Chemistry:Indazole

From HandWiki
Revision as of 19:17, 5 February 2024 by Unex (talk | contribs) (linkage)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Indazole
Skeletal formula with numbering convention
Ball-and-stick model
Space-filling model
Names
Preferred IUPAC name
1H-Indazole[1]
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
UNII
Properties
C7H6N2
Molar mass 118.14 g/mol
Melting point 147 to 149 °C (297 to 300 °F; 420 to 422 K)
Boiling point 270 °C (518 °F; 543 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☑Y verify (what is ☑Y☒N ?)
Infobox references
Tracking categories (test):

Indazole, also called isoindazole, is a heterocyclic aromatic organic compound. This bicyclic compound consists of the fusion of benzene and pyrazole.

Indazole is an amphoteric molecule which can be protonated to an indazolium cation or deprotonated to an indazolate anion. The corresponding pKa values are 1.04 for the equilibrium between indazolium cation and indazole and 13.86 for the equilibrium between indazole and indazolate anion.[2]

Indazole derivatives display a broad variety of biological activities.

Indazoles are rare in nature. The alkaloids nigellicine, nigeglanine, and nigellidine are indazoles. Nigellicine was isolated from the widely distributed plant Nigella sativa L. (black cumin). Nigeglanine was isolated from extracts of Nigella glandulifera.

The Davis–Beirut reaction can generate 2H-indazoles.

Indazole, C7H6N2, was obtained by E. Fischer (Ann. 1883, 221, p. 280) by heating ortho-hydrazine cinnamic acid,[3]

Fischer indazole.png

Some derivatives

indazole-3-carboxylic acid
Having a carboxylic acid group on carbon 3. Can be further modified to lonidamine.

See also

References

  1. International Union of Pure and Applied Chemistry (2014). Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013. The Royal Society of Chemistry. pp. 213. doi:10.1039/9781849733069. ISBN 978-0-85404-182-4. 
  2. Catalan, Javier; Elguero, Jose (1987). "Basicity and Acidity of Azoles". Advances in Heterocyclic Chemistry Volume 41. 41. Elsevier. pp. 187–274. doi:10.1016/s0065-2725(08)60162-2. ISBN 9780120206414. 
  3. Chisholm, Hugh, ed (1911). "Indazoles". Encyclopædia Britannica. 14 (11th ed.). Cambridge University Press. p. 371. 
  • Synthesis: Stadlbauer, W. (2002). "Product Class 2: 1H- and 2H-Indazoles". Category 2, Hetarenes and Related Ring Systems. Science of Synthesis. Houben-Weyl. doi:10.1055/sos-SD-012-00277. ISBN 9783131122711. 
  • Review: Schmidt, Andreas; Beutler, Ariane; Snovydovych, Bohdan (2008). "Recent Advances in the Chemistry of Indazoles". European Journal of Organic Chemistry 2008 (24): 4073–4095. doi:10.1002/ejoc.200800227.