Truncated 5-cubes

From HandWiki
Revision as of 08:14, 27 June 2023 by Pchauhan2001 (talk | contribs) (fixing)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
5-cube t0.svg
5-cube
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-cube t01.svg
Truncated 5-cube
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-cube t12.svg
Bitruncated 5-cube
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-cube t4.svg
5-orthoplex
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5-cube t34.svg
Truncated 5-orthoplex
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
5-cube t23.svg
Bitruncated 5-orthoplex
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Orthogonal projections in B5 Coxeter plane

In five-dimensional geometry, a truncated 5-cube is a convex uniform 5-polytope, being a truncation of the regular 5-cube.

There are four unique truncations of the 5-cube. Vertices of the truncated 5-cube are located as pairs on the edge of the 5-cube. Vertices of the bitruncated 5-cube are located on the square faces of the 5-cube. The third and fourth truncations are more easily constructed as second and first truncations of the 5-orthoplex.

Truncated 5-cube

Truncated 5-cube
Type uniform 5-polytope
Schläfli symbol t{4,3,3,3}
Coxeter-Dynkin diagram CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
4-faces 42 10 CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png 4-cube t01.svg
32 CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png 4-simplex t0.svg
Cells 200 40 CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png 3-cube t01.svg
160 CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png 3-simplex t0.svg
Faces 400 80 CDel node 1.pngCDel 4.pngCDel node 1.png Regular octagon.svg
320 CDel node 1.pngCDel 3.pngCDel node.png 2-simplex t0.svg
Edges 400 80 CDel node 1.png
320 CDel node 1.png
Vertices 160
Vertex figure Truncated 5-cube verf.png
( )v{3,3}
Coxeter group B5, [3,3,3,4], order 3840
Properties convex

Alternate names

  • Truncated penteract (Acronym: tan) (Jonathan Bowers)

Construction and coordinates

The truncated 5-cube may be constructed by truncating the vertices of the 5-cube at [math]\displaystyle{ 1/(\sqrt{2}+2) }[/math] of the edge length. A regular 5-cell is formed at each truncated vertex.

The Cartesian coordinates of the vertices of a truncated 5-cube having edge length 2 are all permutations of:

[math]\displaystyle{ \left(\pm1,\ \pm(1+\sqrt{2}),\ \pm(1+\sqrt{2}),\ \pm(1+\sqrt{2}),\ \pm(1+\sqrt{2})\right) }[/math]

Images

The truncated 5-cube is constructed by a truncation applied to the 5-cube. All edges are shortened, and two new vertices are added on each original edge.

orthographic projections
Coxeter plane B5 B4 / D5 B3 / D4 / A2
Graph 5-cube t01.svg 5-cube t01 B4.svg 5-cube t01 B3.svg
Dihedral symmetry [10] [8] [6]
Coxeter plane B2 A3
Graph 5-cube t01 B2.svg 5-cube t01 A3.svg
Dihedral symmetry [4] [4]

Related polytopes

The truncated 5-cube, is fourth in a sequence of truncated hypercubes:

Bitruncated 5-cube

Bitruncated 5-cube
Type uniform 5-polytope
Schläfli symbol 2t{4,3,3,3}
Coxeter-Dynkin diagrams CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
4-faces 42 10 CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png 4-cube t12.svg
32 CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png 4-simplex t01.svg
Cells 280 40 CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png 3-cube t12.svg
160 CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png 25px|link=Truncated tetrahedron
80 CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png 3-simplex t0.svg
Faces 720 80 CDel node.pngCDel 4.pngCDel node 1.png 2-cube.svg
320 CDel node 1.pngCDel 3.pngCDel node 1.png 25px|link=Hexagon
320 CDel node 1.pngCDel 3.pngCDel node.png 2-simplex t0.svg
Edges 800 320 CDel node 1.png
480 CDel node 1.png
Vertices 320
Vertex figure Bitruncated penteract verf.png
{ }v{3}
Coxeter groups B5, [3,3,3,4], order 3840
Properties convex

Alternate names

  • Bitruncated penteract (Acronym: bittin) (Jonathan Bowers)

Construction and coordinates

The bitruncated 5-cube may be constructed by bitruncating the vertices of the 5-cube at [math]\displaystyle{ \sqrt{2} }[/math] of the edge length.

The Cartesian coordinates of the vertices of a bitruncated 5-cube having edge length 2 are all permutations of:

[math]\displaystyle{ \left(0,\ \pm1,\ \pm2,\ \pm2,\ \pm2\right) }[/math]

Images

orthographic projections
Coxeter plane B5 B4 / D5 B3 / D4 / A2
Graph 5-cube t12.svg 5-cube t12 B4.svg 5-cube t12 B3.svg
Dihedral symmetry [10] [8] [6]
Coxeter plane B2 A3
Graph 5-cube t12 B2.svg 5-cube t12 A3.svg
Dihedral symmetry [4] [4]

Related polytopes

The bitruncated 5-cube is third in a sequence of bitruncated hypercubes:

Related polytopes

This polytope is one of 31 uniform 5-polytope generated from the regular 5-cube or 5-orthoplex.


Notes

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Klitzing, Richard. "5D uniform polytopes (polytera)". https://bendwavy.org/klitzing/dimensions/polytera.htm.  o3o3o3x4x - tan, o3o3x3x4o - bittin

External links

Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform 4-polytope 5-cell 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds