Stericated 7-cubes

From HandWiki
Revision as of 07:20, 27 June 2023 by OrgMain (talk | contribs) (correction)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Orthogonal projections in B6 Coxeter plane
7-cube t0 B6.svg
7-cube
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
7-cube t04 B6.svg
Stericated 7-cube
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
7-cube t15 B6.svg
Bistericated 7-cube
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
7-cube t014 B6.svg
Steritruncated 7-cube
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
7-cube t125 B6.svg
Bisteritruncated 7-cube
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
7-cube t024 B6.svg
Stericantellated 7-cube
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
7-cube t135 B6.svg
Bistericantellated 7-cube
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
7-cube t0124 B6.svg
Stericantitruncated 7-cube
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
7-cube t1235 B6.svg
Bistericantitruncated 7-cube
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
7-cube t034 B6.svg
Steriruncinated 7-cube
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
7-cube t0134 B6.svg
Steriruncitruncated 7-cube
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
7-cube t0234 B6.svg
Steriruncicantellated 7-cube
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
7-cube t1245 B6.svg
Bisteriruncitruncated 7-cube
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
7-cube t01234 B6.svg
Steriruncicantitruncated 7-cube
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
7-cube t12345 B6.svg
Bisteriruncicantitruncated 7-cube
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png

In seven-dimensional geometry, a stericated 7-cube is a convex uniform 7-polytope with 4th order truncations (sterication) of the regular 7-cube.

There are 24 unique sterication for the 7-cube with permutations of truncations, cantellations, and runcinations. 10 are more simply constructed from the 7-orthoplex.

This polytope is one of 127 uniform 7-polytopes with B7 symmetry.

Stericated 7-cube

Stericated 7-cube
Type uniform 7-polytope
Schläfli symbol t0,4{4,35}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Small cellated hepteract (acronym: ) (Jonathan Bowers)[1]

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph 7-cube t04.svg 7-cube t04 B6.svg 7-cube t04 B5.svg
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph 7-cube t04 B4.svg 7-cube t04 B3.svg 7-cube t04 B2.svg
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph 7-cube t04 A5.svg 7-cube t04 A3.svg
Dihedral symmetry [6] [4]

Bistericated 7-cube

bistericated 7-cube
Type uniform 7-polytope
Schläfli symbol t1,5{4,35}
Coxeter-Dynkin diagrams CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Small bicellated hepteractihecatonicosoctaexon (acronym: ) (Jonathan Bowers)[2]

Images

Steritruncated 7-cube

steritruncated 7-cube
Type uniform 7-polytope
Schläfli symbol t0,1,4{4,35}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Cellitruncated hepteract (acronym: ) (Jonathan Bowers)[3]

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph 7-cube t014.svg 7-cube t014 B6.svg 7-cube t014 B5.svg
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph 7-cube t014 B4.svg 7-cube t014 B3.svg 7-cube t014 B2.svg
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph 7-cube t014 A5.svg 7-cube t014 A3.svg
Dihedral symmetry [6] [4]

Bisteritruncated 7-cube

bisteritruncated 7-cube
Type uniform 7-polytope
Schläfli symbol t1,2,5{4,35}
Coxeter-Dynkin diagrams CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Bicellitruncated hepteract (acronym: ) (Jonathan Bowers)[4]

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph 7-cube t125.svg 7-cube t125 B6.svg 7-cube t125 B5.svg
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph 7-cube t125 B4.svg 7-cube t125 B3.svg 7-cube t125 B2.svg
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph 7-cube t125 A5.svg 7-cube t125 A3.svg
Dihedral symmetry [6] [4]

Stericantellated 7-cube

Stericantellated 7-cube
Type uniform 7-polytope
Schläfli symbol t0,2,4{4,35}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Cellirhombated hepteract (acronym: ) (Jonathan Bowers)[5]

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph 7-cube t024.svg 7-cube t024 B6.svg 7-cube t024 B5.svg
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph 7-cube t024 B4.svg 7-cube t024 B3.svg 7-cube t024 B2.svg
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph 7-cube t024 A5.svg 7-cube t024 A3.svg
Dihedral symmetry [6] [4]

Bistericantellated 7-cube

Bistericantellated 7-cube
Type uniform 7-polytope
Schläfli symbol t1,3,5{4,35}
Coxeter-Dynkin diagrams CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Bicellirhombihepteract (acronym: ) (Jonathan Bowers)[6]

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph 7-cube t135.svg 7-cube t135 B6.svg 7-cube t135 B5.svg
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph 7-cube t135 B4.svg 7-cube t135 B3.svg 7-cube t135 B2.svg
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph 7-cube t135 A5.svg 7-cube t135 A3.svg
Dihedral symmetry [6] [4]

Stericantitruncated 7-cube

stericantitruncated 7-cube
Type uniform 7-polytope
Schläfli symbol t0,1,2,4{4,35}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Celligreatorhombated hepteract (acronym: ) (Jonathan Bowers)[7]

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph 7-cube t0124.svg 7-cube t0124 B6.svg 7-cube t0124 B5.svg
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph 7-cube t0124 B4.svg 7-cube t0124 B3.svg 7-cube t0124 B2.svg
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph 7-cube t0124 A5.svg 7-cube t0124 A3.svg
Dihedral symmetry [6] [4]

Bistericantitruncated 7-cube

bistericantitruncated 7-cube
Type uniform 7-polytope
Schläfli symbol t1,2,3,5{4,35}
Coxeter-Dynkin diagrams CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Bicelligreatorhombated hepteract (acronym: ) (Jonathan Bowers)[8]

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph 7-cube t1235.svg 7-cube t1235 B6.svg 7-cube t1235 B5.svg
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph 7-cube t1235 B4.svg 7-cube t1235 B3.svg 7-cube t1235 B2.svg
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph 7-cube t1235 A5.svg 7-cube t1235 A3.svg
Dihedral symmetry [6] [4]

Steriruncinated 7-cube

Steriruncinated 7-cube
Type uniform 7-polytope
Schläfli symbol t0,3,4{4,35}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Celliprismated hepteract (acronym: ) (Jonathan Bowers)[9]

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph 7-cube t034.svg 7-cube t034 B6.svg 7-cube t034 B5.svg
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph 7-cube t034 B4.svg 7-cube t034 B3.svg 7-cube t034 B2.svg
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph 7-cube t034 A5.svg 7-cube t034 A3.svg
Dihedral symmetry [6] [4]

Steriruncitruncated 7-cube

steriruncitruncated 7-cube
Type uniform 7-polytope
Schläfli symbol t0,1,3,4{4,35}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Celliprismatotruncated hepteract (acronym: ) (Jonathan Bowers)[10]

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph 7-cube t0134.svg 7-cube t0134 B6.svg 7-cube t0134 B5.svg
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph 7-cube t0134 B4.svg 7-cube t0134 B3.svg 7-cube t0134 B2.svg
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph 7-cube t0134 A5.svg 7-cube t0134 A3.svg
Dihedral symmetry [6] [4]

Steriruncicantellated 7-cube

steriruncicantellated 7-cube
Type uniform 7-polytope
Schläfli symbol t0,2,3,4{4,35}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Celliprismatorhombated hepteract (acronym: ) (Jonathan Bowers)[11]

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph 7-cube t0234.svg 7-cube t0234 B6.svg 7-cube t0234 B5.svg
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph 7-cube t0234 B4.svg 7-cube t0234 B3.svg 7-cube t0234 B2.svg
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph 7-cube t0234 A5.svg 7-cube t0234 A3.svg
Dihedral symmetry [6] [4]

Bisteriruncitruncated 7-cube

bisteriruncitruncated 7-cube
Type uniform 7-polytope
Schläfli symbol t1,2,4,5{4,35}
Coxeter-Dynkin diagrams CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Bicelliprismatotruncated hepteractihecatonicosoctaexon (acronym: ) (Jonathan Bowers)[12]

Images

Steriruncicantitruncated 7-cube

steriruncicantitruncated 7-cube
Type uniform 7-polytope
Schläfli symbol t0,1,2,3,4{4,35}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Great cellated hepteract (acronym: ) (Jonathan Bowers)[13]

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph 7-cube t01234.svg 7-cube t01234 B6.svg 7-cube t01234 B5.svg
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph 7-cube t01234 B4.svg 7-cube t01234 B3.svg 7-cube t01234 B2.svg
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph too complex too complex
Dihedral symmetry [6] [4]

Bisteriruncicantitruncated 7-cube

bisteriruncicantitruncated 7-cube
Type uniform 7-polytope
Schläfli symbol t1,2,3,4,5{4,35}
Coxeter-Dynkin diagrams CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Great bicellated hepteractihecatonicosoctaexon (Acronym ) (Jonathan Bowers) [14]

Images

Notes

  1. Klitizing, (x3o3o3o3x3o4o - )
  2. Klitizing, (x3o3x3o3x3o4o - )
  3. Klitizing, (x3x3o3o3x3o4o - )
  4. Klitizing, (o3x3x3o3o3x4o - )
  5. Klitizing, (x3o3x3o3x3o4o - )
  6. Klitizing, (o3x3o3x3o3x4o - )
  7. Klitizing, (x3x3x3o3x3o4o - )
  8. Klitizing, (o3x3x3x3o3x4o - )
  9. Klitizing, (x3o3o3x3x3o4o - )
  10. Klitizing, (x3x3x3o3x3o4o - )
  11. Klitizing, (x3o3x3x3x3o4o - )
  12. Klitizing, (o3x3x3o3x3x4o - )
  13. Klitizing, (x3x3x3x3x3o4o - )
  14. Klitizing, (o3x3x3x3x3x4o - )

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN:978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Klitzing, Richard. "7D uniform polytopes (polyexa)". https://bendwavy.org/klitzing/dimensions/polyexa.htm.  x3o3o3o3x3o4o - , x3o3x3o3x3o4o - , x3x3o3o3x3o4o - , o3x3x3o3o3x4o - , x3o3x3o3x3o4o - , o3x3o3x3o3x4o - , x3x3x3o3x3o4o - , o3x3x3x3o3x4o - , x3o3o3x3x3o4o - , x3x3x3o3x3o4o - , x3o3x3x3x3o4o - , o3x3x3o3x3x4o - , x3x3x3x3x3o4o - , o3x3x3x3x3x4o -

External links

Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform 4-polytope 5-cell 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds