Biology:Angiogenin
Generic protein structure example |
Angiogenin (ANG) also known as ribonuclease 5 is a small 123 amino acid protein that in humans is encoded by the ANG gene.[1] Angiogenin is a potent stimulator of new blood vessels through the process of angiogenesis. Ang hydrolyzes cellular RNA, resulting in modulated levels of protein synthesis and interacts with DNA causing a promoter-like increase in the expression of rRNA.[2][3] Ang is associated with cancer and neurological disease through angiogenesis and through activating gene expression that suppresses apoptosis.[2][4][5]
Function
Angiogenin is a key protein implicated in angiogenesis in normal and tumor growth. Angiogenin interacts with endothelial and smooth muscle cells resulting in cell migration, invasion, proliferation and formation of tubular structures.[1] Ang binds to actin of both smooth muscle and endothelial cells to form complexes that activate proteolytic cascades which upregulate the production of proteases and plasmin that degrade the laminin and fibronectin layers of the basement membrane.[2] Degradation of the basement membrane and extracellular matrix allows the endothelial cells to penetrate and migrate into the perivascular tissue.[1] Signal transduction pathways activated by Ang interactions at the cellular membrane of endothelial cells produce extracellular signal-related kinase1/2 (ERK1/2) and protein kinase B/Akt.[1] Activation of these proteins leads to invasion of the basement membrane and cell proliferation associated with further angiogenesis. The most important step in the angiogenesis process is the translocation of Ang to the cell nucleus. Once Ang has been translocated to the nucleus, it enhances rRNA transcription by binding to the CT-rich (CTCTCTCTCTCTCTCTCCCTC) angiogenin binding element (ABE) within the upstream intergenic region of rDNA, which subsequently activates other angiogenic factors that induce angiogenesis.[1][3][6]
However, angiogenin is unique among the many proteins that are involved in angiogenesis in that it is also an enzyme with an amino acid sequence 33% identical to that of bovine pancreatic ribonuclease (RNase A).[1] Ang has the same general catalytic properties as RNase A, it cleaves preferentially on the 3' side of pyrimidines and follows a transphosphorylation/hydrolysis mechanism.[7] Although angiogenin contains many of the same catalytic residues as RNase A, it cleaves standard RNA substrates 105–106 times less efficiently than RNase A.[7] The reason for this inefficiency is due to the 117 residue consisting of a glutamine, which blocks the catalytic site.[8] Removal of this residue through mutation increases the ribonuclease activity between 11 and 30 fold.[8] Despite this apparent weakness, the enzymatic activity of Ang appears to be essential for biological activity: replacements of important catalytic site residues (histidine-13 and histidine-114) invariably diminish both the ribonuclease activity toward tRNA by 10,000 fold and almost abolishes angiogenesis activities completely.[9]
Disease
Cancer
Ang has a prominent role in the pathology of cancer due to its functions in angiogenesis and cell survival. Since Ang possesses angiogenic activity, it makes Ang a possible candidate in therapeutic treatments of cancer. Studies of Ang and tumor relationships provide evidence for a connection between the two. The translocation of Ang to the nucleus causes an upregulation of transcriptional rRNA, while knockdown strains of Ang cause downregulation.[1] The presence of Ang inhibitors that block translocation resulted in a decrease of tumor growth and overall angiogenesis.[1][10] HeLa cells translocate Ang to the nucleus independent of cell density. In human umbilical vein endothelial cells (HUVECs), translocation of Ang to the nucleus stops after cells reach a specific density, while in HeLa cells translocation continued past that point.[11] Inhibition of Ang affects the ability of HeLa cells to proliferate, which proposes an effective target for possible therapies.
Neurodegenerative diseases
Due to the ability of Ang to protect motoneurons (MNs), causal links between Ang mutations and amyotrophic lateral sclerosis (ALS) are likely. The angiogenic factors associated with Ang may protect the central nervous system and MNs directly.[1] Experiments with wild type Ang found that it slows MN degeneration in mice that had developed ALS, providing evidence for further development of Ang protein therapy in ALS treatment.[10] Angiogenin expression in Parkinson's disease is dramatically decreased in the presence of alpha-synuclein (α-syn) aggregations. Exogenous angiogenin applied to dopamine-producing cells leads to the phosphorylation of PKB/AKT and the activation of this complex inhibits cleavage of caspase 3 and apoptosis when cells are exposed to a Parkinson's-like inducing substance.[5]
Gene
Alternative splicing results in two transcript variants encoding the same protein. This gene and the gene that encodes ribonuclease, RNase A family, 4 share promoters and 5' exons. Each gene splices to a unique downstream exon that contains its complete coding region.[12]
References
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 "Mechanisms of action of angiogenin". Acta Biochimica et Biophysica Sinica 40 (7): 619–624. 2008. doi:10.1111/j.1745-7270.2008.00442.x. PMID 18604453.
- ↑ 2.0 2.1 2.2 Tello-Montoliu A.; Patel J.V.; Lip G.Y.H. (2006). "Angiogenin: a review of the pathophysiology and potential clinical applications". Journal of Thrombosis and Haemostasis 4 (9): 1864–74. doi:10.1111/j.1538-7836.2006.01995.x. PMID 16961595.
- ↑ 3.0 3.1 "Identification and characterization of an angiogenin-binding DNA sequence that stimulate luciferase reporter gene expression". Biochemistry 42 (1): 121–128. 2003. doi:10.1021/bi020465x. PMID 12515546.
- ↑ "Angiogenin inhibits nuclear translocation of apoptosis inducing factor in a Bcl-2-dependent manner". Journal of Cellular Physiology 227 (4): 1639–1644. 2012. doi:10.1002/jcp.22881. PMID 21678416.
- ↑ 5.0 5.1 "A neuroprotective role for angiogenin in models of Parkinson's disease". Journal of Neurochemistry 116 (3): 334–341. 2011. doi:10.1111/j.1471-4159.2010.07112.x. PMID 21091473.
- ↑ "Stress induces tRNA cleavage by angiogenin in mammalian cells". FEBS Letters 583 (2): 437–42. 2008. doi:10.1016/j.febslet.2008.12.043. PMID 19114040. https://zenodo.org/record/898819.
- ↑ 7.0 7.1 "The ribonucleolytic activity of angiogenin". Biochemistry 41 (4): 1343–1350. 2002. doi:10.1021/bi0117899. PMID 11802736.
- ↑ 8.0 8.1 "Role of glutamine-117 in the ribonucleolytic activity of human angiogenin". Proceedings of the National Academy of Sciences 91 (9): 2920–2924. 1994. doi:10.1073/pnas.91.8.2920. PMID 8159680. Bibcode: 1994PNAS...91.2920R.
- ↑ "Site-directed mutagenesis of histidine-13 and histidine-114 of human angiogenin. Alanine derivatives inhibit angiogenin-induced angiogenesis". Biochemistry 28 (18): 7401–7408. 1989. doi:10.1021/bi00444a038. PMID 2479414.
- ↑ 10.0 10.1 "Emerging role of angiogenin in stress response and cell survival under adverse conditions". Journal of Cellular Physiology 227 (7): 2822–6. 2012. doi:10.1002/jcp.23051. PMID 22021078.
- ↑ "Angiogenin is translocated to the nucleus of HeLa cells and is involved in ribosomal RNA transcription and cell proliferation". Cancer Research 65 (4): 1352–1360. 2005. doi:10.1158/0008-5472.CAN-04-2058. PMID 15735021.
- ↑ "Entrez Gene: ANG angiogenin, ribonuclease, RNase A family, 5". https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=283.
Further reading
- Saxena SK; Rybak SM; Davey RT et al. (1992). "Angiogenin is a cytotoxic, tRNA-specific ribonuclease in the RNase A superfamily". J. Biol. Chem. 267 (30): 21982–6. doi:10.1016/S0021-9258(19)36710-9. PMID 1400510.
- "The placental ribonuclease inhibitor (RNH) gene is located on chromosome subband 11p15.5". Genomics 8 (4): 717–21. 1991. doi:10.1016/0888-7543(90)90260-2. PMID 2276743.
- "Characteristic ribonucleolytic activity of human angiogenin". Biochemistry 25 (12): 3527–32. 1986. doi:10.1021/bi00360a008. PMID 2424496.
- "Tissue distribution and developmental expression of the messenger RNA encoding angiogenin". Science 237 (4812): 280–2. 1987. doi:10.1126/science.2440105. PMID 2440105. Bibcode: 1987Sci...237..280W.
- "Angiogenin activates endothelial cell phospholipase C". Proc. Natl. Acad. Sci. U.S.A. 85 (16): 5961–5. 1988. doi:10.1073/pnas.85.16.5961. PMID 2457905. Bibcode: 1988PNAS...85.5961B.
- "Angiogenin stimulates endothelial cell prostacyclin secretion by activation of phospholipase A2". Proc. Natl. Acad. Sci. U.S.A. 86 (5): 1573–7. 1989. doi:10.1073/pnas.86.5.1573. PMID 2646638. Bibcode: 1989PNAS...86.1573B.
- "Characterization of ribonucleolytic activity of angiogenin towards tRNA". Biochem. Biophys. Res. Commun. 161 (1): 121–6. 1989. doi:10.1016/0006-291X(89)91569-6. PMID 2730651.
- "Binding of placental ribonuclease inhibitor to the active site of angiogenin". Biochemistry 28 (8): 3556–61. 1989. doi:10.1021/bi00434a061. PMID 2742853.
- Strydom DJ; Fett JW; Lobb RR et al. (1986). "Amino acid sequence of human tumor derived angiogenin". Biochemistry 24 (20): 5486–94. doi:10.1021/bi00341a031. PMID 2866794.
- Kurachi K; Davie EW; Strydom DJ et al. (1986). "Sequence of the cDNA and gene for angiogenin, a human angiogenesis factor". Biochemistry 24 (20): 5494–9. doi:10.1021/bi00341a032. PMID 2866795.
- "Human placental ribonuclease inhibitor abolishes both angiogenic and ribonucleolytic activities of angiogenin". Proc. Natl. Acad. Sci. U.S.A. 84 (8): 2238–41. 1987. doi:10.1073/pnas.84.8.2238. PMID 3470787. Bibcode: 1987PNAS...84.2238S.
- "Angiogenin mRNA in human tumor and normal cells". Biochem. Biophys. Res. Commun. 146 (3): 1240–8. 1987. doi:10.1016/0006-291X(87)90781-9. PMID 3619929.
- "Isolation of angiogenin from normal human plasma". Biochemistry 26 (16): 5141–6. 1987. doi:10.1021/bi00390a037. PMID 3663649.
- Hu GF; Strydom DJ; Fett JW et al. (1993). "Actin is a binding protein for angiogenin". Proc. Natl. Acad. Sci. U.S.A. 90 (4): 1217–21. doi:10.1073/pnas.90.4.1217. PMID 7679494. Bibcode: 1993PNAS...90.1217H.
- "Identification of the nucleolar targeting signal of human angiogenin". Biochem. Biophys. Res. Commun. 203 (3): 1765–72. 1994. doi:10.1006/bbrc.1994.2391. PMID 7945327.
- "Nuclear translocation of angiogenin in proliferating endothelial cells is essential to its angiogenic activity". Proc. Natl. Acad. Sci. U.S.A. 91 (5): 1677–81. 1994. doi:10.1073/pnas.91.5.1677. PMID 8127865. Bibcode: 1994PNAS...91.1677M.
- Acharya KR; Shapiro R; Allen SC et al. (1994). "Crystal structure of human angiogenin reveals the structural basis for its functional divergence from ribonuclease". Proc. Natl. Acad. Sci. U.S.A. 91 (8): 2915–9. doi:10.1073/pnas.91.8.2915. PMID 8159679. Bibcode: 1994PNAS...91.2915A.
- "A putative angiogenin receptor in angiogenin-responsive human endothelial cells". Proc. Natl. Acad. Sci. U.S.A. 94 (6): 2204–9. 1997. doi:10.1073/pnas.94.6.2204. PMID 9122172. Bibcode: 1997PNAS...94.2204H.
External links
- Human ANG genome location and ANG gene details page in the UCSC Genome Browser.
- Human RNASE4 genome location and RNASE4 gene details page in the UCSC Genome Browser.
- Human AMOT genome location and AMOT gene details page in the UCSC Genome Browser.
- Overview of all the structural information available in the PDB for UniProt: P03950 (Human Angiogenin) at the PDBe-KB.
- Overview of all the structural information available in the PDB for UniProt: P21570 (Mouse Angiogenin) at the PDBe-KB.
Original source: https://en.wikipedia.org/wiki/Angiogenin.
Read more |