Dual snub 24-cell
Dual snub 24-cell | ||
Orthogonal projection | ||
Type | 4-polytope | |
Cells | 96 | |
Faces | 432 | 144 kites 288 Isosceles triangle |
Edges | 480 | |
Vertices | 144 | |
Dual | Snub 24-cell | |
Properties | convex |
In geometry, the dual snub 24-cell is a 144 vertex convex 4-polytope composed of 96 irregular cells. Each cell has faces of two kinds: 3 kites and 6 isosceles triangles.[1] The polytope has a total of 432 faces (144 kites and 288 isosceles triangles) and 480 edges.
Geometry
The dual snub 24-cell, first described by Koca et al. in 2011,[2] is the dual polytope of the snub 24-cell, a semiregular polytope first described by Thorold Gosset in 1900.[3]
Construction
The vertices of a dual snub 24-cell are obtained using quaternion simple roots (T') in the generation of the 600 vertices of the 120-cell.[4] The following describe [math]\displaystyle{ T }[/math] and [math]\displaystyle{ T' }[/math] 24-cells as quaternion orbit weights of D4 under the Weyl group W(D4):
O(0100) : T = {±1,±e1,±e2,±e3,(±1±e1±e2±e3)/2}
O(1000) : V1
O(0010) : V2
O(0001) : V3
With quaternions [math]\displaystyle{ (p,q) }[/math] where [math]\displaystyle{ \bar p }[/math] is the conjugate of [math]\displaystyle{ p }[/math] and [math]\displaystyle{ [p,q]:r\rightarrow r'=prq }[/math] and [math]\displaystyle{ [p,q]^*:r\rightarrow r''=p\bar rq }[/math], then the Coxeter group [math]\displaystyle{ W(H_4)=\lbrace[p,\bar p] \oplus [p,\bar p]^*\rbrace }[/math] is the symmetry group of the 600-cell and the 120-cell of order 14400.
Given [math]\displaystyle{ p \in T }[/math] such that [math]\displaystyle{ \bar p=\pm p^4, \bar p^2=\pm p^3, \bar p^3=\pm p^2, \bar p^4=\pm p }[/math] and [math]\displaystyle{ p^\dagger }[/math] as an exchange of [math]\displaystyle{ -1/\phi \leftrightarrow \phi }[/math] within [math]\displaystyle{ p }[/math] where [math]\displaystyle{ \phi=\frac{1+\sqrt{5}}{2} }[/math] is the golden ratio, we can construct:
- the snub 24-cell [math]\displaystyle{ S=\sum_{i=1}^4\oplus p^i T }[/math]
- the 600-cell [math]\displaystyle{ I=T+S=\sum_{i=0}^4\oplus p^i T }[/math]
- the 120-cell [math]\displaystyle{ J=\sum_{i,j=0}^4\oplus p^i\bar p^{\dagger j}T' }[/math]
- the alternate snub 24-cell [math]\displaystyle{ S'=\sum_{i=1}^4\oplus p^i\bar p^{\dagger i}T' }[/math]
and finally the dual snub 24-cell can then be defined as the orbits of [math]\displaystyle{ T \oplus T' \oplus S' }[/math].
Projections
Dual
The dual polytope of this polytope is the Snub 24-cell.[5]
See also
Citations
- ↑ Koca, Al-Ajmi & Ozdes Koca 2011, pp. 986-987, Fig. 4.
- ↑ Koca, Al-Ajmi & Ozdes Koca 2011.
- ↑ Gosset 1900.
- ↑ Koca, Al-Ajmi & Ozdes Koca 2011, pp. 986-988, 6. Dual of the snub 24-cell.
- ↑ Coxeter 1973, pp. 151-153, §8.4. The snub {3,4,3}.
References
- Gosset, Thorold (1900). "On the Regular and Semi-Regular Figures in Space of n Dimensions". Messenger of Mathematics (Macmillan).
- Coxeter, H.S.M. (1973). Regular Polytopes (3rd ed.). New York: Dover.
- Conway, John; Burgiel, Heidi; Goodman-Strauss, Chaim (2008). The Symmetries of Things. ISBN 978-1-56881-220-5.
- Koca, Mehmet; Ozdes Koca, Nazife; Al-Barwani, Muataz (2012). "Snub 24-Cell Derived from the Coxeter-Weyl Group W(D4)". Int. J. Geom. Methods Mod. Phys. 09 (8). doi:10.1142/S0219887812500685. http://arxiv-web3.library.cornell.edu/abs/1106.3433.
- Koca, Mehmet; Al-Ajmi, Mudhahir; Ozdes Koca, Nazife (2011). "Quaternionic representation of snub 24-cell and its dual polytope derived from E8 root system". Linear Algebra and Its Applications 434 (4): 977–989. doi:10.1016/j.laa.2010.10.005. ISSN 0024-3795.
Fundamental convex regular and uniform polytopes in dimensions 2–10
| ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Family | An | Bn | I2(p) / Dn | E6 / E7 / E8 / F4 / G2 | Hn | |||||||
Regular polygon | Triangle | Square | p-gon | Hexagon | Pentagon | |||||||
Uniform polyhedron | Tetrahedron | Octahedron • Cube | Demicube | Dodecahedron • Icosahedron | ||||||||
Uniform 4-polytope | 5-cell | 16-cell • Tesseract | Demitesseract | 24-cell | 120-cell • 600-cell | |||||||
Uniform 5-polytope | 5-simplex | 5-orthoplex • 5-cube | 5-demicube | |||||||||
Uniform 6-polytope | 6-simplex | 6-orthoplex • 6-cube | 6-demicube | 122 • 221 | ||||||||
Uniform 7-polytope | 7-simplex | 7-orthoplex • 7-cube | 7-demicube | 132 • 231 • 321 | ||||||||
Uniform 8-polytope | 8-simplex | 8-orthoplex • 8-cube | 8-demicube | 142 • 241 • 421 | ||||||||
Uniform 9-polytope | 9-simplex | 9-orthoplex • 9-cube | 9-demicube | |||||||||
Uniform 10-polytope | 10-simplex | 10-orthoplex • 10-cube | 10-demicube | |||||||||
Uniform n-polytope | n-simplex | n-orthoplex • n-cube | n-demicube | 1k2 • 2k1 • k21 | n-pentagonal polytope | |||||||
Topics: Polytope families • Regular polytope • List of regular polytopes and compounds |
Original source: https://en.wikipedia.org/wiki/Dual snub 24-cell.
Read more |