Runcinated 7-orthoplexes

From HandWiki
Orthogonal projections in B6 Coxeter plane
7-cube t6 B6.svg
7-orthoplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
7-cube t36 B6.svg
Runcinated 7-orthoplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
7-cube t25 B6.svg
Biruncinated 7-orthoplex
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
7-cube t356 B6.svg
Runcitruncated 7-orthoplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
7-cube t245 B6.svg
Biruncitruncated 7-orthoplex
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
7-cube t346 B6.svg
Runcicantellated 7-orthoplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
7-cube t235 B6.svg
Biruncicantellated 7-orthoplex
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
7-cube t3456 B6.svg
Runcicantitruncated 7-orthoplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
7-cube t2345 B6.svg
Biruncicantitruncated 7-orthoplex
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

In seven-dimensional geometry, a runcinated 7-orthoplex is a convex uniform 7-polytope with 3rd order truncations (runcination) of the regular 7-orthoplex.

There are 16 unique runcinations of the 7-orthoplex with permutations of truncations, and cantellations. 8 are more simply constructed from the 7-cube.

These polytopes are among 127 uniform 7-polytopes with B7 symmetry.

Runcinated 7-orthoplex

Runcinated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,3{35,4}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 23520
Vertices 2240
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Small prismated hecatonicosoctaexon (acronym: spaz) (Jonathan Bowers)[1]

Images

Biruncinated 7-orthoplex

Biruncinated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t1,4{35,4}
Coxeter-Dynkin diagrams CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 60480
Vertices 6720
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Small biprismated hecatonicosoctaexon (Acronym sibpaz) (Jonathan Bowers)[2]

Images

Runcitruncated 7-orthoplex

Runcitruncated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,1,3{35,4}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 50400
Vertices 6720
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Prismatotruncated hecatonicosoctaexon (acronym: potaz) (Jonathan Bowers)[3]

Images

Biruncitruncated 7-orthoplex

Biruncitruncated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t1,2,4{35,4}
Coxeter-Dynkin diagrams CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 120960
Vertices 20160
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Biprismatotruncated hecatonicosoctaexon (acronym: baptize) (Jonathan Bowers)[4]

Images

Runcicantellated 7-orthoplex

Runcicantellated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,2,3{35,4}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 33600
Vertices 6720
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Prismatorhombated hecatonicosoctaexon (acronym: parz) (Jonathan Bowers)[5]

Images

Biruncicantellated 7-orthoplex

biruncicantellated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t1,3,4{35,4}
Coxeter-Dynkin diagrams CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 100800
Vertices 20160
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Biprismatorhombated hecatonicosoctaexon (acronym: boparz) (Jonathan Bowers)[6]

Images

Runcicantitruncated 7-orthoplex

Runcicantitruncated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,1,2,3{35,4}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 60480
Vertices 13440
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Great prismated hecatonicosoctaexon (acronym: gopaz) (Jonathan Bowers)[7]

Images

Biruncicantitruncated 7-orthoplex

biruncicantitruncated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t1,2,3,4{35,4}
Coxeter-Dynkin diagrams CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 161280
Vertices 40320
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Great biprismated hecatonicosoctaexon (acronym: gibpaz) (Jonathan Bowers)[8]

Images

Notes

  1. Klitzing, (o3o3o3x3o3o4x - spaz)
  2. Klitzing, (o3x3o3o3x3o4o - sibpaz)
  3. Klitzing, (o3o3o3x3x3o4x - potaz)
  4. Klitzing, (o3o3x3o3x3x4o - baptize)
  5. Klitzing, (o3o3o3x3x3o4x - parz)
  6. Klitzing, (o3x3o3x3x3o4o - boparz)
  7. Klitzing, (o3o3o3x3x3x4x - gopaz)
  8. Klitzing, (o3o3x3x3x3x3o - gibpaz)

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN:978-0-471-01003-6 Wiley: Kaleidoscopes: Selected Writings of H.S.M. Coxeter
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)
  • Klitzing, Richard. "7D uniform polytopes (polyexa)". https://bendwavy.org/klitzing/dimensions/polyexa.htm.  o3o3o3x3o3o4x - spaz, o3x3o3o3x3o4o - sibpaz, o3o3o3x3x3o4x - potaz, o3o3x3o3x3x4o - baptize, o3o3o3x3x3o4x - parz, o3x3o3x3x3o4o - boparz, o3o3o3x3x3x4x - gopaz, o3o3x3x3x3x3o - gibpaz

External links

Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform 4-polytope 5-cell 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds