D5 polytope

From HandWiki
Revision as of 22:39, 17 May 2023 by Raymond Straus (talk | contribs) (update)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Orthographic projections in the D5 Coxeter plane
5-demicube t0 D5.svg
5-demicube
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-cube t4 B4.svg
5-orthoplex
CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png

In 5-dimensional geometry, there are 23 uniform polytopes with D5 symmetry, 8 are unique, and 15 are shared with the B5 symmetry. There are two special forms, the 5-orthoplex, and 5-demicube with 10 and 16 vertices respectively.

They can be visualized as symmetric orthographic projections in Coxeter planes of the D6 Coxeter group, and other subgroups.

Graphs

Symmetric orthographic projections of these 8 polytopes can be made in the D5, D4, D3, A3, Coxeter planes. Ak has [k+1] symmetry, Dk has [2(k-1)] symmetry. The B5 plane is included, with only half the [10] symmetry displayed.

These 8 polytopes are each shown in these 5 symmetry planes, with vertices and edges drawn, and vertices colored by the number of overlapping vertices in each projective position.

# Coxeter plane projections Coxeter diagram
CDel nodes 10ru.pngCDel split2.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c3.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c3.png
Schläfli symbol
Johnson and Bowers names
[10/2] [8] [6] [4] [4]
B5 D5 D4 D3 A3
1 5-demicube t0 B5.svg 5-demicube t0 D5.svg 5-demicube t0 D4.svg 5-demicube t0 D3.svg 5-demicube t0 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
h{4,3,3,3}
5-demicube
Hemipenteract (hin)
2 5-demicube t01 B5.svg 5-demicube t01 D5.svg 5-demicube t01 D4.svg 5-demicube t01 D3.svg 5-demicube t01 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
h2{4,3,3,3}
Cantic 5-cube
Truncated hemipenteract (thin)
3 5-demicube t02 B5.svg 5-demicube t02 D5.svg 5-demicube t02 D4.svg 5-demicube t02 D3.svg 5-demicube t02 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
h3{4,3,3,3}
Runcic 5-cube
Small rhombated hemipenteract (sirhin)
4 5-demicube t03 B5.svg 5-demicube t03 D5.svg 5-demicube t03 D4.svg 5-demicube t03 D3.svg 5-demicube t03 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
h4{4,3,3,3}
Steric 5-cube
Small prismated hemipenteract (siphin)
5 5-demicube t012 B5.svg 5-demicube t012 D5.svg 5-demicube t012 D4.svg 5-demicube t012 D3.svg 5-demicube t012 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
h2,3{4,3,3,3}
Runcicantic 5-cube
Great rhombated hemipenteract (girhin)
6 5-demicube t013 B5.svg 5-demicube t013 D5.svg 5-demicube t013 D4.svg 5-demicube t013 D3.svg 5-demicube t013 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
h2,4{4,3,3,3}
Stericantic 5-cube
Prismatotruncated hemipenteract (pithin)
7 5-demicube t023 B5.svg 5-demicube t023 D5.svg 5-demicube t023 D4.svg 5-demicube t023 D3.svg 5-demicube t023 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
h3,4{4,3,3,3}
Steriruncic 5-cube
Prismatorhombated hemipenteract (pirhin)
8 5-demicube t0123 B5.svg 5-demicube t0123 D5.svg 5-demicube t0123 D4.svg 5-demicube t0123 D3.svg 5-demicube t0123 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
h2,3,4{4,3,3,3}
Steriruncicantic 5-cube
Great prismated hemipenteract (giphin)

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN:978-0-471-01003-6 [1]
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
  • Klitzing, Richard. "5D uniform polytopes (polytera)". https://bendwavy.org/klitzing/dimensions/polytera.htm. 

Notes

Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform 4-polytope 5-cell 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds