Astronomy:Zeta Aurigae
Observation data Equinox J2000.0]] (ICRS) | |
---|---|
Constellation | Auriga |
Right ascension | 05h 02m 28.69085s[1] |
Declination | +41° 04′ 32.9342″[1] |
Apparent magnitude (V) | 3.751[2] (3.70 - 3.97[3]) |
Characteristics | |
Spectral type | K5 II + B7 V[4] |
U−B color index | +0.374[2] |
B−V color index | +1.293[2] |
R−I color index | 0.87 |
Variable type | Algol[3] |
Astrometry | |
Radial velocity (Rv) | +12.11[5] km/s |
Proper motion (μ) | RA: +6.872[1] mas/yr Dec.: -15.567[1] mas/yr |
Parallax (π) | 5.2872 ± 0.5353[1] mas |
Distance | approx. 620 ly (approx. 190 pc) |
Absolute magnitude (MV) | −3.21[6] |
Orbit[7] | |
Period (P) | 972.162 d |
Semi-major axis (a) | 905 R☉ |
Eccentricity (e) | 0.3973 ± 0.0007 |
Inclination (i) | 87.0° |
Periastron epoch (T) | RJD 53039.9 ± 0.10 |
Argument of periastron (ω) (secondary) | 328.9° ± 0.13° |
Semi-amplitude (K1) (primary) | 23.17 ± 0.02 km/s |
Details | |
ζ Aur A | |
Mass | 4.94±0.79[8] M☉ |
Radius | 148±3[5] R☉ |
Luminosity | 4,786[5] L☉ |
Surface gravity (log g) | 1.33[9] cgs |
Temperature | 3,960±100[5] K |
Metallicity [Fe/H] | –0.26[9] dex |
Rotational velocity (v sin i) | 5.7±1[5] km/s |
ζ Aur B | |
Mass | 4.8[7] M☉ |
Other designations | |
Database references | |
SIMBAD | data |
Zeta Aurigae, or ζ Aurigae, is a binary star system in the northern constellation of Auriga. Based upon parallax measurements made during the Hipparcos mission, this system is approximately 790 light-years (240 parsecs) distant from the sun. It has a combined apparent visual magnitude of 3.75,[2] which is bright enough to be seen with the naked eye.
The two components are designated Zeta Aurigae A (officially named Saclateni /sækləˈtiːni/,[11] an old misspelling of "Sadatoni")[citation needed] and B.
Nomenclature
ζ Aurigae (Latinised to Zeta Aurigae) is the system's Bayer designation. The designations of the two components as ζ Aurigae A and B derive from the convention used by the Washington Multiplicity Catalog (WMC) for multiple star systems, and adopted by the International Astronomical Union (IAU).[12]
The system bore the traditional names Haedus I (also Hoedus) and Sadatoni (rarely Saclateni).[13] It was one of the two haedi (Latin: 'kids') of the she-goat Capella, the other being Haedus II, Eta Aurigae. The name Sadatoni is from the Arabic الساعد الثاني as-sācid aθ-θānī "the second arm (of the charioteer)". The rare traditional name Azaleh is shared (in the form Hassaleh) with Iota Aurigae.[14] In 2016, the IAU organized a Working Group on Star Names (WGSN)[15] to catalog and standardize proper names for stars. The WGSN decided to attribute proper names to individual stars rather than entire multiple systems.[16] It approved the names Saclateni for the component Zeta Aurigae A and Haedus for Eta Aurigae on 30 June 2017 and they are both now so included in the List of IAU-approved Star Names.[11]
In Chinese, 柱 (Zhù), meaning Pillars, refers to an asterism consisting of Zeta Aurigae, Epsilon Aurigae, Eta Aurigae, Upsilon Aurigae, Nu Aurigae, Tau Aurigae, Chi Aurigae and 26 Aurigae.[17] Consequently, the Chinese name for Zeta Aurigae itself is 柱二 (Zhù èr, English: the Second Star of Pillars.)[18]
Properties
Zeta Aurigae was first recognized as a spectroscopic binary by William Hammond Wright while analyzing photographic plates taken at Lick Observatory between 1898 and 1908. This star is among those earlier described by Antonia Maury as having a composite spectrum.[20] The first orbit was determined in 1924 by William Edmund Harper using measurements taken at Dominion Observatory, his orbital elements are very similar to the most recent determinations. Harper also noticed that the composite nature of the spectrum had disappeared on the one plate when the K type primary was nearest the sun indicating a possible eclipse.[21] In 1932 the eclipsing binary nature of the system was confirmed by Paul Guthnick, Heribert Schneller and independently Josef Hopmann.[22]
The orbital plane of this eclipsing system is oriented close to the line of sight from the Earth, with an inclination estimated as 87.0°.[7] As a result, an eclipse of one star by the other occurs during each orbit, causing the net magnitude to decrease to +3.99. The pair have an orbital period of 972 days (2.66 years) and an eccentricity (ovalness) of 0.4.[7] The primary, component A, has been categorized as a K-type bright giant or supergiant star. Its companion, component B, is a B-type main-sequence star with a stellar classification B5 V or B7 V.[7][4] Because component B has a much hotter photosphere than component A, component B produces most of the system's ultraviolet light. This causes the brightness change seen during the eclipses (when B is obscured) to be much greater in ultraviolet light than it is in visible light.
References
- ↑ 1.0 1.1 1.2 1.3 1.4 Brown, A. G. A. (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics 616: A1. doi:10.1051/0004-6361/201833051. Bibcode: 2018A&A...616A...1G. Gaia DR2 record for this source at VizieR.
- ↑ 2.0 2.1 2.2 2.3 Kiyokawa, M. (1967), "Photoelectric Observation of Zeta Aurigae during the 1963-64 Eclipse", Publications of the Astronomical Society of Japan 19: 209, Bibcode: 1967PASJ...19..209K.
- ↑ 3.0 3.1 Samus, N. N. et al. (2009). "VizieR Online Data Catalog: General Catalogue of Variable Stars (Samus+ 2007-2013)". VizieR On-line Data Catalog: B/GCVS. Originally Published in: 2009yCat....102025S 1. Bibcode: 2009yCat....102025S.
- ↑ 4.0 4.1
- ↑ 5.0 5.1 5.2 5.3 5.4 Harper, Graham M.; Bennett, Philip D.; Brown, Alexander; Ayres, Thomas R.; Ohnaka, Keiichi; Griffin, Elizabeth (2022). "HST STIS Observations of ζ Aurigae A's Irradiated Atmosphere". The Astronomical Journal 164 (1): 16. doi:10.3847/1538-3881/ac6feb. Bibcode: 2022AJ....164...16H.
- ↑ Anderson, E.; Francis, Ch. (2012), "XHIP: An extended hipparcos compilation", Astronomy Letters 38 (5): 331, doi:10.1134/S1063773712050015, Bibcode: 2012AstL...38..331A.
- ↑ 7.0 7.1 7.2 7.3 7.4 Eaton, Joel A.; Henry, Gregory W.; Odell, Andrew P. (June 2008), "Orbits and Pulsations of the Classical ζ Aurigae Binaries", The Astrophysical Journal 679 (2): 1490–1498, doi:10.1086/587452, Bibcode: 2008ApJ...679.1490E.
- ↑ Hohle, M. M.; Neuhäuser, R.; Schutz, B. F. (April 2010), "Masses and luminosities of O- and B-type stars and red supergiants", Astronomische Nachrichten 331 (4): 349, doi:10.1002/asna.200911355, Bibcode: 2010AN....331..349H.
- ↑ 9.0 9.1 McWilliam, Andrew (December 1990), "High-resolution spectroscopic survey of 671 GK giants", Astrophysical Journal Supplement Series 74: 1075–1128, doi:10.1086/191527, Bibcode: 1990ApJS...74.1075M. origin: STI
- ↑ "zet Aur". SIMBAD. Centre de données astronomiques de Strasbourg. http://simbad.u-strasbg.fr/simbad/sim-basic?Ident=zet+Aur.
- ↑ 11.0 11.1 "Naming Stars". IAU.org. https://www.iau.org/public/themes/naming_stars/.
- ↑ Hessman, F. V.; Dhillon, V. S.; Winget, D. E.; Schreiber, M. R.; Horne, K.; Marsh, T. R.; Guenther, E.; Schwope, A.; Heber, U. (2010). "On the naming convention used for multiple star systems and extrasolar planets". arXiv:1012.0707 [astro-ph.SR].
- ↑ Rumrill, H. B. (June 1936). "Star Name Pronunciation". Publications of the Astronomical Society of the Pacific (San Francisco, California) 48 (283): 139. doi:10.1086/124681. Bibcode: 1936PASP...48..139R.
- ↑ "Al Kab". http://stars.astro.illinois.edu/sow/alkab.html.
- ↑ "IAU Working Group on Star Names (WGSN)". https://www.iau.org/science/scientific_bodies/working_groups/280/.
- ↑ "WG Triennial Report (2015-2018) - Star Names". p. 5. https://www.iau.org/static/science/scientific_bodies/working_groups/280/wg-starnames-triennial-report-2015-2018.pdf.
- ↑ (in Chinese) 中國星座神話, written by 陳久金. Published by 台灣書房出版有限公司, 2005, ISBN:978-986-7332-25-7.
- ↑ (in Chinese) 香港太空館 - 研究資源 - 亮星中英對照表 , Hong Kong Space Museum. Accessed on line November 23, 2010.
- ↑ Bennett, Philip D.; Harper, Graham M.; Brown, Alexander; Hummel, Christian A. (November 1996). "The Masses and Radii of the Eclipsing Binary zeta Aurigae". Astrophysical Journal 471: 454. doi:10.1086/177981. Bibcode: 1996ApJ...471..454B.
- ↑ Campbell, W. W. (1909). "Eleven stars having variable radial velocities". The Astrophysical Journal 29: 224–228. doi:10.1086/141644. Bibcode: 1909ApJ....29..224C.
- ↑ Harper, W. E. (1924). "The Orbit of the spectroscopic binary Zeta Aurigae". Publications of the Dominion Observatory Ottawa 3: 151–157. Bibcode: 1924PDAO....3..151H.
- ↑ Christie, William H.; Wilson, O. C. (1935). "ζ Aurigae: the Structure of a Stellar Atmosphere". The Astrophysical Journal 81: 426–460. doi:10.1086/143645. Bibcode: 1935ApJ....81..426C.
External links
Original source: https://en.wikipedia.org/wiki/Zeta Aurigae.
Read more |