Pentellated 6-orthoplexes

From HandWiki
Revision as of 20:13, 17 May 2023 by WikiGary (talk | contribs) (change)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Orthogonal projections in B6 Coxeter plane
6-cube t0.svg
6-orthoplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
6-cube t05.svg
Pentellated 6-orthoplex
Pentellated 6-cube
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
6-cube t5.svg
6-cube
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
6-cube t045.svg
Pentitruncated 6-orthoplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
6-cube t035.svg
Penticantellated 6-orthoplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
6-cube t0345.svg
Penticantitruncated 6-orthoplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
6-cube t0245.svg
Pentiruncitruncated 6-orthoplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
6-cube t0235.svg
Pentiruncicantellated 6-cube
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
6-cube t02345.svg
Pentiruncicantitruncated 6-orthoplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
6-cube t0145.svg
Pentisteritruncated 6-cube
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
6-cube t01345.svg
Pentistericantitruncated 6-orthoplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
6-cube t012345.svg
Pentisteriruncicantitruncated 6-orthoplex
(Omnitruncated 6-cube)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png

In six-dimensional geometry, a pentellated 6-orthoplex is a convex uniform 6-polytope with 5th order truncations of the regular 6-orthoplex.

There are unique 16 degrees of pentellations of the 6-orthoplex with permutations of truncations, cantellations, runcinations, and sterications. Ten are shown, with the other 6 more easily constructed as a pentellated 6-cube. The simple pentellated 6-orthoplex (Same as pentellated 5-cube) is also called an expanded 6-orthoplex, constructed by an expansion operation applied to the regular 6-orthoplex. The highest form, the pentisteriruncicantitruncated 6-orthoplex, is called an omnitruncated 6-orthoplex with all of the nodes ringed.

Pentitruncated 6-orthoplex

Pentitruncated 6-orthoplex
Type uniform 6-polytope
Schläfli symbol t0,1,5{3,3,3,3,4}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Edges 8640
Vertices 1920
Vertex figure
Coxeter groups B6, [4,3,3,3,3]
Properties convex

Alternate names

  • Teritruncated hexacontatetrapeton (Acronym: tacox) (Jonathan Bowers)[1]

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph 6-cube t015.svg 6-cube t015 B5.svg 6-cube t015 B4.svg
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph 6-cube t015 B3.svg 6-cube t015 B2.svg
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 6-cube t015 A5.svg 6-cube t015 A3.svg
Dihedral symmetry [6] [4]

Penticantellated 6-orthoplex

Penticantellated 6-orthoplex
Type uniform 6-polytope
Schläfli symbol t0,2,5{3,3,3,3,4}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Edges 21120
Vertices 3840
Vertex figure
Coxeter groups B6, [4,3,3,3,3]
Properties convex

Alternate names

  • Terirhombated hexacontitetrapeton (Acronym: tapox) (Jonathan Bowers)[2]

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph 6-cube t035.svg 6-cube t035 B5.svg 6-cube t035 B4.svg
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph 6-cube t035 B3.svg 6-cube t035 B2.svg
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 6-cube t035 A5.svg 6-cube t035 A3.svg
Dihedral symmetry [6] [4]

Penticantitruncated 6-orthoplex

Penticantitruncated 6-orthoplex
Type uniform 6-polytope
Schläfli symbol t0,1,2,5{3,3,3,3,4}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Edges 30720
Vertices 7680
Vertex figure
Coxeter groups B6, [4,3,3,3,3]
Properties convex

Alternate names

  • Terigreatorhombated hexacontitetrapeton (Acronym: togrig) (Jonathan Bowers)[3]

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph 6-cube t0345.svg 6-cube t0345 B5.svg 6-cube t0345 B4.svg
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph 6-cube t0345 B3.svg 6-cube t0345 B2.svg
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 6-cube t0345 A5.svg 6-cube t0345 A3.svg
Dihedral symmetry [6] [4]

Pentiruncitruncated 6-orthoplex

Pentiruncitruncated 6-orthoplex
Type uniform 6-polytope
Schläfli symbol t0,1,3,5{3,3,3,3,4}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Edges 51840
Vertices 11520
Vertex figure
Coxeter groups B6, [4,3,3,3,3]
Properties convex

Alternate names

  • Teriprismatotruncated hexacontitetrapeton (Acronym: tocrax) (Jonathan Bowers)[4]

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph 6-cube t0135.svg 6-cube t0135 B5.svg 6-cube t0135 B4.svg
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph 6-cube t0135 B3.svg 6-cube t0135 B2.svg
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 6-cube t0135 A5.svg 6-cube t0135 A3.svg
Dihedral symmetry [6] [4]

Pentiruncicantitruncated 6-orthoplex

Pentiruncicantitruncated 6-orthoplex
Type uniform 6-polytope
Schläfli symbol t0,1,2,3,5{3,3,3,3,4}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Edges 80640
Vertices 23040
Vertex figure
Coxeter groups B6, [4,3,3,3,3]
Properties convex

Alternate names

  • Terigreatoprismated hexacontitetrapeton (Acronym: tagpog) (Jonathan Bowers)[5]

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph 6-cube t01345.svg 6-cube t01345 B5.svg 6-cube t01345 B4.svg
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph 6-cube t01345 B3.svg 6-cube t01345 B2.svg
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 6-cube t01345 A5.svg 6-cube t01345 A3.svg
Dihedral symmetry [6] [4]

Pentistericantitruncated 6-orthoplex

Pentistericantitruncated 6-orthoplex
Type uniform 6-polytope
Schläfli symbol t0,1,2,4,5{3,3,3,3,4}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Edges 80640
Vertices 23040
Vertex figure
Coxeter groups B6, [4,3,3,3,3]
Properties convex

Alternate names

  • Tericelligreatorhombated hexacontitetrapeton (Acronym: tecagorg) (Jonathan Bowers)[6]

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph 6-cube t01345.svg 6-cube t01345 B5.svg 6-cube t01345 B4.svg
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph 6-cube t01345 B3.svg 6-cube t01345 B2.svg
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 6-cube t01345 A5.svg 6-cube t01345 A3.svg
Dihedral symmetry [6] [4]


Related polytopes

These polytopes are from a set of 63 uniform 6-polytopes generated from the B6 Coxeter plane, including the regular 6-cube or 6-orthoplex.


Notes

  1. Klitzing, (x4o3o3o3x3x - tacox)
  2. Klitzing, (x4o3o3x3o3x - tapox)
  3. Klitzing, (x4o3o3x3x3x - togrig)
  4. Klitzing, (x4o3x3o3x3x - tocrax)
  5. Klitzing, (x4x3o3x3x3x - tagpog)
  6. Klitzing, (x4x3o3x3x3x - tecagorg)

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN:978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Klitzing, Richard. "6D uniform polytopes (polypeta)". https://bendwavy.org/klitzing/dimensions/polypeta.htm.  x4o3o3o3x3x - tacox, x4o3o3x3o3x - tapox, x4o3o3x3x3x - togrig, x4o3x3o3x3x - tocrax, x4x3o3x3x3x - tagpog, x4x3o3x3x3x - tecagorg

External links

Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform 4-polytope 5-cell 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds