Truncated 6-cubes

From HandWiki
6-cube t0.svg
6-cube
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
6-cube t01.svg
Truncated 6-cube
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
6-cube t12.svg
Bitruncated 6-cube
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
6-cube t23.svg
Tritruncated 6-cube
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
6-cube t5.svg
6-orthoplex
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
6-cube t45.svg
Truncated 6-orthoplex
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
6-cube t34.svg
Bitruncated 6-orthoplex
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
Orthogonal projections in B6 Coxeter plane

In six-dimensional geometry, a truncated 6-cube (or truncated hexeract) is a convex uniform 6-polytope, being a truncation of the regular 6-cube.

There are 5 truncations for the 6-cube. Vertices of the truncated 6-cube are located as pairs on the edge of the 6-cube. Vertices of the bitruncated 6-cube are located on the square faces of the 6-cube. Vertices of the tritruncated 6-cube are located inside the cubic cells of the 6-cube.

Truncated 6-cube

Truncated 6-cube
Type uniform 6-polytope
Class B6 polytope
Schläfli symbol t{4,3,3,3,3}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-faces 76
4-faces 464
Cells 1120
Faces 1520
Edges 1152
Vertices 384
Vertex figure Truncated 6-cube verf.png
( )v{3,3,3}
Coxeter groups B6, [3,3,3,3,4]
Properties convex

Alternate names

  • Truncated hexeract (Acronym: tox) (Jonathan Bowers)[1]

Construction and coordinates

The truncated 6-cube may be constructed by truncating the vertices of the 6-cube at [math]\displaystyle{ 1/(\sqrt{2}+2) }[/math] of the edge length. A regular 5-simplex replaces each original vertex.

The Cartesian coordinates of the vertices of a truncated 6-cube having edge length 2 are the permutations of:

[math]\displaystyle{ \left(\pm1,\ \pm(1+\sqrt{2}),\ \pm(1+\sqrt{2}),\ \pm(1+\sqrt{2}),\ \pm(1+\sqrt{2}),\ \pm(1+\sqrt{2})\right) }[/math]

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph 6-cube t01.svg 6-cube t01 B5.svg 6-cube t01 B4.svg
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph 6-cube t01 B3.svg 6-cube t01 B2.svg
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 6-cube t01 A5.svg 6-cube t01 A3.svg
Dihedral symmetry [6] [4]

Related polytopes

The truncated 6-cube, is fifth in a sequence of truncated hypercubes:

Bitruncated 6-cube

Bitruncated 6-cube
Type uniform 6-polytope
Class B6 polytope
Schläfli symbol 2t{4,3,3,3,3}
Coxeter-Dynkin diagrams CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure Bitruncated 6-cube verf.png
{ }v{3,3}
Coxeter groups B6, [3,3,3,3,4]
Properties convex

Alternate names

  • Bitruncated hexeract (Acronym: botox) (Jonathan Bowers)[2]

Construction and coordinates

The Cartesian coordinates of the vertices of a bitruncated 6-cube having edge length 2 are the permutations of:

[math]\displaystyle{ \left(0,\ \pm1,\ \pm2,\ \pm2,\ \pm2,\ \pm2 \right) }[/math]

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph 6-cube t12.svg 6-cube t12 B5.svg 6-cube t12 B4.svg
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph 6-cube t12 B3.svg 6-cube t12 B2.svg
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 6-cube t12 A5.svg 6-cube t12 A3.svg
Dihedral symmetry [6] [4]

Related polytopes

The bitruncated 6-cube is fourth in a sequence of bitruncated hypercubes:

Tritruncated 6-cube

Tritruncated 6-cube
Type uniform 6-polytope
Class B6 polytope
Schläfli symbol 3t{4,3,3,3,3}
Coxeter-Dynkin diagrams CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure Tritruncated 6-cube verf.png
{3}v{4}[3]
Coxeter groups B6, [3,3,3,3,4]
Properties convex

Alternate names

  • Tritruncated hexeract (Acronym: xog) (Jonathan Bowers)[4]

Construction and coordinates

The Cartesian coordinates of the vertices of a tritruncated 6-cube having edge length 2 are the permutations of:

[math]\displaystyle{ \left(0,\ 0,\ \pm1,\ \pm2,\ \pm2,\ \pm2 \right) }[/math]

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph 6-cube t23.svg 6-cube t23 B5.svg 6-cube t23 B4.svg
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph 6-cube t23 B3.svg 6-cube t23 B2.svg
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 6-cube t23 A5.svg 6-cube t23 A3.svg
Dihedral symmetry [6] [4]

Related polytopes

Related polytopes

These polytopes are from a set of 63 Uniform 6-polytopes generated from the B6 Coxeter plane, including the regular 6-cube or 6-orthoplex.


Notes

  1. Klitzing, (o3o3o3o3x4x - tox)
  2. Klitzing, (o3o3o3x3x4o - botox)
  3. https://bendwavy.org/klitzing/incmats/squete.htm
  4. Klitzing, (o3o3x3x3o4o - xog)

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN:978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Klitzing, Richard. "6D uniform polytopes (polypeta)". https://bendwavy.org/klitzing/dimensions/polypeta.htm.  o3o3o3o3x4x - tox, o3o3o3x3x4o - botox, o3o3x3x3o4o - xog

External links

Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform 4-polytope 5-cell 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds