55 (Pt 4): 1581–1587. July 2005. doi:10.1099/ijs.0.63454-0. PMID 16014485. 
  19. Sayers. "Chlamydiia". National Center for Biotechnology Information (NCBI) taxonomy database. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Tree&id=204429&lvl=3&p=mapview&p=has_linkout&p=blast_url&p=genome_blast&lin=f&keep=1&srchmode=1&unlock. 
  20. "Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms". International Journal of Systematic Bacteriology 49 (Pt 2): 415–440. April 1999. doi:10.1099/00207713-49-2-415. PMID 10319462. 
  21. "Analysis of the 16S rRNA gene of micro-organism WSU 86-1044 from an aborted bovine foetus reveals that it is a member of the order Chlamydiales: proposal of Waddliaceae fam. nov., Waddlia chondrophila gen. nov., sp. nov". International Journal of Systematic Bacteriology 49 (Pt 2): 577–581. April 1999. doi:10.1099/00207713-49-2-577. PMID 10319478. 
  22. "Criblamydia sequanensis, a new intracellular Chlamydiales isolated from Seine river water using amoebal co-culture". Environmental Microbiology 8 (12): 2125–2135. December 2006. doi:10.1111/j.1462-2920.2006.01094.x. PMID 17107554. 
  23. "Molecular characterization of "Candidatus Parilichlamydia carangidicola," a novel Chlamydia-like epitheliocystis agent in yellowtail kingfish, Seriola lalandi (Valenciennes), and the proposal of a new family, "Candidatus Parilichlamydiaceae" fam. nov. (order Chlamydiales)". Applied and Environmental Microbiology 79 (5): 1590–1597. March 2013. doi:10.1128/AEM.02899-12. PMID 23275507. 
  24. Kuo C-C, Horn M, Stephens RS (2011) Order I. Chlamydiales. In: Bergey's Manual of Systematic Bacteriology, vol. 4, 2nd ed. pp. 844-845. Eds Krieg N, Staley J, Brown D, Hedlund B, Paster B, Ward N, Ludwig W, Whitman W. Springer-: New York.
  25. 25.0 25.1 25.2 25.3 "BLAST screening of chlamydial genomes to identify signature proteins that are unique for the Chlamydiales, Chlamydiaceae, Chlamydophila and Chlamydia groups of species". BMC Genomics 7: 14. January 2006. doi:10.1186/1471-2164-7-14. PMID 16436211. 
  26. "Emendation of the family Chlamydiaceae: proposal of a single genus, Chlamydia, to include all currently recognized species". Systematic and Applied Microbiology 38 (2): 99–103. March 2015. doi:10.1016/j.syapm.2014.12.004. PMID 25618261. 
  27. "List of new names and new combinations previously effectively, but not validly, published". Int J Syst Evol Microbiol 65 (7): 2017–2025. 2015. doi:10.1099/ijs.0.000317. 
  28. "History of the ADP/ATP-translocase-encoding gene, a parasitism gene transferred from a Chlamydiales ancestor to plants 1 billion years ago". Applied and Environmental Microbiology 69 (9): 5530–5535. September 2003. doi:10.1128/AEM.69.9.5530-5535.2003. PMID 12957942. 
  29. 29.0 29.1 "Illuminating the evolutionary history of chlamydiae". Science 304 (5671): 728–730. April 2004. doi:10.1126/science.1096330. PMID 15073324. Bibcode2004Sci...304..728H. 
  30. "Conserved indels in essential proteins that are distinctive characteristics of Chlamydiales and provide novel means for their identification". Microbiology 151 (Pt 8): 2647–2657. August 2005. doi:10.1099/mic.0.28057-0. PMID 16079343. 
  31. "Chlamydiae-specific proteins and indels: novel tools for studies". Trends in Microbiology 14 (12): 527–535. December 2006. doi:10.1016/j.tim.2006.10.002. PMID 17049238. 
  32. "Comparative phylogenetic analyses of members of the order Planctomycetales and the division Verrucomicrobia: 23S rRNA gene sequence analysis supports the 16S rRNA gene sequence-derived phylogeny". International Journal of Systematic and Evolutionary Microbiology 50 (Pt 6): 1965–1972. November 2000. doi:10.1099/00207713-50-6-1965. PMID 11155969. 
  33. "Evaluation of the phylogenetic position of the planctomycete 'Rhodopirellula baltica' SH 1 by means of concatenated ribosomal protein sequences, DNA-directed RNA polymerase subunit sequences and whole genome trees". International Journal of Systematic and Evolutionary Microbiology 54 (Pt 3): 791–801. May 2004. doi:10.1099/ijs.0.02913-0. PMID 15143026. 
  34. "Phylogeny and shared conserved inserts in proteins provide evidence that Verrucomicrobia are the closest known free-living relatives of chlamydiae". Microbiology 153 (Pt 8): 2648–2654. August 2007. doi:10.1099/mic.0.2007/009118-0. PMID 17660429. 
  35. "Pathogenic potential of novel Chlamydiae and diagnostic approaches to infections due to these obligate intracellular bacteria". Clinical Microbiology Reviews 19 (2): 283–297. April 2006. doi:10.1128/CMR.19.2.283-297.2006. PMID 16614250. 
  36. All-Species Living Tree Project [1]. Data extracted from the "16S rRNA-based LTP release 123 (full tree)". Silva Comprehensive Ribosomal RNA Database. http://www.arb-silva.de/fileadmin/silva_databases/living_tree/LTP_release_123/LTPs123_SSU_tree.pdf. 
  37. List of Prokaryotic names with Standing in Nomenclature. Data extracted from the "Chlamydiae". http://www.bacterio.cict.fr/classifphyla.html#Chlamydiae. 
  38. National Center for Biotechnology Information [2] Data extracted from Sayers. "Chlamydiae". National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Undef&id=204428&lvl=7&lin=f&keep=1&srchmode=1&unlock. 

External links

Wikidata ☰ Q875679 entry